Variability Modeling of Service Robots:
Experiences and Challenges

Sergio Garcia!, Daniel Striiber!, Davide Brugali?, Alessandro Di Fava?,
Philipp Schillinger®, Patrizio Pelliccione!?, Thorsten Berger!
!Chalmers | University of Gothenburg, Sweden, “University of Bergamo, Italy, *University of L’Aquila, Italy,
4PAL Robotics, Spain, 5Bosch Center for Artificial Intelligence, Germany

ABSTRACT

Sensing, planning, controlling, and reasoning, are human-like ca-
pabilities that can be artificially replicated in an autonomous robot.
Such a robot implements data structures and algorithms devised on
a large spectrum of theories, from probability theory, mechanics,
and control theory to ethology, economy, and cognitive sciences.
Software plays a key role in the development of robotic systems,
as it is the medium to embody intelligence in the machine. During
the last years, however, software development is increasingly be-
coming the bottleneck of robotic systems engineering due to three
factors: (a) the software development is mostly based on community
efforts and it is not coordinated by key stakeholders; (b) robotic
technologies are characterized by a high variability that makes
reuse of software a challenging practice; and (c) robotics developers
are usually not specifically trained in software engineering. In this
paper, we illustrate our experiences from EU, academic, and indus-
trial projects in identifying, modeling, and managing variability in
the domain of service robots. We hope to raise awareness for the
specific variability challenges in robotics software engineering and
to inspire other researchers to advance this field.

1 INTRODUCTION

As robots become increasingly important for our everyday lives,
there is a growing need for software engineering practices for the
robotic domain. Unlike in other embedded systems domains, which
are strongly moving toward the definition of reference architectures
(e.g., AUTOSAR [8] for automotive), defining a general reference ar-
chitecture for robotic applications is elusive: robots can have many
purposes, forms, and functions, can operate to accomplish various
missions, and often operate in an open-ended environment. As a
consequence, each robotic system has to be equipped with a specific
mix of functionalities that strongly depend on several factors, such
as the robot mechanical structure (a rover with zero or multiple
arms), the tasks to be performed (cleaning a floor, rescuing people
after a disaster), and the environmental conditions (indoor, outdoor,
underground). These factors give rise to a multitude of variability
dimensions that call for appropriate variability mechanisms and
management methodologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

VAMOS 19, Leuven, Belgium

© 2019 ACM. 978-1-4503-6648-9/19/02...$15.00

DOI: 10.1145/3302333.3302350

(b) youBot

(a) Pioneer

(¢) TIAGo (d) ITA

Figure 1: Mobile robots used in our projects

We report on experiences with variability engineering in various
EU, academic, and industrial robotics software engineering projects.
These projects focus on service robots [15], that is, mobile, ground,
and intelligent robots that typically assist humans. In addition to
our own experiences as five researchers and two industrial prac-
titioners, for a richer perspective, we interviewed two colleagues
who are experts at PAL Robotics (www.pal-robotics.com): a product
manager with ten years of experience (I1) and a software engineer
with nine years of experience (I2).

Our experience stems from the following projects. BRICS [5]
aimed to provide researchers and developers with software tools
and methods that simplify the configuration of a robot control soft-
ware system. A key outcome of BRICS is the HyperFlex toolchain,
which uses feature models [3] to support an automated robotic prod-
uct generation process. The project Co4Robots (www.co4robots.eu)
aims to produce robotic applications able to perform complex mis-
sions in a collaborative way. We provide the experience of our in-
dustrial partners and our role as the researchers software engineers
in the project. PAL Robotics is involved in several EU projects on,
among others, service robots and industrial robotics, benchmarking
robotic frameworks, model-driven methodology, multiple-robot col-
laboration, and home-assisting robots. The experience at the Bosch
Center for Artificial Intelligence (BCAIL www.bosch-ai.com) stems
from a research project on coordinating multiple robots [29].

