Applying MDD 1in the Content Management System
Domain: Scenarios and Empirical Assessment

Dennis Priefer, Peter Kneisel, Wolf Rost
Institute for Information Sciences
Technische Hochschule Mittelhessen
GieBen, Germany
[dennis.priefer,peter.kneisel, wolf.rost] @ mni.thm.de

Abstract—Content Management Systems (CMSs) such as
Joomla and WordPress dominate today’s web. Enabled by
standardized extensions, administrators can build powerful web
applications for diverse customer demands. However, developing
CMS extensions requires sophisticated technical knowledge, and
the highly schematic code structure of an extension gives rise
to errors during typical development and migration scenarios.
Model-driven development (MDD) seems to be a promising
paradigm to address these challenges, however it has not found
adoption in the CMS domain yet. Systematic evidence of the
benefit of applying MDD in this domain could facilitate its
adoption; however, an empirical investigation of this benefit is
currently lacking.

In this paper, we present a mixed-method empirical inves-
tigation of applying MDD in the CMS domain, based on an
interview suite, a controlled experiment, and a field experiment.
We consider three scenarios of developing new (both independent
and dependent) CMS extensions and of migrating existing ones
to a new major platform version. The experienced developers
in our interviews acknowledge the relevance of these scenarios
and report on experiences that render them suitable candidates
for a successful application of MDD. We found a particularly
high relevance of the migration scenario. Our experiments largely
confirm the potentials and limits of MDD as identified for other
domains. In particular, we found a productivity increase up to
factor 17 during the development of CMS extensions. Further-
more, our observations highlight the importance of good tooling
that seamlessly integrates with already used tool environments
and processes.

Index Terms—Model-Driven Development, Content Manage-
ment Systems, Empirical Assessment

I. INTRODUCTION

Model-driven development (MDD, [1]) has been conceived
as a development paradigm that aims to increase developer
productivity by raising the abstraction level via the use of
models. For over 15 years, many efforts have been made
to empirically investigate this proposed benefit in various
software domains, including telecommunications [2], finance
[3], embedded systems [4], and conventional web applications
[5]. A domain that has received little attention so far, despite
its large-scale practical importance, are Content Management
Systems.

Content Management Systems (CMSs) [6], [7] are an im-
portant cornerstone for today’s web. In fact, around 55% of
all websites use one of the various CMS platforms [8] such
as WordPress, Joomla, and Drupal. A CMS platform aims

Daniel Striiber
Chalmers University of Technology |
University of Gothenburg
Gothenburg, Sweden
danstru@chalmers.se

Gabriele Taentzer
Philipps-Universitdt Marburg
Marburg, Germany
taentzer @informatik.uni-marburg.de

to provide certain core functionality such as management
of users, content, sites, media, templates, and languages. If
additional functionality is required, the CMS instance at hand
has to be extended. To this end, all major CMS platforms
support software extensions. Example extensions include web
shops, image galleries, or the management of domain-specific
data, such as customer information.

While the plugin mechanisms of WordPress and Drupal are
simple, they lack support for complex extensions, such as
data management and event triggers. Therefore, plugins for
these platforms are often developed as monolithic artifacts. A
more sophisticated extension mechanism is offered by Joomla,
which provides a variety of extension types to facilitate the
development of feature-rich extensions. The extension types
represent functional requirements. Components provide full
data management capabilities. Modules provide presentation
tools for data managed by a component, allowing the de-
velopment of new extensions using data of existing ones,
e.g., a module presenting data of a third-party component.
Joomla’s extension mechanism is based on an API and naming
conventions: For a consistent deployment to the core platform,
an extension must conform to a sophisticated standard file
and code structure. Joomla components follow a Model-View-
Controller (MVC) pattern on file and code level. If all artefacts
(models, views, and controllers) are named correctly, most
tasks are done by the underlying API. Yet, a mistake during
development can break the whole component.

Developers of extensions face similar challenges during
development and maintenance like most web application de-
velopers, namely: (i) To ensure compliance with the structure
and coding standards, comprehensive technical knowledge is
required. A typical procedure during extension development is
to create a clone of an existing extension and to modify it to
satisfy the new requirements. This procedure, however, shows
a high susceptibility to errors (e.g. unintended mismatches
between class identifiers and file names). (ii) Whenever the
underlying platform evolves, existing extensions have to be
updated or migrated to adapt to the new platform version.
The required effort for updating or migrating the extensions
increases tremendously if the amount of extensions to migrate
grows. One contribution of this paper is an interview study
with practitioners from the CMS domain, who confirmed the



role of these challenges in practice.

Since extensions in popular CMSs such as Joomla rely on
standardized file and code structures, they largely consist of
generic and schematically recurring fragments. Therefore, they
represent a technical space that may largely benefit from the
application of model-driven development (MDD).

In this work, we investigate the practical applicability of
MDD during the development of CMS extensions. From our
experiences of developing extensions for the Joomla CMS
for over 10 years, we introduce three development scenarios
(Sect. II) we deem as particularly important: Developing an
independent extension, developing a dependent extension, and
migrating an extension to a new platform version. Based on
these scenarios, we make the following contributions:

o An interview study (Sect. III) based on semi-structured
expert interviews with eight individual practitioners from
the Joomla community. We studied the relevance of our
scenarios in practice, and the significance of MDD as a
solution approach to address the associated challenges.

« A controlled experiment (Sect. V) conducted with 14
developers on comparing conventional extension devel-
opment with MDD, focusing on the first two scenarios.
The experiment follows a within-groups design and was
conducted based on an existing MDD infrastructure. All
developers had experience with Joomla extension devel-
opment, but little knowledge of MDD.

o A field experiment (Sect. VI) conducted with four
experienced developers from the Joomla community. To
gain insights about the usefulness, acceptance, and open
challenges of an MDD approach, we asked the developers
to use a suitable MDD infrastructure during representative
tasks based in all three development scenarios.

We share lessons learned in Sect. VII and discuss threats
to validity in Sect. VIII. We conducted the experiments with
JooMDD (Sect. IV, [9], [10]), an MDD infrastructure compris-
ing a DSL with model editors, a code generator, and a model
extraction tool. As we discuss in Sect. IX, to our knowledge,
JooMDD is the only tool with full support for all scenarios.
However, our obtained results may generalize to other tools
as far as they support our envisioned scenarios.

II. DEVELOPMENT SCENARIOS

From our experience of developing CMS extensions, we
identify three frequently occurring development scenarios: The
development of both independent and dependent extensions,
and the migration of an extension between two versions of
the CMS platform. We now describe these scenarios in detail.

