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ABSTRACT
Model Driven Engineering (MDE) is a methodology that aims to
simplify the process of designing complex systems, by using models
as an abstract representation of the underlying system.

This methodology allows domain experts to more easily focus on
system design, where their knowledge is more useful, without hav-
ing to work with the system implementation complexities. Search
Based Model Engineering applies MDE concepts to optimisation
problems. The goal is to simplify the process of solving optimisa-
tion problems for domain experts, by abstracting the complexity of
solving optimisation problems and allowing them to focus on the
domain level issues..

In this tool demostration we present MDEOptimiser (MDEO), a
tool for specifying and solving optimisation problems using MDE.
With MDEO the user can specify optimisation problems using a
simple DSL. The tool can run evolutionary optimisation algorithms
that use models as an encoding for population members and model
transformations as search operators. We showcase the functionality
of the tool using a number of case studies. We aim to show that with
MDEO, specifying optimisation problems becomes a less complex
task compared to custom implementations.
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1 INTRODUCTION
In this demonstration we are going to show MDEOptimiser 1, a
search based model engineering (SBME) tool that aims to simplify
the process of specifying optimisation problems. The tool uses MDE
to help users specify optimisation problems through an easy-to-use
domain-specific language (DSL). MDEO requires the user to provide
a problem specification that is easy to define using the implemented
DSL. This is then used to run evolutionary optimisation algorithms
to search for valid solutions to the specified problem. The tool uses
models to represent individual candidate search solutions and the
metamodel to define the problem search space.

The motivation for our approach is to use models as individual
solution encodings. This encoding reduces the need to convert
the genotype to a phenotype to evaluate the quality of a model.
In our approach, search operators can be implemented as model
transformations. The idea of searching directly on models was
first described in [4]. Running search directly on models, is often
needed when we are interested in finding optimal models [10].
Other approaches, seek to optimise transformation chains, where
the goal is to optimise how to reach the optimal solutions [1, 7].

The remainder of this demonstration is organised as follows.
First in Sect. 2 we give a a background of the concepts needed to
understand for this demonstration. Then, in Sect. 3 we introduce
two case studies which will be used in this demonstration. In Sect. 4
we describe the architecture of our tool, followed by a description
of the MDEO DSL in Sect. 5. In Sect. 6 we describe a video demon-
stration of the tool. In Sect. 7 we present related work and in Sect. 8
we conclude with a discussion about future tool improvements.

2 BACKGROUND
In this section we introduce the concepts that are at the core of
MDEO. We will start by giving a description of MDE, followed by a
description of search-based software engineering.

MDE is a methodology that allows engineers to reason about
complex systems using an abstract representation, allowing them to
avoid the complexity of working directly with the implementation
details. The main abstraction layers introduced by MDE are sys-
tem, model, metamodel and meta-metamodel [5]. A core concept
introduced by MDE are model transformations, defined as a set of
rules that can be used to convert a source model to a target model
[11]. A transformation that runs on a model in the same language
is classified as endogenous [11].

Henshin is an in-place model transformation language, built to
run on EMF models [2]. The transformation engine is based on alge-
braic graph transformation concepts. The tool visual representation
of this concept allowing users to specify complex transformation

1https://mde-optimiser.github.io
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rules with ease. A Henshin transformation rule consists of a left
hand side (LHS) and a right hand side (RHS) graph. The tool also
allows the specification of application conditions to identify the
conditions under which a transformation rule can be applied.

Search-based model optimisation is a term that describes the use
of MDE to solve search based optimisation problems [10]. This ap-
proach aims to simplify the specification of optimisation problems
by taking advantage of the abstraction benefits offered by MDE.

To solve a problem using a search-based algorithm the following
components are required:

• A representation for solution candidates;
• A method to specify and apply search operators to generate
new solution candidates from existing ones;

• A method to evaluate the quality of a solution candidate.
In SBME we use models as a solution representation. The meta-

model defines the available search space. Search operators, such as
mutation or breeding are implemented using endogenous transfor-
mations. To evalute the fitness of a solution we use model querying
languages such as OCL or Java.

3 RUNNING EXAMPLE
For this demonstration we are going to use two case studies to
showcase the features of our tool. The first case study, described in
Sect. 3.1 is a single objective optimisation problem. We will use this
case study to describe the functionality of MDEO in the remainder
of this paper. The second case study, described in Sect. 3.2 is a
multi-objective optimisation problem. We are including it to show
how our tool can be used to solve optimisation problems that have
more than one objective.