Figure 1 shows robots used in these projects: a Pioneer P3-DX ro-
bot equipped with a camera, a Kuka youBot equipped with a robotic
arm, a TIAGo robot from PAL Robotics, and an Intelligent Transport
Assistant (ITA). Pioneer P3-DX and Kuka youBot are widely used
in robotics research. TIAGo is a service robot designed for indoor
environments, combining mobility, perception, manipulation, and
human-robot interaction capabilities. ITA is a research prototype
used at BCAI that can be deployed in human environments, such
as office buildings or factory shop floors, to transport small objects.
It adapts to changes in its environment and to new tasks, and it
interacts with humans by signaling the actions it is about to take.
These robots are used in the remainder to illustrate our discussion.

https://www.pal-robotics.com
http://www.co4robots.eu
https://www.bosch-ai.com

VAMOS ’19, February 6-8, 2019, Leuven, Belgium

A Alternative /‘\ or

Abstract

t
naviLaser RGBD

S. Garcia et al.

TIAGo

O/ Optional ./ Mandatory Concrei/o'//'/
forceTt

mobileBase _7DoFarm e onboardComputer connectivity dockStation
SICKTiM561 SICKTIM571 Astra AstraPro AstraS parallelGripper _5Fingers_hand processor RAM SSD GPU wired wireless
fingertipSensors = SchunkWSG32gripper /0\ /é\
force_torqueSensor = sevenDoF _arm PALgripper SchunkWSG32gripper inteli5 i7THaswell _4GB _16GB _256GB _512GB bluethooth wifi

Figure 2: Feature model of the TIAGo robot (excerpt)

2 DRIVERS OF VARIABILITY

We identified four drivers of variability from own experience and
practitioner interviews at PAL Robotics and BCALI For each driver,
we discuss the type of variability arising from it. We relate the
drivers to an existing taxonomy from the literature, specifically
Gherardi’s [9] taxonomy of factors influencing the variability that
needs to be handled when engineering robot systems.
Customer Requirements (CR). At PAL Robotics, customers can
choose from a variety of options regarding hardware and software
of the robot. Hardware options include the type of sensors, actu-
ators, and accessories. The feature model in Fig. 2 illustrates the
hardware variability for the TIAGo robot. Software options include
both customizations (which are directly related to the hardware
selection) and premium software. Examples of premium software
packages are facial perception and automatic speech recognition.
Differences in requirements generally lead to static variability:
depending on the customer’s needs, different hardware and soft-
ware components are deployed to the robot. Hardware choices of
sensors and actuators define the required interfaces and controllers.
On the same robotic model, different software might be deployed
based on the customization that is required by a specific customer.
This type of variability leads to having different variants of the same
robot model. Like in other domains, varying customer requirements
is a core driver of variability in robotics, despite being neglected in
the state of the art, such as in the taxonomy of Gherardi [9].
Environment (E). Advanced scenarios require a robot working in
a rich environment on a complex task. To illustrate: PAL uses its
robot Tiago to detect, select, and pick objects from a table and place
them in some other location. Such a scenario requires the robot
to deal with an enormous variability of environmental conditions,
such as the design of the objects, the table, and possible obstacles.
Some of the environmental variability can be resolved at design
time. For example, visual markers used by a robot for orientation
may be placed only on the floor. Then, the camera can be mounted
in a fixed position on the robot (Fig. 1a). On the contrary, if markers
are placed also on the walls or on individual items, the camera
should be mounted on the robot arm (Fig. 1b). In the latter case, the
arm motion should be adequately coordinated and specific func-
tionalities need to be included in the control system to orientate the
camera appropriately. However, a substantial degree of variability
can only be resolved at runtime (e.g., obstacles of various kinds
may require some flexibility in the behavior of the robot). Runtime
variability is still a largely unsolved issue in the projects considered
in this paper. We elaborate on this challenge shortly (Sec. 5).

In Gherardi’s taxonomy [9], this variability driver is related to
robot situatedness, or context—that is, robots operate in a dynamic
and complex environment. To this end, robots must be aware of
their own state and surroundings, which is typically achieved using
a variety of sensors as well as navigation and perception algorithms.
Robot Hardware (RHW). PAL Robotics offers a scale of different
hardware solutions to accommodate requirements and environ-
mental conditions as identified above. Hardware variability also
drives the variability of the associated software. For instance, at
PAL Robotics, most robots share the same perception packages as
they use the same type of visual sensors LIDAR and RGBD cam-
eras. However, other robots do not include an RGBD camera and
consequently require a dedicated perception package, which is de-
veloped by another company. Note that customer requirements
and robot hardware drivers are strongly related in products offered
by manufacturers as PAL. On the other hand, at BCAI, the slight
differences in the specifics of the robots also imply a difference in
certain configuration artifacts, in particular, calibration files.