A. Scenario 1: Development of Independent Extensions

This scenario addresses the development of independent
extensions to be used in a running CMS instance. Independent
extensions are particularly desirable during evolution: If a
developer changes the extension, no side effects due to depen-
dencies occur. However, it is fundamental to comply with the
development guidelines to ensure a correct interplay between
the extension and the installation of the CMS instance. Even

Iterative
Refin

Code

Initia
Development

(a) Development of Independent Extensions

o=

deployed to

Code

£

(b) Development of Dependent Extensions

Legacy or 3rd-

Party Extension

Code

Eeplcyed Legacy deployed
to Extension to

(old (New
Version) Version)

(c) Migration of an Extension to a new Platform Version

Fig. 1: Development scenarios.

subtle errors can lead to unexpected crashes that are not
discovered until runtime.

The scenario occurs in two variants: First, the initial devel-
opment of an extension and second its iterative improvement.
Both are addressed in this scenario, with the initial develop-
ment as the first iteration (see Fig. 1a).

B. Scenario 2: Development of Dependent Extensions

This scenario involves the development of extensions that
depend on other extensions, by using some of their artefacts
— a common practice to prevent multiple implementations
of the same functionality. In Joomla, components may reuse
data access objects (DAO) or view templates from other
components, and modules may use the database of existing
components. In WordPress, plugins may refer to other plugins.
This allows developers to augment existing extensions (e.g.
3rd-party extensions) without changing their code base (see
Fig. 1b).

C. Scenario 3: Migration of a Legacy Extension to a new
Platform Version

This scenario addresses the migration of a legacy extension
to a new version of the underlying CMS platform. Espe-
cially major version changes are characterized by tremen-
dous changes of the platform which usually break existing
extensions. So, every new platform version forces extension
developers to migrate their legacy extensions to the new API
to ensure their operability within updated CMS instances. As
experience has shown, missing documentation and required
effort often led to dying extensions since developers were
not able to migrate their software in a reasonable amount of
time. In this case, administrators have to replace the extension
which, in turn, is associated with additional effort (see Fig. 1c).



TABLE I: Result of the Semi-Structured Expert Interviews.

Cat. P1 P2 P3 P4 P5 P6 P7 P8
C1 (years) 6 5 13 13 13 13 4 10
C2 (versions) | 2.5-3.8 | 2.5-3.8 1.0-3.8 1.0-3.8 1.0-3.8 1.0-3.8 3.0-3.8 1.5-3.8
C3 (# ext.) 1 3 2 10 - 15 100 20 2 40
C4 (type) M CM,p P C,.M,PL CM,P M.P CM C,.M,PL
C5 (# ext.) 2 - 2 10 - 15 15 - 20 n.a. - 15
” "Read a
"Rewrite and | “Rewrite most _}IfMd l”:e migration guide
C6 fix errors of the extensions | “lterative until changetog (if it exists)
n.a. - - i . , ” then iterative !
(approach) until it to get rid of it works.” T until it and then fix
works.” old stuff.” 1 rked L, errors until
worked agamn. T it works.”T
» g ”I try to use
C7 few the Joomla
(#CRUD) n.a. st'anda”rd API wherever 90% 100% 80 - 90% 60 - 65% 100%
views. ”»
I can.
C8 (Proc.) CAO Boilerplate | CAO Boilerplate CAO CAO CAO CAO
Abbreviations: Component (C), Module (M), Plugin (P), Library (L), Clone-and-Own (CAO)
III. SEMI-STRUCTURED EXPERT INTERVIEW ¥ FirstName Last Name Username Active Boss
In order to validate the relevance of the previously defined oo e Boo Johnny8t O
development scenarios, we conducted a set of semi-structured 2 v Brown issmary ®
expert interviews with 8 industrial practitioners from the 8 James Mooray fiames O O
Joomla community in 2018. Based on the interviews we aimed - - First Name [Mary Active [¥]
. . Create Edit Delete
to address the following research questions: Last Name [Brown Boss ®

o RQI1: How relevant are our scenarios to industrial prac-
titioners from the CMS domain?

e RQ2: Which problems faced by industrial practitioners
from the CMS domain can be addressed by an MDD
approach?

A. Set-up

To obtain insights into the experiences of the Joomla
developers, we designed 8 questions based on the following
categories: Years of development experience in Joomla (C1),
Knowledge in different Joomla versions (C2), Amount of
extensions developed (C3), Extension types (C4), Amount
of extensions migrated (C5), Used migration approach
(C6), Amount of use of standard CRUD views (C7),
Applied procedure to implement extensions (C8).

C1-5 were asked as warm-up questions, and to determine
the experience of the interviewees. In addition, the answers to
these categories will determine the relevance of the scenarios
1-3 (RQ1). C6 aims to obtain information about their currently
used approach to migrate an extension when the underlying
platform changes. This category will help to identify the
relevance of the scenarios and possible problems faced dur-
ing extension development, which concerns RQ1 and RQ2.
C7 is based on our experience that most Joomla components
comprise a large amount of standard views with CRUD
functionality. As shown in Fig. 2, such views comprise a list
to present the entities, a toolbar of buttons to provide CRUD
functionality, and a detail page to create or edit an entity.

In a pre-study to motivate C7, we investigated the amount of
views in actual projects, based on the official Joomla extension
directory [11], to which we applied a structured process
to obtain unique extensions with components and available

Username | missmary

Fig. 2: Standard View with CRUD Functionality within CMS
Extensions

source code. In total, we considered 50 extensions with 592
views and found that 212 views were standard list views and
191 were standard detail views. In short, 68.07% of the views
we inspected are standard views with CRUD functionality. To
gain further insight, in C7, we asked the interviewees for the
amount of such standard views in their extensions. C8 allows
obtaining information about the typical extension development
procedure of the interviewees and potentials pitfalls during the
process. Based on the answers of C7 and C8 it is possible to
identify problems that can be addressed by an MDD approach
(RQ2).

All interviews were recorded and transcribed. In average an
interview took 20 minutes which led to a total time of around
3 hours of conversations, transcribed to 11050 words. When
we quote from the transcripts, these are given in italicized and
quotation marks. Please also note that citations are verbatim
taken from the transcripts. Citations that were translated to
English are marked with a capitalized T as index.

TABLE I summarizes the answers of the interviewees. C1-8
are the categories defined above. The names of the participants
were anonymised and abbreviated to P1-8. Each cell contains
the participant’s answer mapped to the corresponding category.

B. Scenario Evaluation

During the interviews we received the following answers
which can be assigned to our three development scenarios:

1) Development of Independent Extensions: In the inter-
views the developers stated to require 2 to 8 hours to have an



independent installable component with no business logic fol-
lowing their usual (mostly clone-and-own) procedure: ”...takes
us, I think, two hours to set up everything. So, two hours for a
component.” Another interviewee said: ”...it’s between four to
eight hours and that of course is still quite a bit more work...”.