3.1 Class-Responsibility Assignment
The Class-Responsibility Assignment case study, has been pre-
sented at the Transformation Tool Contest 2016 [8]. The problem is
from the field of software engineering. The input of the CRA case
study is a responsibilities dependency graph (RDG), formed of a set
of methods, attributes and dependencies between them. The goal of
the problem is to create a high-quality class diagrammodel, starting
from the RDG model. To solve this single objective problem, the
user is required to create classes and assign to them methods and
attributes with the following objectives and constraints:

• Objective 1 maximise the CRA index;
• Constraint 1 all RDG features must be assigned to a class;
• Constraint 2 no solution must have empty classes;

The latter constraint is enforced by the problem metamodel mul-
tiplicities. A complete description of the case study and how the
CRA index is calculated can be found in the case study paper [8].

3.2 Scrum Planning
The Scrum Planning case study is an optimisation problem that
aims to solve the challenging task of maximising stakeholder value
when implementing a software application using the Scrum agile
framework [12]. In this adaptation of the Scrum methodology, we
seek to find the best distribution of work items across a number of
Sprints, such that no Stakeholder has to wait too long before any
of the work he is interested in is being planned.

MDEO
DSL

Meta-model

Initial model

Evolvers

Objectives

Constraints

Search algorithm

Run search algorithm n evolutions times
Initial model
Evolvers
Objectives
ConstraintsConvergent solutions

Figure 1: MDEO Tool Architecture

Scrum is a development methodology that introduces sprints
as fixed time product development iterations. Each Sprint is em-
ployed by a set of roles: the product owner, who represents the
product stakeholders; the development team, who build the prod-
uct; and the Scrum master, who is the Scrum process facilitator.
Two main artifacts of Scrum are the product backlog, a list of prod-
uct requirements, and the Scrum backlog, a list of WorkItems that
the development team have to address in the next Sprint. At the
beginning of each Sprint, the development team, agree on the de-
velopment tasks list which can be undertaken in the next Sprint.
Each work item has the development effort required to implement
it measured in story points. The average total of story points from
a Sprint shows the team velocity.

The inputs of the Scrum Planning problem are: a model con-
taining a product backlog, a list of stakeholders and a stakeholder
importance metric for each backlog item; the team velocity metric.

The goal of the problem is to create a plan, by creating several
Sprints, and to assign WorkItems to each Sprint with the following
objectives and constraints:

• Objective 1 minimise the Sprint effort deviation (the team
velocity in any Sprint is not less than the total number of
planned story points);

• Objective 2 minimise the Stakeholder Satisfaction Index
(ensure stakeholder task importance is equally distributed
between sprints);

• Constraint 1 all WorkItems must be assigned to a sprint;
• Constraint 2 no sprint must have more story points than
the team velocity.

4 ARCHITECTURE
In this section we give a high level overview of the MDEO archic-
tecture.

In Fig. 1 we include a diagram showing the architecture of MDEO.
The tool is built as an XText DSL 2 and works with models built in
the context of the Eclipse Modelling Framework 3.

2https://www.eclipse.org/Xtext/
3https://www.eclipse.org/modeling/emf/
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Figure 2: MDEO DSL Specification of the CRA Problem

The optimisation algorithms supported by MDEO are imple-
mented using the MOEA Framework 4. MDEO implements a wrap-
per around the MOEA Framework, which translates the algorithm
parameters specified in the DSL to the MOEA Framework algorithm
factory.

When running the tool, the DSL parser validates the specification
given by the user, and if the validation is successful the tool ini-
tialises the optimisation algorithm using the specified parameters.
Following a successful run, the tool outputs a csv file containing
overall experiment information containing information about the
batch id, duration, objective and constraint values. When running
multiple batches of the same experiment, the tool outputs the best
solutions found in the results folder for each of the batches. The
results for all the batches are grouped in a csv file saved in the
results folder created for the experiment.

5 DSL DESCRIPTION
In this section we include an example of our DSL showing a specifi-
cation of the CRA case study. We then explain the language syntax.

In Fig. 2 we include an example specification of the CRA case
study forMDEO. For specifying optimisation problems usingMDEO
the user is required to use the following keywords to load the
problem artifacts and to configure the optimisation algorithm:

(1) The basepath keyword configures the root location were
the metamodel, model and transformations are located. This
path must be relative to the project path in Eclipse or to the
directory from where MDEO is executed when running in
headless mode.