Another driver of variability we experienced is robot embodi-

ment [9]—how a robot body interacts with the environment through
on-board sensors which provide stimuli that influence actions ac-
cording to the hardware and software architecture. Embodiment
directly affects the software, since, for instance, different naviga-
tion algorithms are used based on the kinematics of the robot (e.g.,
differential versus omni-directional drives).
Middleware (M). Different middlewares (or versions thereof) drive
software variability, as middleware variability requires developers
to cater for different APIs. Many frameworks and middlewares were
released in the last years to ease the development of robotic applica-
tions, including ROS (Robot Operating System), Orocos, OpenRTM,
and Smartsoft. While companies may try to stick to one framework
to ease the development and reduce the variability, the same middle-
ware may have different versions with different requirements, as we
experienced first hand. For instance, a key challenge at PAL Robotics
is to deal with different versions of the underlying middleware, ROS.
PAL’s goal is to reuse the robot application code across different
ROS versions. In the BRICS project, two different middlewares were
used to exploit their special capabilities. Gherardi’s taxonomy [9]
also mentions different frameworks as a driver (factor).

In the next two sections, we relate these variability drivers to the
mechanisms—classified into ad hoc and systematic—we observed for
addressing them, as shown in Table 1. Mechanisms either partially
address drivers (i.e., some aspects of the driver is not managed) or
fully address them (i.e., driver is fully and correctly managed).

Variability Modeling of Service Robots

Table 1: Variability drivers and mechanisms

driver addressed by mechanism: fully partially
8 clone&own M, E, CR
= conf. facilities of rob. frameworks RHW, E
<
® home-grown configurators CR RHW
'é feature models RHW E
g SPL architecture M
% framework heterogeneity M
% SPL configuration RHW, E

3 AD HOC VARIABILITY MANAGEMENT

Experience shows that practitioners often rely on ad hoc strategies
to manage variability. In our experience, the robotics domain is not
an exception, typically using clone&own, configuration facilities
of robotic frameworks, and home-grown configurators.
Clone&own. This readily available strategy [7] relies on copying
and adapting existing software variants to new (customer or envi-
ronmental) requirements. A prime example for using clone&own is
to support different ROS distributions—a common practice at PAL.
The company developed a framework that is based and built on top
of ROS, which integrates PAL’s own packages. According to inter-
viewee 2, PAL’s branching policy is the same as the one used in ROS
(i.e., developers create a new branch for each new ROS version).
PAL tries to have a single branch “master” to simplify maintenance.
However, when a backward is incompatible (i.e. interfaces or data
of earlier version cannot be successfully used by newer versions)
the new code must be adapted, so PAL creates a new development
branch. An example of such adaptation is some new code to adapt
from ROS Indigo to ROS Kinetic. Then, the branch major version
is changed (i.e., from 1.2.3 to 2.0.0). Finally, PAL leaves the old de-
fault branch with the name of the old development branch (e.g.,
“indigo-devel” branch), leaving it in the state of backwards com-
patible with the newer branch. Branches are maintained forever
and backwards-compatible bug fixes are cherrypicked for all the
branches if possible and necessary.

For the considered research projects at BCAL a single long-term
branch is usually sufficient. An exception to this are demo branches,
which are created to support the specifics of a given demonstration
scenario setup. However, development beyond the demo is usually
not merged into these branches.

Configuration Facilities of Robotic Frameworks. A variety of
software frameworks exists for developing robot control systems
that are designed as (logically) distributed component-based sys-
tems (see Brugali et al. [6] for a survey). They offer mechanisms for
real-time execution, synchronous and asynchronous communica-
tion, data flow, and control flow management. These frameworks
are supported by a runtime infrastructure, which is in charge of in-
stantiating, connecting, configuring, and activating the components
of the system. The runtime executes these operations according to
a set of instructions that are defined in a textual configuration file.

The BCAI research group is currently using ROS as a framework
and utilizing some of the configuration mechanisms provided by it.
In the most recent project of this group, environment, robots, and
their behavior are modeled (e.g., the robots’ behavior is modeled
in terms of temporal logic). The expected behavior from the team

VAMOS ’19, February 6-8, 2019, Leuven, Belgium

of robots varies based on the context—the environment and the
desired mission. To manage the variability of those models (vari-
ability related with RHW and E at runtime), the BCAI group makes
use of ROS launch files at two levels. A general launch file manages
the robotic team as a whole (e.g., number of robots, model of each
robot) and specific ones define internal parameters of each robot
(e.g., calibration files). In the same way, the definitions of the en-
vironment and the mission to be achieved are managed by launch
files (e.g., selecting a certain transition system for the mission).