Regarding to their usual procedure they stated:
”Copy&Paste and adapt what is necessary.”

In accordance to our findings concerning the amount of
standard views with CRUD functionality, they stated: "I think
that ninety percent at least are standard list views.”, which we
address within this scenario. Other interviewees stated around
the same amount, they think that, 60 up to 100 percent are
standard views.

2) Development of Dependent Extensions: Developers
stated that they augmented 3rd-party and core components
by own modules: I have done that. I'm still doing it. The
example here’s in my extension I'm exporting prices from a
webshop and the whole logic of price calculation - I don’t want
to recover that - so I'm using the model from the third-party
component that has the logic in it...”. Another typical scenario
is the augmentation of an existing component by a new view.
Even though one of the interviewee had no experience in this
scenario, he still sees the relevance of it: ”...it would be a nice
case, but not one I use. But it’s a use case!”.

3) Migration of a Legacy Extension to a new Platform
Version: During the interviews the respondents reported that
it requires them a couple of days for these steps: ...migrating
to the next version took maybe a couple days.”. If the number
of extensions and complexity grows it took them months, as
some interviewees stated: ”You should take a year. [...] Maybe
without any interruptions, it still will take a couple of months.”
and 7It took me 6 months to migrate 10 extensions.”.

C. Interpretation

As shown in TABLE I, we interviewed industrial practition-
ers with many years of experience (C1 and C2) in developing
and migrating all kinds of Joomla extensions (C3, C4 and
CS5). It takes them at least a couple of days, mostly months
to migrate their extensions to a new Joomla version. An
interesting finding is that no participant uses a tool for mi-
grating extensions (C6). Their approach is mostly ”...fix errors
until it works.”. P5 even rewrites his extensions completely.
Considering the amount and types of his extensions he put high
effort into the migration even though all his views are standard
views with CRUD functionality. This statement was confirmed
by almost every other practitioner for their extensions. This
shows that the practitioners have to put tremendous effort
into the migration. The results of C7 further supports our
own investigation and shows that the amount of standard
views with CRUD functionality are so high that most of the
migration steps can be performed automatically. This is also
true for the case of developing new extensions. Although some
developers use boilerplate code to create a new extension,
most of them use the clone-and-own approach, which takes
them at least hours to have a simple installable extension. The
relevance of our scenarios, which we presented in Fig. 1, is

strongly confirmed by the industrial practitioners’ statements
in section III-B1, III-B2, and III-B3 and coincides with our
own observations. In respect to RQ1, we can conclude that
the relevance is high.

During the last decade the practitioners had to face the same
recurring challenges like implementing requirements with a
high amount of redundant code. Additionally, they had to go
through major platform changes with the corresponding migra-
tions of their extensions. In both cases, extension maintenance
requires large effort. With regard to RQ2. this can be directly
addressed by MDD, since decreasing development effort for
these scenarios is an acknowledged strength of MDD. So, the
practitioners can significantly benefit from applying MDD of
CMS extensions.

IV. BACKGROUND: USED MDD TOOLING

Our interview study shows that there is potential for using
MDD to develop and migrate CMS extensions for saving time
and improving quality. In our experiments, we studied the
practical benefit further, using an available tool infrastructure
called JooMDD [9], [10]. JooMDD supports Joomla extension
developers with a set of MDD tools: a text-based DSL with ed-
itors for modeling extensions, a code generator for generating
implementations, and a model extractor for extracting models
from legacy code. We selected JooMDD since it was the only
available MDD infrastructure addressing all three scenarios of
interest (see Sect. IX); however, the results may generalize to
other tools as far as they address these scenarios. JooMDD and
a detailed description of its components are publicly available
at https://github.com/icampus/JooMDD.

The DSL consists of three parts: a part to model the data
management of an extension (entities), a part for the definition
of a page flow and interaction of extension views (pages), and
a part for the description of an extension structure (extensions).

The code generator supports extension developers during the
development of independent extensions such as components
(scenario 1), and dependent extensions such as modules that
use data of existing components (scenario 2). If an independent
extension is to be newly developed, the generator creates
the full extension code. When using an existing extension as
reference within a new extension, the relationship between
the old and new extension can be specified in the model.
The generator then generates the new extension, and not the
existing one anew. This scenario is illustrated in Sect. VI-A2.

Moreover, JooMDD supports developers during the reengi-
neering or migration of a legacy extension (scenario 3). A
model extractor for legacy code of existing Joomla 3 exten-
sions, comprising PHP, HTML, JavaScript, and SQL files,
creates an extension model based on the provided DSL with
the main elements types entity, page, and extension. The model
extractor is also useful in scenario 2: Usually, an existing
extension must be modelled manually to support model-level
references. This step can be automated by using the model
extraction tool. The extracted model contains all information
needed to model (and generate) new extensions based on the
existing one.



The infrastructure can be deployed to the most commonly
used development environments in the CMS domain, that is,
IntelliJ IDEA, PhpStorm, and Eclipse. JooMDD’s editor plugin
is customized for integration with each of these environments.
The plugin provides an Xtext-based textual editor with syntax
highlighting, error messages, dependency checks, and auto
completion support for keywords and references between
model elements. In addition to the IDE integration, a platform-
independent web IDE, comprising the whole tool set, can
be found at https://tinyurl.com/joomdd-web. The web IDE
allows developers to use JooMDD’s full functionality without
installing it locally.

V. CONTROLLED EXPERIMENT

To evaluate whether MDD can significantly increase pro-
ductivity during CMS extension development, we conducted
a controlled experiment where we compared conventional
programming with MDD exemplarily for the Joomla CMS.
We aimed to verify the hypothesis that JooMDD increases
productivity in terms of development speed during Joomla
extension development. To this end, we address RQ3: Can
MDD increase the productivity of CMS extension development
for scenario 1 and 2?

A. Set-up

We selected 14 developers with significant expertise in
Joomla extension development. 5 participants are industrial
Joomla extension developers with a high level of experience
(2 - 10 years of experience). 9 participants were students
from an intensive course on Joomla programming, 5 of which
also work as Joomla developers for productively used Joomla
extensions in an university website context. We justify the
selection of student participants with their comparable per-
formance to professionals when using new software develop-
ment tools [12]. Moreover, to ensure sufficient knowledge in
extension development for the Joomla CMS, we conducted
an external knowledge assessment at the beginning of the
experiment, based on a multiple-choice test. We found that
all participants have knowledge in extension development.
However, 2 participants showed a knowledge deficit in detailed
extension development (MVC interaction).