(2) The metamodel keyword specifies a metamodel describing
the problem search space. This metamodel must describe the
complete set of possible models that can be valid solutions
for the problem being specified.

(3) model loads an initial model serialised in xmi format. This
model must conform to the loaded metamodel and can be
randomly generated valid metamodel instance or an exist-
ing model which needs to be improved using search-based
optimisation.

(4) The objective keyword is used to load one or more objec-
tive functions implemented either as simple OCL queries
overmodels or asmore complex Java implementations.When

4http://moeaframework.org/

loading an objective implemented using Java, the user must
specify the full namespace of the function, so that it can be
loaded using reflection. Objectives implemented using java
must implement the IGuidanceFunction interface.

(5) The constraint keyword is used to load constraint func-
tions. The functionality is similar to the objective keyword.
The only difference is that functions loaded using this key-
word will be treated as constraints by the DSL.

(6) Using the mutate or breed keywords the user can load a
number of Henshin model transformations that can be used
to derive new candidate solutions from existing ones. The
mutate keyword loads mutation operators that are randomly
applied during the search. The breed keyword loads a breed-
ing operator that combines to models to create a solution.
In Fig. 2 we only include the mutate keyword. An example
of a breeding operator encoded as a Henshin transforma-
tion has been included in Fig. 3. In Fig. 4 we include two
example mutation operators for the CRA case study, one
to create a class and assign an existing feature to it, that
has not already been assigned to a class and one to delete
an empty class. The most recent version of MDEO can au-
tomatically generate atomic consistency preserving search
operators (aCPSO). aCPSOs are atomic search operators that
can create or delete a node or an edge, and also include the
necessary repair operation to ensure these operations can
be performed without generating invalid models.

(7) The optimisation keyword is used to specify an optimisa-
tion algorithm to use when solving the search problem. The
tool supports a number of custom parameters for the termi-
nation condition and for the chosen algorithm. The user can
specify a termination condition using the termination key-
word. The supported parameters for algorithm termination
are time which must be given in seconds or evolutions,
as an integer.

A complete specification must be written in a file with the mopt
extension. The mopt files can be executed from inside Eclipse or in
standalone mode. In Fig. 5 we include the instructions printed by
the tool when running it in standalone mode. This feature is useful
when running experiments on headless servers.

Using the inputs provided by the user, the tool initialises the
selected evolutionary algorithm and starts the search. The steps
performed by the tool to run an evolutionary algorithm are the
following:

(1) An initial population is generated using the given input
model, by making a copy for each population member and
running a single random mutation operator;

(2) The selected optimisation algorithm is initialised;
(3) Until the termination condition is reached, an algorithm step

is executed. For evolutionary algorithms, this step consists
of applying a single mutation to each of the population indi-
viduals and then comparing the resulting offspring against
the algorithm archive, using the algorithm dominance com-
parator.

(4) As soon as the termination condition is reached, the tool will
save the serialized solution models together with detailed
experiment information details.

http://moeaframework.org/
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Figure 3: Breeding Search Operator for the CRA case encoded as a Henshin transformation rule

Figure 4: Mutation Search Operators for the CRA class en-
coded as Henshin transformation rules. The createClass
rule creates one class and assigns a feature that has not been
previously assigned to a class. The deleteEmptyClass rule
deletes a class that has no features assigned.

Figure 5: MDEO standalone mode. This figure includes the
printed help menu displayed when running the tool outside
of Eclipse without any parameters.

6 EXAMPLE RUN
In this section we describe an example run of MDEO for the two
case studies described in Sect. 3. We have selected these two case
studies for this demonstration to show how our tool runs for case
studies with both a single objective and multiple objectives. A
video showing the steps described in this section can be found
on vimeo.com 5. Because the video is time limited we focused on
showing the tool functionality, and not on finding good results for
the two case studies used in this demonstration. For this reason
we limited both example runs to 30 seconds, using a time based
termination condition.

We start the video by showing the mopt specification file for the
CRA case study. Then, we show the Ecore metamodel file, mutation
operators and the CRA fitness function implemented as an XTend
class. For this case study we randomly picked one of the five input
models that were proposed in the case study description. The search
is started by using a Run Configuration in Eclipse and the search
outcome is stored in the mdeo-results folder.