In the BRICS project, both ROS and Orocos were used for encap-
sulating robotic functionalities into software components due to
their benefits (e.g., the ability of Orocos of real-time working or the
huge number of open source resources available for ROS).
Home-Grown Configurators. As a manufacturer, PAL Robotics
provides a customized product to clients (see Fig. 2). In the process
from inferring the requirements from clients to the delivery of a
full-functioning robot, PAL produces a number of artifacts. First, the
customization of such product is summarized by the company in
“requirements documents.” PAL then ensembles the robot, deploys
the required software to control the different hardware parts of the
robot and validates it. Internally, the company uses an in-house GUI
to select the implemented modules of the robot (e.g., which end-
effector or which navigation laser), which automatically generates
configuration files and ROS packages to be deployed in the robot.
Those configuration files tell the robot which controllers (source
code) must be launched and which parameters must be used for
each module when the robot is started. Hence, the variability of
each specific robot is mostly managed by that GUL However, if
the hardware architecture of a robot is changed (e.g., the gripper
is replaced by another model) the configuration file has to be re-
executed and deployed within the robot by using the GUL

4 SYSTEMATIC VARIABILITY MANAGEMENT

In various application domains, software product line (SPL) devel-
opment has proven to be effective for developing software control
systems that are flexible enough to easily accommodate diverse
requirements. We report on our experiences of developing Logis-
ticSPL, a robotic software product line for robot-based logistic
scenarios in the context of the BRICS project.

In BRICS, we aimed to develop methods and tools for the design,
configuration, and composition of stable software architectures for
specific functional sub-systems of an autonomous robot control
system. Each functional sub-system is designed as a SPL, whose
software architecture explicitly models software variation points
and variants; variability is represented by a feature diagram [10].
The BRICS approach is supported by a set of meta-models and
tools (the HyperFlex toolchain [11]) for (1) modeling the software
architecture of component-based functional subsystems and its vari-
ability, (2) composing software architectures and variability models
hierarchically, (3) deriving specific applications by configuring each
subsystem at deployment time in a distributed environment.

We consider an application to modern logistic systems, which in
a typical industrial setting exploits autonomous mobile manipulator
robots for handling and moving objects from a source location to a
target location. Typical tasks are, for example: transporting, loading,
unloading, grasping, and placing objects. These tasks require the

VAMOS ’19, February 6-8, 2019, Leuven, Belgium

FD variability_model.featuremodel_diagram % = a
<& Palette 2
o e
F Feature
~ (A Containment
Local Nav. Association
PR
SA Simple
‘ Navigation Attribute
- . . | . e 8 4 (Connection
Trajectory Motion
ik tation pr Kinematic Model
1.1 0..1 1.1
Diff.
DWA VHF Reactive Smooth Omni Drive Map Marker
. L L r .
Geom. Path Geom. Marker Path
Planner Localizer LI Planner
1..1 1..1 1..1 1.1
Quad Graph | | Tree
Tree RRT AMCL SLAM ARTK ARTK + Planner Planner

Figure 3: HyperFlex with a feature model of the Robust Nav-
igation system (green features represent a configuration)

robot to have navigation, manipulation, and perception capabilities,
where perception is typically tightly coupled with the specific ap-
proach adopted for implementing navigation and manipulation. We
assume that the functionalities for navigation and manipulation are
provided by functional systems developed by third-party research
teams. The goal is to support the generation of specific control
applications as products of the SPL by configuring the functional
systems and application-specific components.

Feature Models. The feature model shown in Fig. 3 captures the
functional variability of the navigation system, called Robust Navi-
gation. HyperFlex uses a cardinality-based feature modeling [27].
The functionality Robust Navigation is realized by the set of function-
alities represented by the mandatory features NavigationStrategy,
Robot Kinematic Model, Trajectory Adaptation, and Motion Behaviour.
Two navigation strategies are supported, i.e. the variants map-based
and marker-based represented by the features Map and Marker
respectively, which in turn are realized by a set of subfeatures as-
sociated with specific algorithms. For example, for the Geometric
Path Planning variation point two variants are available: the algo-
rithms Rapidly-exploring Random Trees [19] and Quad-tree [13].
Two robot kinematic models are supported: the Omnidirectional
and the Differential Drive. Selecting one model rather than the other
means using different implementations for the components Tra-
JjectoryGenerator, TrajectoryAdapter, and TrajectoryFollower in the
LocalNavigation subsystem. The variation point Motion Behavior
refers to the parameters that specify the acceleration limits consid-
ered when a trajectory is generated or adapted. Three variants are
represented: if none of the children features is selected the default
values are used; the Reactive feature corresponds to the maximum
values of the limits; the Smooth feature corresponds to the minimum
values of the limits. In conclusion, feature models may be used to
manage variability coming from RHW and E (only at design-time).
SPL Architectures. The architecture of a SPL plays the role of
reference architecture [25] for a family of products. While refactor-
ing effort can never be completely avoided, it should be a goal of
any product line development to define an architecture that will
be mostly stable for future products [32]. Figure 4 depicts the archi-
tecture of the Logistic SPL, which is made of four subsystems. The
Robust Navigation system is implemented in ROS. The Manipulation