During the experiment the participants were free to use
a development environment of their choice for conventional
programming. During the model-driven development session
they had to use the JooMDD web editor for extension devel-
opment. This allowed us to minimize technical noise regarding
the installation of IDE plugins.

The design followed a within groups design, in which both
groups started with conventional programming followed by a
model-driven development session. Each development session
had a maximum duration of 3 hours. To encounter a possible
learning effect, each participant solved different tasks with
conventional programming and with MDD. To avoid bias due
to one of the tasks being more complicated, we randomized the
assignment of tasks to development methodologies between
participants. The tasks, based on two different requirements of

similar complexity, were handed out during the development
sessions. Group A had to implement the first requirement
by hand and the second one with MDD, whereas group B
started with the second requirement followed with the first one
with MDD. Both requirements consisted of an independent
Joomla component (scenario 1) with 14 views in total. In
particular, 6 list and 6 edit views for the administration
section (backend), as well as 1 list and 1 details view for
the end-user (frontend). In addition, the subjects were asked to
implement a dependent module (scenario 2) illustrating data of
the implemented component. After each session, the subjects
submitted their solutions.

Before the actual development session, a presentation about
the experiment and the requirements for a complete solution
was given. To ensure anonymous handling of the results
and eliminate possible biases, the subjects were identified
by a subject-ID they had to write on each artefact they
filled out during the experiment. The subjects used their own
notebooks with their familiar development set-up of choice.
After completing a demographic questionnaire, the subjects
had to complete the knowledge assessment (development,
Joomla, MDD). Afterwards, the two programming sessions
followed. At the start of the first session, a requirements spec-
ification was given to all subjects. Group A had to implement
Joomla extensions (1 independent component and 1 dependent
module) for university management, group B for customer
relationship management. In a presentation before the second
session, an overview of the domain-specific language, the code
generator, and the web editor was given. In the second session,
the subjects had to implement the remaining requirement in
a model-driven way. In each session, the participants had to
check the fulfilled requirements in the specification list. After
each session the subjects had to answer questions considering
the development method as well as the quantity and quality
of the development results.

At the end, a closing questionnaire was conducted to get in-
sight to the acceptance of MDD. After 9 hours the experiment
ended.

B. Results

In TABLE II we summarize the results of the controlled
experiment based on the amount of fulfilled requirements
during the development sessions. For each subject we show the
amount of fulfilled requirements based on relevant requirement
groups in each development session. The Component Structure
row indicates the overall percentage of fulfilled requirements
by all participants considering a component that is installable,
supports multi-language ability (by language files) and pro-
vides update scripts. The Component Views row specifies the
overall percentage of implemented views so that the specified
requirements (e.g. table columns, filters, orderings, correct
fields and HTML field types) are fulfilled. The Component
CRUD row gives the overall percentage of implemented
CRUD functionality for each view, including the required
buttons and a correct implementation of the associated actions.
The Module row illustrates the overall percentage of fulfilled



TABLE II: Result of the Controlled Experiment.

Requirement A Requirement B Overall
Requirement group  Scenario | Baseline With MDD  Coeff. | Baseline With MDD  Coeff. | Baseline  With MDD  Coeff.
Component Structure 1 67% 90% 1.4 76% 86% 1.1 71% 88% 1.2
Component Views 1 5% 64% 13 4% 89% 21.5 5% 77% 16.9
Component CRUD 1 7% 76% 10.6 12% 97% 8.2 10% 87% 9.1
Module 2 14% 62% 4.3 0% 52% N/A 7% 57% 8

requirements based on a module that is installable, uses the
data of the implemented component, and illustrates the data
in a module position. If requirements were not completely
fulfilled, we rated them as partly fulfilled (2/3 or 1/3) whereas
we differentiated between more and less than 50% completion.
Requirement groups Component Structure, Component Views,
and Component CRUD in union represent our scenario 1
(development of an independent component). Requirement
group Module represents our scenario 2 (development of a
dependent module).

To gain insight about the productivity growth, we build
the average percentage of fulfilled requirements for each
requirement group and calculated the respective productiv-
ity coefficient for both development sessions (baseline, with
MDD). As TABLE II shows, the overall coefficient between
the baseline session and the session with MDD varies between
1.2 and 16.9.

C. Interpretation

With the results of the experiment we answer RQ3: Can
MDD increase the productivity of CMS extension development
for scenario 1 and 2? The results show, that even the lowest
coefficient is higher than 1 which shows that the subjects
were more productive with MDD for each requirement group.
During the development of views and the respective CRUD
functionality, the subjects increased their average productivity
by the factor 16.1 and 9.1. This corresponds to the inter-
view statements and our previous research, that a tremendous
amount of extensions consists of generic code for standard
views with CRUD functionality. By applying MDD, these
extension parts can be developed faster. This supports our hy-
pothesis that MDD can substantially increase the development
of CMS extensions.

The same applies to the development of dependent exten-
sions, whereas the significance of the module development
requirement should be interpreted with caution. The exper-
iment design did not allow to conduct a separate module
development session. Therefore, only one subject decided to
implement the module in the first development session. The
others focused on component development within the sessions
time slot. Due to the fact that all subjects were faster during
the second session, more of them were able to develop the
required module.

VI. FIELD EXPERIMENT

The controlled experiment from the previous section sup-
ported a quantitative assessment of the potential productivity
benefit of MDD in the CMS domain. Due to the high effort

for understanding and implementing the requirements with
two different development methodologies, we focused on the
first two scenarios and did not address scenario 3 (migration).
To complement the results with more qualitative insights
regarding the usefulness, acceptance, and open challenges of
MDD in all three scenarios, we conducted a field experiment
with four extension developers of the Joomla community. All
developers had a high level of experience (5-13 years), leading
to a good knowledge of the processes and problems during
extension development. After an introduction to the selected
MDD tool JooMDD, we observed the developers during the
three development scenarios within a total time of 6 hours.

To minimize technical noise, the scenarios were applied by
using the JooMDD web IDE since it integrates all infrastruc-
ture components homogeneously. Additionally, we provided a
Joomla installation of the latest available version (3.8) at that
time to ensure equal conditions for all participants. To provide
direct feedback of the participants, we subsequently conducted
interviews with the participants addressing the MDD approach
during the scenarios.

A. Set-up

In this section we describe the set-up for the field experi-
ment. For each scenario we define the requirements and the
procedure.

1) Development of an Independent Component (Sce-
nario 1): In Joomla, components are the most commonly
developed type of independent extensions. Therefore, we set
the task to develop a conference management component as an
extension to the Joomla core. To stipulate the requirements, we
specified a class model for the management of a conference. In
the first scenario, the goal was to develop a component for the
management of conference data by standard views with CRUD
functionality. Specifically, each entity should be displayable in
a standard list and details view, such as those shown in Fig. 3a.