In the second part of the video we show the mopt specification
file for the Scrum Planning case study. We also show the Ecore
metamodel file, mutation operators and one of the objective func-
tions, implemented also as an XTend function. For this case study
we picked a model that represents a scenario with 5 stakeholders
and 119 WorkItems that need to be organised into Sprints. The
search is also started by using a Run Configuration. After the
termination condition is reached, the search outcome is stored in
the mdeo-results folder.

7 RELATEDWORK
Over the years, there have been a number of tools proposed to solve
optimisation problems using MDE [3]. To make a comparison with
MDEO, a classification of these tools can be made based on the type
solution encoding used. In the remainder of this section, we will
describe the two main categories of tools using this classification.

5https://vimeo.com/281965931
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7.1 Model Based Optimisation
Williams [14] proposed Crepe and MBMS (model-based metaheuris-
tic search framework), a tool that uses a generic encoding formodels
to run meta-heuristic optimisation on models. The encoding used is
a sequence of integers. The tool is further extended by Efstathiou et
al. [6] to support multi-objective optimisation. Crepe uses generic
search operators, applied on the integer sequence encoding, and
provides a transformation system between the encoding and the
corresponding models.

Unlike Crepe, the model based encoding used by MDEO, does
not require the extra genotype to phenotype transformation each
time the fitness function is evaluated. In Crepe, the application
of mutation operators on the integer vector can also result in the
generation of invalid solutions. For these the tool runs an additional
repair step. Mandow et al. proposed a solution to this problem [10].

Strüber proposed FitnessStudio, a model optimisation tool that
uses models as encoding for solutions [13]. The tool uses a meta-
learning algorithm to find a suitable set of transformations that can
be used as search operators. Then, the generated search operators
are used to optimise models that conform to the same metamodel
as the training model.

The main drawback of FitnessStudio, is that the user is required
to first run a training step to find suitable search operators. The
quality of these operators is also dependent on the metamodel
coverage of the model used for training. For the CRA case study,
Fitness Studio, found better overall solutions than MDEO. We are
currently investigating these results to see what contributed to
the quality of the solutions found by Ftiness Studio, compared to
MDEO, for the same case study.

7.2 Rule Based Optimisation
Tools in this category use a sequence of model transformations
as the encoding of solution candidates. The tools apply search
operators such as mutation and crossover to a transformation chain.
The resulting sequence of transformations is applied to the initial
model. The quality of the output model is evaluated using fitness
functions. The application of search operators to a transformation
chain can lead to the generation of invalid solutions. To solve this
issue, the tools use an additional step to repair the transformation
chain to ensure that a feasible solution is generated.

Fleck et al. proposed Marrying Optimisation and Model Trans-
formations (MOMoT), a tool that optimises model transformation
chains [7]. MOMoT is implemented as an Eclipse plugin and allows
users to specify optimisation problems using a flexible DSL. The
model transformations used byMOMoT are encoded using Henshin.
The tool uses mutation and crossover search operators, applied to
the transformation chain. An additional repair step is required
during the search to ensure that after the application of search
operators, the transformation chains return a feasible solution. The
optimisation algorithms used by MOMoT are implemented using
MOEA Framework.

Abdeen et al. [1] proposed a multi-objective rule based design
space exploration (DSE) framework built using the ViatraDSE frame-
work [9]. The implementation uses the NSGA-II algorithm to find
efficient model derivation chains. The framework uses mutation
and crossover operators, and a repair mechanism is implemented

to ensure that the resulting transformation chains produce fea-
sible solutions. Infeasible transformation chains are truncated or
discarded.

The main diference between MDEO and the MOMoT and Vi-
atraDSE tools is the encoding used for the individual candidate
search solutions. MDEO uses a model for this encoding, while MO-
MoT and ViatraDSE use a chain of transformations.

8 CONCLUSION
In this demonstration we have showed MDEOptimiser, a tool that
runs optimisation on models. MDEO offers a DSL to simplify the
process of specifying optimisation problems. The tool can be used
as an Eclipse plugin or in standalone mode, as a jar binary. The
tool uses evolutionary algorithms implemented using the MOEA
Framework and the mutation operators are encoded as Henshin
transformation rules.

In future work we plan to extend MDEOptimiser to support au-
tomatic algorithm selection, automatic initial model generation and
to add support for automatic generation of more complex mutation
operators. We are also planning to create a tool comparison, using
multiple case studies, between MDEOptimiser and similar tools.
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