S. Garcia et al.

RoboCup@Work SPL

Marker Goal

_ Target Object

] 7

Task Image

Obj Marker STl
._Env Marker Composite

Detected Obj _—

Pose Goal

I |

A A A
Detected 0bs _
Joint Des Values

Robot Pose
- >l <
Twist Joint Mes Values

Figure 4: Architecture of the Logistic SPL

system, implemented in Orocos, provides the functionalities for
object handling and recognition. It is also used for the marker based
navigation when the markers are in variable positions and the cam-
era is mounted on the arm. At least one of these two systems has
to be included in the application architecture. The Driver system,
also implemented in Orocos due to its real-time requirements, ag-
gregates the hardware drivers. Finally, the Task Manager system
is implemented in ROS and defines the coordination policies and
some application specific components. The Driver and the Task
Manager are mandatory systems. Since the Robust Navigation and
Manipulation systems are optional (some logistic tasks require only
one or the other functionality); also, all the connections are optional.
This approach is used to manage variability in terms of M.
Dealing with Framework Heterogeneity. An open challenge
in BRICS is to model the architecture of heterogeneous robotic
control systems whose components are implemented using mul-
tiple software frameworks. A typical solution may involve an ab-
stract component meta-model that can be specialized for different
software frameworks, thus modeling the system architecture in a
framework-independent way and specifying the target framework
of each component at implementation time. This approach has
two main drawbacks. First, some software frameworks (e.g., Smart-
soft) already have their own component meta-model. Harmonizing
these meta-models to be compliant with a common abstract compo-
nent meta-model is complicated since existing model-driven tools
depend on the framework-specific meta-models. Second, robotic
frameworks support significantly different component models. For
example, Orocos components use data-flow ports for asynchronous
point-to-point communication, while ROS nodes exchange data
and events through registers called topics according to the pub-
lisher/subscriber interaction paradigm. A common abstract meta-
model would be highly generic and the tools developed on it would
provide little support to the designer, partially addressing M.

SPL Configuration. The criteria for configuring the robot control
system according to the desired functionalities, the environment
characteristics, and the relevant constraints are not explicitly rep-
resented in the feature model, but embedded in a model-to-model
transformation applied by the HyperFlex toolchain to automatically
generate the corresponding architectural model that manages RHW.
For example, the selection of a specific sensor triggers a transforma-
tion that includes the corresponding software driver in the control

Variability Modeling of Service Robots

system architecture, the selection of a given robot behavior triggers
a transformation that set specific values for the robot dynamics
parameters. The relevant constraints and the model-to-model trans-
formations are defined by the team of domain experts and software
engineering experts, who design and implement the robotic SPL.
The most desirable feature selection may depend on the environ-
ment (managing variability from E). For example, in the path plan-
ning algorithm, the most adequate strategy for obstacle avoidance
depends on the type of obstacles present: no obstacles, only static
ones, or also moving ones. The HyperFlex toolchain is currently
geared to static variability, i.e., situations in which the environment
is fixed so that a most desirable configuration can be specified at
design time. Configuration updates at runtime are not supported.

5 DYNAMIC VARIABILITY

According to our experience, dynamic variability is an unsolved
and ongoing common challenge. However, different groups have
different approaches and, therefore, tackle it in different ways.
Robot Configuration. To deal with variability, robotic hardware
and software must be built in a modular way. As stated previously,
the robot configuration at PAL is managed at design-time by using
in-house tools. While this is a proper solution for managing static
variability, it prevents robot (re)configuration at run-time since
the configuration files must be re-generated each time the robot
structure is changed. There is no clear solution for this issue and
they plan to keep on working with their current approach.