The figure shows these views from the perspective of a
Joomla administrator who can make the same views visible
to site visitors using a menu entry. The resulting component
must at least consist of 4 list views and 4 edit views for
the management in the backend and 8 views for the frontend
representation of the entities. For every view the respective
MVC and CRUD code has to be generated as well. Our
reference extension model for this scenario has a total of 230
LoC. This includes 4 data entities and 8 different pages which
are used for both the frontend and backend. The generated
component, including 16 views, consists of 17k LoC.

We started the first part of the development session with
the developers by introducing JooMDD and the JooMDD web



© Participants ¥ Joomlal
BT o < e
©

© Unpublish || & Archive || I Checkin | @ Trash

@ Options

London University of Cambridge

T

5509 Lakeview St_University of Chicago 10

(a) List and Details View within a Joomla 3 Instance (Backend)

Q Search Tools v Clear 20

Conf_talks

Room Talk /'“\ Time Title
(

1

123 Design Patterns o/ 2016-04-16 10:00:00

Design Patterns

14 JooMDD - Simple Joomla Extension Creation 2016-04-16 14:00:00 JooMDD of Things Yaddow

771400009\

2 Interet of Things 2016-04-17 11:00:00 oT 0000:00:00 0 Super( 2 )
05 o/

(b) Conference Management Component (1) and New Module (2)
in the Frontend

Fig. 3: Standard Views with CRUD Functionality

IDE. Subsequently, we introduced the requirements for the
conference component and proposed a possible development
procedure using JooMDD. This procedure comprises the use
of an example model in the web IDE and to change it to the
required conference structure. In the next step the developers
had to generate a component based on their specified model.
As part of the introduction we explained the structure of the
generated code and how the generated component should look
like if the code generation worked properly. Provided that
a valid model is used as input, the generator creates a full
installable conference component. So, no individual code had
to be added. As a next step, the developers had to install the
component to a Joomla-based web site, which we provided.
The developers then had to check if the extension was installed
properly and if it worked as homogeneous part of the web site.
To this end, they had to create some conference data and try the
common CRUD functionality. In addition, they had to create
frontend menu entries, to check if the frontend representation
of the conference entities works properly.

As next step, the developers had to refine their existing
model. They had to add a new data entity and pages to display
and manage this entity. After the refinement of the model, the
developers had to generate the component anew and reinstall
it to the web site. After that, the developers had to check
again if the extension works properly. If everything was done
correctly, the existing conference data should be still available
in the system. The whole process of the first use case is also
illustrated in Fig. 4a.

2) Development of a Dependent Module (Scenario 2): In
the second part of the experiment, the task was to add a
new module to the existing conference component using its
DAO, to provide a new representation of the conference talks
within a Joomla site which has the conference component
installed. Once installed, the module should work together
with the already installed conference component by using the

component’s MVC model for the data access, thus allowing
to show a presentation of the obtained data — in our case
conference talks which are managed by the component. Fig. 3b
illustrates a Joomla instance which already has the conference
component installed (1) and the new module which uses its
data (2) for a different representation. Therefore, an existing
extension package of a conference management component is
required in this scenario. To this end, the participants could use
the already downloaded extension package from scenario 1.

As next step, they had to upload the extension package to
the JooMDD web IDE and use the JooMDD model extractor
to extract a domain model from the conference component
package. We decided for this component to make sure that
the input extension matches the Joomla standard file and code
schemes to ensure that the extracted models are as complete
as possible. If the resulting model contains some validation
errors (e.g. illegal identifiers), the participants had to refactor
these model elements.

As a further step of this scenario, the participants had to
augment the model by new elements to define a new Joomla
module with references to the extracted component-specific
model elements. Then, using the new model as input, the
participants had to use the code generator of the web IDE
to create an installable extension package of the new module.

To complete this scenario, the developers were asked to
install the module to our provided Joomla installation and, if
it has been installed properly, create a module instance, which
has to be placed on the frontend section of the website. If
everything worked properly, the module had to illustrate the
data of the already installed component similar to Fig. 3b. See
Fig. 4b for an overview of the procedure.

3) Migration of a Legacy Component from Joomla 3 to
Joomla 4 (Scenario 3): For the third scenario, we required the
code migration of a component from Joomla platform version
3 to 4, which is scheduled for release in 2019. Even though
the new major release of Joomla requires a completely new
extension structure, the migrated component should include
the same features as for the old Joomla version. So, the whole
extension structure of an existing Joomla 3 component has to
be migrated to the required Joomla 4 structure. Once installed
to a Joomla 4 instance, the component views should also be
displayed homogeneously and work properly.

The first steps of the procedure, depicted in Fig. 4c, was
similar to the ones described for scenario 2. The participants
had to use an installable extension package of a Joomla 3
component, upload it to the web IDE, extract a model, and
refactor that model. Again, we decided to use the conference
component to ensure a full model extraction. After the model
refinements, the participants had to generate the component
by choosing J4 as generator option (part of the web IDE)
and download the resulting extension package. During the
experiment back in 2018 the code generator did not generate
fully operable components but created the correct new file
structure with the main code changes for Joomla 4. Therefore,
the participants had to inspect the new components to get an
overview of the new component structure.



refines

create

! ¥ Code
Generation

Participant

New
Installable
Component

Joomla

deployed to Instance

(a) Dev. of an Independent Component (Scenario 1)

refines
Model Levef)

Participant
)

Generation
Code

Joomlal

deployed o ysrance

Model of
Legacy
Component

I
describes|
)

Legacy

Component Installable

Module

(b) Dev. of a Dependent Module (Scenario 2)

Model Level

efines Participant

Code Generation
(new Version)

Code

Model of
Legacy
Component

7/ N\
/
@ describes descnbes\\

New Version
of Legacy
Component

Legacy
Component

Joomla 4

deployed to
Instance

Joomla 3
Instance

deployed to

(c) Migration of a Legacy Component from Joomla 3 to
Joomla 4 (Scenario 3)

Fig. 4: Model-Driven Procedure of each Scenario

B. Observations

In the field experiment we made the following observations
in the considered development scenarios.

1) Development of an Independent Component (Sce-
nario 1): Before the procedure started, we observed some
reservations against the use of MDD approaches. This also
applied to the introduced MDD infrastructure. After the first
session, however, they were surprised that the tools worked so
well. By using the example models as a reference, the devel-
opers were able to quickly learn the use of the tools provided
by JooMDD. Several editor features were well-received, like
the auto completion, the error validation, and the syntactical
sugar like curly brackets in the DSL, which clarified the
structure and model hierarchy. However, some participants
had problems with keywords of the DSL. Especially, the page
keyword in the model made some problems. The participants
expected the keyword view, since pages in the model represent
views in actual components. Another technical aversion we
observed relates the usability of the web IDE. Even though,
three of the participants liked the platform-independent editor,
the functions of the buttons have not been clear enough. One of
the participants disliked the platform-independent solution and

would have preferred to use the available PhpStorm plugin.