At BCALI, the configuration is managed at launch-time by loading
different configuration files (see Sec. 3) by using launch files at dif-
ferent levels (general and robot-specific ones). They assume a rather
well-defined scenario where robots execute different missions as
dynamically planned at run-time given the loaded configuration.
However, splitting the configuration into different files might lead
to non-deterministic situations with existing ROS tools. In particu-
lar, it is not clear what happens when multiple configuration files
that specify the same parameter values are launched. The proposed
solution is to load the configuration files in a deterministic way by
extending the functionality of standard tools such as roslaunch.
Adaptation. The intelligence of each robot or the capacity of re-
acting and adapting to the context is closely related to runtime
variability. For instance, robots must be able to adapt to a variety
of environments or tasks. At PAL, adaptation is managed by means
of state machines, which describe the behavior of each robot in
specific scenarios and are created at design-time. This method is
also used to react to failures. For instance, in the scenario where
a TIAGo robot must detect, pick, and place specific objects, the
robot may fail when grasping one object. The high-level controller
implements specific states that trigger recovering tasks if a fail-
ure is detected (e.g., the position of the arm is no longer known).
However, the complexity of their run-time adaptation algorithms is
growing due to the addition of parallel execution states. Also, there
are other challenges related with run-time variability, such as how
to model the environment such that the robots are able to adapt to
it. Another challenge is how to cope with a context where the robot
must interact with humans, since human behavior is hard to model.

For BCAL the high-level adaptation is rather static (normally
defined in temporal logics), while the low-level components must

VAMOS ’19, February 6-8, 2019, Leuven, Belgium

adapt dynamically (e.g., obstacle avoidance). To cope with envi-
ronmental and task variability, the practice was to encode rules to
specify the behaviors of robot teams. However, BCAI realized that
the more rules exist, the more complex it is to dynamically plan
and react. A possible solution is to adopt a software tool that allows
developers to create and manage temporal logic rules. Furthermore,
it seems to be useful a systematic evaluation of which rules should
be incorporated in the task and which ones instead in the system
model.

To tackle challenges based on adaptation, both BCAI and PAL
are investigating solutions based on machine learning.

6 CHALLENGES

From our experience and the experience of our interviewees, we
identify a list of challenges related to variability modeling and
discuss possible solutions. Some challenges are common to other
domains (e.g. automotive) while others are specific to robotics.
Multi-Purpose Robots. A major challenge is to design robots that
are conceived to be generic so to be used for various purposes. Users
will be expected to be able to specify in a precise way the mission
that a robot or a set of robots should accomplish. The challenge
is exacerbated by the fact that in the near future robots will be
used for tasks of everyday life and the users will lack expertise
in robotics and ICT [14]. This calls for domain-specific languages
(DSLs) for effectively specifying missions [23, 24, 26, 28]
Dynamic Variability. Challenges related to dynamic variability
management are the most common ones in our joint experiences:
dynamic reconfigurations of the system are often made impossible
by static code generation. Run-time adaptation is complicated by
combinatorial explosions and by the difficulty of modeling human
behaviors. These challenges are discussed in more detail in Sec. 5.
Maintenance Cost of Configuration Tools. At PAL, the in-house
configuration tools sometimes create duplicated code and configu-
ration files, thus increasing the maintenance cost. Their planned
solution is to “streamline their process by creating a more surgical
approach” (I12). Another solutions could be using a commercial
configurator (e.g., pure::variants) or one from systems software [4].
Software Variability from Hardware Variability. As robot man-
ufacturers, PAL offers a list of robotic hardware platforms with
different features that must be controlled separately. To cope with
this type of variability they strive to produce common software
compatible for all their platforms. This increases the development
time and complexity, but it also tends to lead to more structured
code configurable via parameters or plugins, 12: “That means that for
a grasping task we cannot make assumptions regarding the number
of arms of the robot, whether it’s biped or not, or the sensors it has.”
Framework Heterogeneity. Dealing with multiple robotic soft-
ware frameworks as target platforms is another challenge. In Sec. 4,
we considered a solution based on a generic meta-model that can
be specialized for each framework. However, the solution had two
main drawbacks: it does not deal well with existing tools that rely on
available framework-specific meta-models, and these meta-models
are too heterogeneous to allow a convenient abstraction.

Lack of Resources. The lack of resources employed to manage
variability is a common issue at several entities. A possible reason
is that variability management is often considered a secondary

VAMOS ’19, February 6-8, 2019, Leuven, Belgium

goal. Possible solutions are new variability modeling approaches
focusing on automation, and a better education for team members.

7 RELATED WORK

There have been a number of initial efforts to manage variability
in the robotics domain. A first group of works deals with the use of
software product lines for robotics. Jorgensen et al. [16] introduce
a systematic approach to handle variability in SPL architectures by
the identification and implementation of well-designed software
components. Likewise, another work [17] shows initial results of
how a GUI is used for the automatic generation of robot hardware
interfacing software, consisting of 41 features. However, they both
refer to the mature and stable domain of industrial robotics. Other
works illustrate specific robotic case studies [1, 12, 18].

Another line of research focuses on the use of domain-specific
languages (DSLs) for variability management in robotics. Lotz et
al. [21, 22] propose an approach for managing two variability di-
mensions. Variability of operation refers to the flexible planning of
sequences of actions to achieve a higher-level task. Variability of
QoS refers to the retention of non-functional properties, such as
safety or task efficiency, under changing conditions. The authors
propose two DSLs, one for each dimension, and a solution for in-
tegrating them in a consistent way during runtime. Tewfik et al.
introduce a DSL for specifying the structure and behavior of a robot
team and generating code to several execution platforms [31]. Our
experiences as reported in this paper emphasize the need to address
variability of operation, QoS, and execution platforms. However, the
integration of all these variability dimensions is an open challenge.
Existing work on managing several variability dimensions offers so-
lutions based on the explicit modeling of multiple viewpoints [2, 20].
However, these works do not address the distinct challenges iden-
tified in this paper, arising from interactions of different variability
dimensions that specifically appear in the robotics domain.

Model Driven Engineering has been applied recently to the
field of robotics [30]. This methodology is required to compose
systems out of exchangeable components and move towards well-
engineered system development processes instead of the current
craftsmanship practices. Steck et al. propose a system that exploits
models used at design- and run-time to build robotic systems.

8 CONCLUSION

We reported on our experience with variability engineering in vari-
ous EU, academic and industrial projects. In the industrial projects,
we found that variability is still managed mostly ad hoc, using clone-
and-own or some initial configuration mechanisms. The considered
academic project included a full-fledged application of software
product line engineering. In all cases, we found a need to better
support dynamic variability. We also identified a number of chal-
lenges to be addressed in the future. While many of the identified
challenges are well-known from general variability research, some
of them are unique to the robotics domain, where the overarching
mission specification plays a key role. An important challenge is
the integration of the multiple variability dimensions, which calls
for an integrated unified modeling and management approach.

S. Garcia et al.

ACKNOWLEDGEMENTS

Supported by EU H2020, Vinnova Sweden, and the Swedish Re-
search Council. We thank Jordi Pages, Luca Marchionni, and Francesco
Ferro for support and assistance with technical information.

REFERENCES

[1] S. Abd Halim, N. A. J. Dayang, L. Noraini, and D. Safaai. 2012. An Approach
for Representing Domain Requirements and Domain Architecture in Software
Product Line. In Software Product Line - Advanced Topic.

[2] R. Bashroush, I. Spence, P. Kilpatrick, J. Brown, and C. Gillan. 2008. A multiple
views model for variability management in software product lines. (2008).

[3] T.Berger, R. Rublack, D. Nair, J. Atlee, M. Becker, K. Czarnecki, and A. Wasowski.
2013. A Survey of Variability Modeling in Industrial Practice. In VaMoS.

[4] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. 2013. A Study
of Variability Models and Languages in the Systems Software Domain. IEEE
Transactions on Software Engineering 39, 12 (2013), 1611-1640.

[5] R.Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyninckx,
P. Soetens, M. Haegele, A. Pott, P. Breedveld, J. Broenink, D. Brugali, and N.
Tomatis. 2010. BRICS - Best practice in robotics. In ROBOTIK.

[6] D.Brugali and P. Scandurra. 2009. Component-based robotic engineering (part
i)[tutorial]. Robotics & Automation Magazine, IEEE 16, 4 (2009), 84-96.

[7] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki. 2013.
An Exploratory Study of Cloning in Industrial Software Product Lines. In CSMR.

[8] S. First, J. Mdssinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkdmper, G.
Kinkelin, K. Nishikawa, and K. Lange. 2009. AUTOSAR-A Worldwide Standard
is on the Road. In 14th International VDI Congress Electronic Systems for Vehicles.

[9] L. Gherardi. 2013. Variability modeling and resolution in component-based
robotics systems. (2013).

[10] L. Gherardi and D. Brugali. 2011. An eclipse-based Feature Models toolchain. In
6th Italian Workshop on Eclipse Technologies (EclipselT 2011).

[11] L. Gherardi and D. Brugali. 2014. Modeling and Reusing Robotic Software
Architectures: the HyperFlex toolchain. In ICRA. Hong Kong, China.