After 20 minutes all participants had installed their first
generated component to the provided Joomla installation. We
did not observe different results between participants with
more or less technological knowledge.

2) Development of a Dependent Module (Scenario 2):
During the second scenario we observed that 2 of the par-
ticipants had problems with the resulting model after the
model extraction step. Since the model was not completely
free of validation errors, the developers found it hard to orient
themselves, due to the mass of unfamiliar generated model
code. However, with some help, they were able to create and
test the new modules in minutes.

3) Migration of a Legacy Component from Joomla 3 to
Joomla 4 (Scenario 3): The first observation we made in
the third scenario was that, except for one participant, the
group had no experience in extension development for the new
Joomla 4 version. However, by using JooMDD and following
the predefined steps, the group was able to create their first
Joomla 4 components, based on the previously generated
conference component for Joomla 3. The participants were fas-
cinated by the scenario, since the whole process did not require
more than 5 minutes and 4 clicks for the example component.
Since no migration steps are defined in any documentation,
the participants were grateful to use the generated extension
as first reference for their future extension development.

While some of these observations highlight specific issues
of JooMDD, they can be used to inform both future versions
of JooMDD, and other MDD infrastructures in this domain.

C. Developer Feedback

During and after the field experiment the developers gave
us feedback regarding MDD approaches in general.

The overall observations were positive. One participant
stated that: "I think this is really useful to speed up the process
and actually when you have to create a standard component
which has to do something really easy you can make one really
quick. So it’s can be a time saver. Yes I'm sure it can.” Another
participant observed that: “There’s less to change because
there’s only one single file where I need to change maybe
two names or three names then the rest will be generated. So,
it’s less error prone then what we’re doing now.”.

The developers also expressed what they expect from an
MDD infrastructure. One point often mentioned by the de-
velopers was that they want something like a wizard, which
guides them through the extension creation: ”I was talking
about the wizards which can even speed up to the process
even more.” One of the developer stated that he would like to
have a command line tool to be able to create the model file,
so he do not have to create it by hand: "With commands, like
"build view x,y,z’ and then it asks for the details.”

The developers want support for the whole development life
cycle, beyond the initial steps: "I expect that the generator is
not a generator once and change never option. I expect that
it’s meant to be part of a continuous developing situation.”



They see the need of version management for the involved
textual models [13]: "If it appears to be a bug in my compo-
nent after six months and I want to be able to go back to the
last one that was generated or the last one before that [...]. ”

Additionally, they expect the generator to be always up to
date: "What I would expect is that if I have my logic inside
the code generator it would spit out a component in the new
style that I put in a different engine and the engine gives
me different code to be doing with Joomla 3, Joomla 4, or
whatever platform it’s supposed to be running on.”

Finally, regarding future directions of MDD in the CMS do-
main, a participant stated: ”...the focus should be on what you
do should be good and it should be able to hook into your own
custom code [...] you're not restricted to just the generated
part and you’re not forced to hack into the generated code
but to just have enough possibilities to do at your own stuff.”

VII. LESSONS LEARNED

In this section we address the lessons learned of our
conducted studies among CMS extension developers. Most of
them are consistent to the ones presented by Whittle et al. in
[14]. This applies especially to the following ones:

Finding the right problem is crucial. All three development
scenarios we presented have proven to be significant. The mi-
gration scenario, however, is considered as especially pressing
and got most attention.

Match tools to people, not the other way around. Developers
refused working with Eclipse. (For potential reasons see [15].)
Instead, they are used to IDEs by JetBrains or web IDEs
and await corresponding tool support. In this context, as
developers pointed out, MDD has the potential to reduce
error susceptibility in contrast to clone-and-own approaches.
Additionally, we found three specific sub-lessons:

1) Integrate MDD tooling seamlessly into already used tool
environments.: Developers also asked to consider possi-
bilities for custom code integration into generated code.

2) Use domain terminology as much as possible.: A DSL
dialect may better reflect the developer’s understanding
of a specific domain (such as CMS extension develop-
ment with Joomla).

3) Handle models as usual development artefacts: Devel-
opers specifically asked for version management support
to consider model histories.

More focus on processes, not only on tools. Developers ask
for wizards supporting them in following pre-defined processes
as they occurred in selected application scenarios.

In addition, we have found further lessons learned:

Apply MDD to develop components instead of whole sys-
tems. While certain kinds of system components are well
suited for MDD others may be not. The developers shall be
guided to the promising applications.

MDD for learning new platform versions. By automatically
migrating a vast part of a CMS extension, developers can learn
how a new platform version (here Joomla 4) shall be used. It
also becomes easier to add individual code where needed.

VIII. THREATS TO VALIDITY

Despite the promising results of all presented studies in the
previous sections, our work is subject to a number of threats
to validity.

Construct Validity We study practical applicability by
focusing on three development scenarios that we consider as
common in the domain. While the expert interviews confirm
the crucial role of these scenarios, the participants also pointed
us to an additional scenario that we did not consider yet. In
particular, the abstraction of shared functionality into libraries.
This is a threat to the conclusion validity, since we aim to study
the development of extensions in general, independent of their
type. We aim to study this case in future work.

Internal Validity The reliability of the results relies on
the quality of the artefacts provided to the participants, in
particular, the interview questions, tasks and examples. To
mitigate the associated threat, we worked with examples and
tasks that are already well-proven from use in teaching. In the
controlled experiment, we anonymised the whole subject data
to eliminate any biases.

External Validity The two main threats to external validity
are: First, we only considered extensions of the Joomla CMS.
It yet has to be studied if MDD is also suitable for other CMS,
in particular WordPress, the most frequently used CMS. Since
Joomla has the most complex extension mechanism, it is likely
that the positive results for Joomla may also generalize to other
CMSs like WordPress. However, a new code generator and
model extractor is required for the specific needs of each given
CMS. Second, while we involved experts from the domain
as participants, the sample size is still relatively small. Our
methodology applied to study productivity in scenarios 1 and 2
is qualitative and quantitative. An extensive description of the
quantitative study considering the quality of the development
results will be part of future work.

IX. RELATED WORK

Our consideration of related work is two-fold: On the one
hand, we survey existing MDD approaches being applied in
the CMS domain. On the other hand, we relate our field study
to other empirical works on MDD in practice.

A. MDD in the CMS Domain

Several related works propose platform-independent meta-
models for the development of specific CMS instances [16]-
[18]. Code generation for concrete CMS instances was firstly
investigated by Saraiva et al. in [19]. However, none of
these works addresses extensibility scenarios of CMSs through
standardized extension types taking their interdependencies
into account. Only the XIS-CMS framework presented in
[20] has been applied to model and develop CMS modules
addressing the CMS DotNetNuke. As this CMS has a limited
extension mechanism like WordPress, JooMDD is the first one
providing suitable abstractions and automation facilities for a
more sophisticated extension mechanism.



TABLE III: Tool support for scenario 1-3

Tool Joomla Vers. | S.1
Component Generator [21] 3
Joomla Component Builder [22] 3
Component Creator [23] 3
Component Architect [24] 3
JCCreator [25] 3
JooMDD [9], [10]

W
NSNS X X[
W
\XXXXXw

A N

In TABLE III, we collect existing tool support for MDD of
Joomla extensions available online. The considered tools can
be used to define extension information in an abstract manner
and use it for code generation. However, all of these tools
are limited to the development of independent components
(scenario 1) or dependent modules (scenario 2). Therefore,
JooMDD stands out due to its unique migration support. We
excluded [26], [27] and [28] due to a lack of functionality.
They generate a very basic scaffold only.

General MDD approaches for the web domain such as the
ones in [29]-[31] can be used to create complete websites in
a model-driven way but are not suitable for the use cases we
considered in this paper since they do not address CMSs and
the model-driven development of their extensions.

B. Empirical studies on MDD in practice

There have been several efforts to investigate various aspects
of MDD in practice. The practical adoption of MDD has
been the focus of various studies [14], [32]-[36] that generally
focus on the embedded system or mobile development domain.
Sousa et al. present the adoption of MDD in an industrial
modernization scenario in [36], whereas in [14], Whittle et
al. develop a taxonomy of tool-related considerations based
on empirical data stemming from industry. This taxonomy
distinguishes technical factors (concerning technical aspects of
MDD tools) from organizational and social ones (focusing on
tool use and application within working processes). This tax-
onomy was used to analyse interviews from industry, mainly
at companies such as Ericsson and Volvo. Although developed
for empirical studies in other domains, most of their lessons
learned are confirmed by our studies among CMS extension
developers as stated in Sect. VII.

Mohagheghi et al. [37] reflect the use of MDD in four cases
from companies in different domains (enterprise applications,
telecommunication, aerospace crisis management systems and
geological systems) based on interview and questionnaire
studies, focusing on the practical motivation for using MDD
and subjective usability aspects. They state that MDD can
generally be applied successfully, while methodologies and
tools are a main inhibiting factor.

The study in [38] investigates the usability of web appli-
cations being developed in a model-driven way. The closest
study is probably presented in [39] where the maintainability
of web applications is investigated. The authors compare
model-driven development of web applications with code-
centric development. They conducted an experiment where 27
graduated students had to perform a set of maintainability tasks
in two groups. Specifically, they investigated the effectiveness,

efficiency, usefulness, and ease of use of the development
approaches w.r.t. changeability. As result of that study, the au-
thors found a perceived loss of control with MDD approaches,
that model-driven development is slightly more learnable and
less complex than code-centric development, and that develop-
ers are not as satisfied with the MDD approach as expected.

In contrast to that study, we performed our studies with
experienced developers in addition to students. Experienced
developers are usually confronted with the development and
evolution of much larger projects. Specifically, they need to
develop and integrate new software components and to migrate
code, tasks that are not covered by the study in [39].

To the best of our knowledge, there is no other empirical
study on the use of MDD in the CMS domain.

X. CONCLUSION

Using an instance of an open source CMS as dynamic
web application, developers can add additional features by im-
plementing installable extensions. However, developing these
extensions can be a time-consuming and complex task, even
for experienced extension developers. Therefore, we propose
the use of MDD during the development as efficient alternative
to conventional programming.

In this work, we share the results of a mixed method
empirical investigation of applying MDD during CMS exten-
sion development. All conducted studies refer to three major
development scenarios we identified beforehand: Development
of both dependent and independent extensions and migration
of an extension to a new platform version.

First, we conducted semi-structured expert interviews with
extension developers coming directly from the CMS domain.
This allowed us to study the representativeness of these sce-
narios. By conducting a controlled experiment, we compared
conventional extension development with MDD. During the
experiment we focused on the first two scenarios during the
implementation of given requirements. The results showed a
significant productivity gain by using an MDD infrastructure
for extension development. In a field experiment we asked
four experienced Joomla extension developers to use an MDD
infrastructure for Joomla extensions, during the examples of all
three development scenarios. So, we received direct feedback
about acceptance, usefulness, and open challenges of the
adopted MDD approach.

Conclusively, we share the lessons learned of the studies.
Generally, we found that focussing more on processes and
people, not only on tools which summarizes lessons learned by
Whittle et al. [14], also helps to satisfy experienced developers
in the CMS community. Since there is still little data about
which application scenarios are good for MDD, we tried to
identify three relevant scenarios. W.r.t. these scenarios we can
conclude that MDD-based migration support was welcomed
the most. In future work, we like to conduct more qualitative
studies identifying further relevant development scenarios in
the domain, even with developers for other CMSs like Word-
Press or Drupal.



[1]

[2]

[3]

[4]

[5]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

T. Stahl, M. Voelter, and K. Czarnecki, Model-driven software develop-
ment: technology, engineering, management. John Wiley & Sons, Inc.,
2006.

P. Baker, S. Loh, and F. Weil, “Model-driven engineering in a large
industrial context—motorola case study,” in International Conference on
Model Driven Engineering Languages and Systems.  Springer, 2005,
pp. 476-491.

W. Heijstek and M. R. Chaudron, “Empirical investigations of model
size, complexity and effort in a large scale, distributed model driven
development process,” in 2009 35th Euromicro Conference on Software
Engineering and Advanced Applications. 1EEE, 2009, pp. 113-120.
J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Em-
pirical assessment of mde in industry,” in Proceedings of the 33rd
international conference on software engineering. ACM, 2011, pp.
471-480.

J. L. Panach, S. Espaiia, O. Dieste, O. Pastor, and N. Juristo, “In search
of evidence for model-driven development claims: An experiment on
quality, effort, productivity and satisfaction,” Information and software
technology, vol. 62, pp. 164-186, 2015.

S. McKeever, “Understanding Web content management systems: Evo-
lution, lifecycle and market,” Industrial Management & Data Systems,
vol. 103, no. 9, pp. 686-692, 2003.