[12] L. Gherardi, D. Hunziker, and G. Mohanarajah. 2014. A software product line
approach for configuring cloud robotics applications. In CLOUD.

[13] Y.Han,J. Jeong, and J. Kim. 2012. Quadtree based path planning for Unmanned
Ground Vehicle in unknown environments. In ICCAS. IEEE, 992-997.

[14] IFR. 2016. World Robotic Survey. https:/ifr.org/ifr-press-releases/news/
world-robotics-survey-service-robots-are-conquering- the-world-.

[15] IFR.2018. Service robots. https:/ifr.org/service-robots/.

[16] B. Jorgensen and W. Joosen. 2003. Coping with variability in product-line
architectures using component technology. In Technology of Object-Oriented
Languages, Systems and Architectures.

[17] E.Jung, C. Kapoor, and D. Batory. 2005. Automatic code generation for actuator
interfacing from a declarative specification. In IROS.

[18] K. Kang, M. Kim, J. Lee, and B. Kim. 2005. Feature-oriented re-engineering of
legacy systems into product line assets: a case study. In SPLC.

[19] S.M. LaValle. 2006. Planning algorithms. Cambridge university press.

[20] S. Liaskos, L. Jiang, A. Lapouchnian, Y. Wang, Y. Yu, J. do Prado Leite, and J.
Mylopoulos. 2007. Exploring the Dimensions of Variability: a Requirements
Engineering Perspective. VaMoS 7 (2007), 17-26.

[21] A.Lotz, J. Inglés-Romero, C. Vicente-Chicote, and C. Schlegel. 2013. Managing
Run-Time Variability in Robotics Software by Modeling Functional and Non-
functional Behavior. In EMMSAD.

[22] A. Lotz, J. F. Inglés-Romero, D. Stampfer, M. Lutz, C. Vicente-Chicote, and C.
Schlegel. 2014. Towards a Stepwise Variability Management Process for Complex
Systems: A Robotics Perspective. Int. J. Inf. Syst. Model. Des. (2014), 55-74.

[23] C.Menghi, C. Tsigkanos, T. Berger, and P. Pelliccione. 2019. PsALM: Specification
of Dependable Robotic Missions. In ICSE.

[24] C. Menghi, C. Tsigkanos, T. Berger, P. Pelliccione, and C. Ghezzi. 2018. Property
Specification Patterns for Robotic Missions. In ICSE.

[25] E.Nakagawa, P. Antonino, and M. Becker. 2011. Reference Architecture and
Product Line Architecture: A Subtle but Critical Difference. In ECSA.

[26] A.Nordmann, N. Hochgeschwender, and S. Wrede. 2014. A Survey on Domain-
Specific Languages in Robotics. In SIMPAR. Springer.

[27] M. Riebisch, K. Béllert, D. Streitferdt, and I. Philippow. 2002. Extending feature
diagrams with UML multiplicities. In IDPT. Citeseer.

[28] D. Di Ruscio, I. Malavolta, P. Pelliccione, and M. Tivoli. 2016. Automatic Genera-
tion of Detailed Flight Plans from High-level Mission Descriptions. In MODELS.

[29] P. Schillinger, M. Biirger, and D. V. Dimarogonas. 2018. Simultaneous Task
Allocation and Planning for Temporal Logic Goals in Heterogeneous Multi-Robot
Systems. The International Journal of Robotics Research 37, 7 (2018), 818-838.

[30] A.Steck, A. Lotz, and C. Schlegel. 2011. Model-driven Engineering and Run-time
Model-usage in Service Robotics. In GPCE.

[31] Z. Tewfik, F. Jean-Loup, S. Serge, Z. Mikal, D. Saadia, M. Francois, M. Nicolas, N.
Cyril, K. Selma, and P. Bruno. 2016. A Toolset to Address Variability in Mobile
Robotics. Journal of Software Engineering in Robotics (2016).

[32] C. Tischer, B. Boss, A. Miiller, A. Thums, R. Acharya, and K. Schmid. 2012.
Developing Long-Term Stable Product Line Architectures. In SPLC.

https://ifr.org/ifr-press-releases/news/world-robotics-survey-service-robots-are-conquering-the-world-
https://ifr.org/ifr-press-releases/news/world-robotics-survey-service-robots-are-conquering-the-world-
https://ifr.org/service-robots/

	Abstract
	1 Introduction
	2 Drivers of Variability
	3 Ad hoc Variability Management
	4 Systematic Variability Management
	5 Dynamic Variability
	6 Challenges
	7 Related Work
	8 Conclusion
	References