D. Barker, Web content management: Systems, features, and best prac-
tices. Beijing and Boston: O’Reilly, 2016.

W3Techs, “Usage Statistics and Market Share of Content Management
Systems for Websites, January 2018,” 2018. [Online]. Available:
https://w3techs.com/technologies/overview/content_management/all

D. Priefer, P. Kneisel, and G. Taentzer, “JooMDD: A Model-Driven
Development Environment for Web Content Management System Ex-
tensions,” in ICSE Companion ’16: Companion Proceedings of the 38th
International Conference on Software Engineering. New York, NY,
USA: ACM, 2016, pp. 633-636.

D. Priefer, P. Kneisel, and D. Striiber, “Iterative Model-Driven Develop-
ment of Software Extensions for Web Content Management Systems,”
in Modelling Foundations and Applications: 13th European Conference,
ECMFA 2017, Held as Part of STAF 2017, Marburg, Germany, July 19-
20, 2017, Proceedings. Cham: Springer International Publishing, 2017,
pp. 142-157.

Open Source Matters Inc., “Joomla! Extensions Directory,” 2018.
[Online]. Available: https://extensions.joomla.org/

I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1.
IEEE, 2015, pp. 666—676.

T. Kehrer, C. Pietsch, U. Kelter, D. Striiber, and S. Vaupel, “An adaptable
tool environment for high-level differencing of textual models,” in
International Workshop on OCL and Textual Modeling co-located with
18th International Conference on Model Driven Engineering Languages
and Systems (MoDELS 2015), 2015, pp. 62-72.

J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
“Industrial Adoption of Model-Driven Engineering: Are the Tools Really
the Problem?” in Model-Driven Engineering Languages and Systems,
ser. Lecture Notes in Computer Science / Programming and Software
Engineering. Berlin/Heidelberg: Springer Berlin Heidelberg, 2013, vol.
8107, pp. 1-17.

N. Kahani, M. Bagherzadeh, J. Dingel, and J. R. Cordy, “The Problems
with Eclipse Modeling Tools: A Topic Analysis of Eclipse Forums,” in
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ser. MODELS *16. New
York, NY, USA: ACM, 2016, pp. 227-237.

S. Martinez, “Towards an Access-Control Metamodel for Web Content
Management Systems,” in Current Trends in Web Engineering, ser.
Lecture Notes in Computer Science. = Cham: Springer International
Publishing, 2013, vol. 8295, pp. 148-155.

F. Trias, “Building CMS-based Web applications using a model-driven
approach,” in Sixth International Conference on Research Challenges in
Information Science. Piscataway, NJ: IEEE, 2012, pp. 1-6.

K. Vlaanderen, F. Valverde, and O. Pastor, “Model-Driven Web Engi-
neering in the CMS Domain: A Preliminary Research Applying SME,”
in Enterprise Information Systems, ser. Lecture Notes in Business
Information Processing. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, vol. 19, pp. 226-237.

[19]

[20]

(21]
[22]
[23]
[24]
[25]
[26]
[27]
(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

J. d. S. Saraiva, “Development of CMS-based Web Applications with
a Multi-Language Model-Driven Approach,” Dissertation, Universidade
Técinica de Lisboa, Lisbon, Portugal, 01.01.2012.

P. Filipe, A. Ribeiro, and A. R. da Silva, “XIS-CMS: Towards a model-
driven approach for developing platform-independent CMS-specific
modules,” in 2016 4th International Conference on Model-Driven Engi-
neering and Software Development (MODELSWARD), 2016, pp. 535-
543.

S. ApS. (2019) Component generator. [Online]. Available: https:
/Iwww.componentgenerator.com/

V. D. Method. (2019) Joomla component builder. [Online]. Available:
https://www.joomlacomponentbuilder.com/

J. T. SL. (2019) Component creator. [Online]. Available: https:
//[www.component-creator.com

S. O. Source. (2019) Component architect.
https://www.componentarchitect.com

M. ALNASSER. (2019) Jecreator. [Online]. Available: https://jc-creator.
com

S. Software. (2019) Module-creator.
/lextstore.com/tools/module-creator
xdsoft. (2019) Joomla module generator. [Online]. Available: https:
//xdsoft.net/joomla-module- generator/

(2019) Boilerplate files for joomla! extensions. [Online]. Available:
https://github.com/joomla-extensions/boilerplate

M. Brambilla, Interaction flow modeling language: Model-driven Ul
engineering of web and mobile apps with IFML. Waltham, MA: Morgan
Kaufmann, 2015.

A. Kraus, A. Knapp, and N. Koch, “Model-Driven Generation of
Web Applications in UWE,” Ph.D. dissertation, Ludwig-Maximilians-
Universitidt Miinchen, Miinchen, 01.01.2008.

S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling Language
(WebML): a modeling language for designing Web sites,” Computer
Networks, vol. 33, no. 1-6, pp. 137-157, 2000.

H. Burden, R. Heldal, and J. Whittle, “Comparing and Contrasting
Model-driven Engineering at Three Large Companies,” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM *14. New York, NY, USA:
ACM, 2014, pp. 14:1-14:10.

G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based Engineering in the Embedded Systems Domain: An Industrial
Survey on the State-of-practice,” Software & Systems Modeling, vol. 17,
no. 1, pp. 91-113, 2018.

S. Vaupel, G. Taentzer, R. Gerlach, and M. Guckert, “Model-driven
development of mobile applications for android and ios supporting role-
based app variability,” Software and System Modeling, vol. 17, no. 1,
pp. 35-63, 2018.

S. Vaupel, D. Striiber, F. Rieger, and G. Taentzer, “Agile bottom-up
development of domain-specific ides for model-driven development,”
in Workshop on Flexible Model Driven Engineering co-located with
ACM/IEEE 18th International Conference on Model Driven Engineering
Languages & Systems (MoDELS 2015), 2015, pp. 12-21.

V. Sousa, E. Syriani, and M. Paquin, “Feedback on how mde tools are
used prior to academic collaboration,” in Proceedings of the Symposium
on Applied Computing, ser. SAC "17. New York, NY, USA: ACM,
2017, pp. 1190-1197.

P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez, “An em-
pirical study of the state of the practice and acceptance of model-driven
engineering in four industrial cases,” Empirical Software Engineering,
vol. 18, no. 1, pp. 89-116, 2013.

A. Fernandez, S. Abrahdo, and E. Insfran, “Empirical Validation of a
Usability Inspection Method for Model-driven Web Development,” J.
Syst. Softw., vol. 86, no. 1, pp. 161-186, 2013.

Y. Martinez, C. Cachero, and S. Melid, “Empirical Study on the Main-
tainability of Web Applications: Model-driven Engineering vs Code-
centric,” Empirical Softw. Engg., vol. 19, no. 6, pp. 1887-1920, 2014.

[Online]. Available:

[Online]. Available: https:



