
Transformations of Software Product Lines: A
Generalizing Framework based on Category Theory

Gabriele Taentzer1, Rick Salay2, Daniel Strüber3, and Marsha Chechik2

1 Philipps-University Marburg, Germany. Email: taentzer@mathematik.uni-marburg.de
2 University of Toronto, Canada. Email: {rsalay,chechik}@cs.toronto.edu

3 University of Koblenz and Landau, Germany. Email: strueber@uni-koblenz.de

Abstract—Software product lines are used to manage the de-
velopment of highly complex software with many variants. In the
literature, various forms of rule-based product line modifications
have been considered. However, when considered in isolation,
their expressiveness for specifying combined modifications of
feature models and domain models is limited. In this paper, we
present a formal framework for product line transformations that
is able to combine several kinds of product line modifications
presented in the literature. Moreover, it defines new forms of
product line modifications supporting various forms of product
lines and transformation rules. Our formalization of product line
transformations is based on category theory, and concentrates
on properties of product line relations instead of their single
elements. Our framework provides improved expressiveness and
flexibility of software product line transformations while abstract-
ing from the considered type of model.

I. INTRODUCTION

A software product line (SPL) is a portfolio of soft-
ware products sharing a set of common core assets, while
differing in some increments of functionality, often referred to
as features. SPLs empower enterprises to produce custom-
tailored products according to their customers’ needs. Due to
this key benefit, global players such as Boeing, General Mo-
tors, and Toshiba have recently adopted SPL approaches [1].

However, this benefit comes at a price: too much variability
in an SPL can give rise to significant complexity. In an SPL
with n features, up to 2n individual products need to be
managed and maintained. One of the standard approaches to
support developers during these tasks involves the specifica-
tion of a set of features using feature models [2], and the
annotation of domain models with presence conditions over
these features. Domain models may be provided in typical
MDE languages such as UML [3], [4], [5] or petri nets [6], or
in source code [7]. Products are produced by configuring the
features, i.e., switching them on or off, and removing parts of
the domain model annotated with inactive features.

To enable the systematic management of an SPL, a variety
of transformations needs to be supported. For instance, some
transformations aim to only add new products while leaving
all of the existing products unchanged. Others aim to affect
only the existing products, modifying them in a systematic
way. Specifically, the following kinds of transformations have
been considered in the literature:

1. Changes to feature models aim to support reasoning
about additions, deletions, and modifications of features. Thüm

et al. [8] distinguish four categories of changes based on their
impact to the set of products: refactorings, generalizations,
specializations, and arbitrary editing steps. On this basis,
Bürdek et al. [9] use model transformation rules to specify
high-level editing operations that can be used to support the
comprehension of feature model differences. These works are
useful to support the evolution of a SPL with versioning tools,
yet they do not take the domain model into account.

2. Lifting of model transformations [10], [11] aims to make
transformation rules from a single-product setting applicable
to the entire SPL. The intended effect of lifting is the same as
applying the considered rule to each product separately. How-
ever, to avoid the combinatorial explosion of enumerating and
considering all products, lifting allows the direct application
of rules to annotated domain models. Since lifting focuses on
domain models, it cannot be used to change the feature model.

3. SPL refinement aims to support safe evolution, in the
sense that modifications of the SPL have a controlled impact
on the existing set of products. Allowed modifications may
be restricted so that all products remain unchanged [12], [13],
or so that only a subset of the products can be changed [14].
These works provide a form of transformation rules that can
change the feature model and restrict the allowed changes on
implementation assets, including domain models, but it cannot
be used to specify changes of the domain model.

None of the above approaches allows specifying the com-
bined transformation of feature models and domain models.
However, such combined transformations are actually ex-
tremely important in practice, since the addition or deletion
of features usually entails the corresponding changes in the
domain model. Developers need to know whether such a
combined transformation yields a well-formed SPL again. To
this end, in the following example, we aim to demonstrate
why they would benefit from a means to explicitly specify
and reason about combined transformations.

Example. Consider a washing machine controller SPL. Fig. 1
shows a simple feature model, comprising a set of features F
and a set of feature constraints Φ, and a state machine rep-
resenting the domain model. According to the feature model,
washers have four features: Wash, Heat, Dry, and Delay. In
our product portfolio, we want Wash to be a mandatory feature
of all washers, while a washer can only have either Heat and
Delay; the constraints in Φ are specified accordingly. Conse-

Feature Model
F: { Wash, Heat, Delay, Dry } Φ : {Wash,Delay→¬Heat}

Domain Model

Locking Waiting

Washing

entry / TempCheck()

Drying

UnLocking

/ wash.Start()

[PRESS_START_WITH_DELAY]
[PRESS_START]/

HeaterOn()

/ wash.Start()

/QuickCool()

/QuickCool()

Heat

Dry

¬ Dry

¬Heat

Heat

HeatHeat˅Delay

Heat˅Delay

Heat˅Delay

Heat

Dry

Dry

Delay

exit / HeaterOff()

[PRESS_START]

Fig. 1. Washing Machine Controller Product Line: feature model and domain
model (adapted from [10]).

quently, the entire product line contains six products. The state
machine consists of states with entry and exit actions such as
TempCheck(), and of transitions. Transitions have an action
such as wash.Start() and a trigger such as PRESS_START,
which indicates that a “Start” button was pressed; actions
and triggers can be empty. Each of these elements can be
annotated with a presence condition to specify the set of
products where the element is contained. Consequently, states
without presence conditions, such as Locking, Washing and
UnLocking, are contained in all products, whereas the states
Drying and Waiting are only present if the feature Dry or the
feature disjunction Heat ∨ Delay is active, respectively. In this
paper, triggers and actions have the same presence conditions
as their containing transitions, unless otherwise specified.

The development and evolution of SPLs can be described
systematically using model transformation rules (“rules” in
short). A rule consists of a left-hand side (LHS), specifying
a pattern to be matched against the input SPL, and a right-
hand side (RHS), specifying a desired modification if the LHS
matches. It can also optionally contain negative application
conditions (NACs) to require non-existence of a certain pattern
in the input model. We aim to specify rules that can express
patterns and modifications of both the feature model and the
domain model. To this end, we introduce rules in which the
LHS, RHS, and NACs can be product lines – each has a set
F of features, a set Φ of constraints, and an annotated graph,
as shown in Fig. 2. Rules can also have parameters, as shown
in the brackets within their title bars.

Rule 1 is a simple refactoring rule that collapses two actions
of the same name into an entry action of their transitions’
common target state, if this state does not already have an entry
action. The NAC includes a variable a1 to express that the
name of the action is irrelevant, that is, a1 is a “wildcard”.
Since this rule does not affect the feature model, F and Φ are
empty. Adopting the notion of lifting [10], we assume that the
effect of applying this rule to the example SPL is the same as
applying the domain-model part on each product separately.

x2

Beeping

x1

x2

x

x1

x2

x

entry/a

/a

/a

LHS RHS

x1

x2

Logging

LHS RHS

x1

x2

[t]/a

x1

x2

RHS

a1

y1

y2

a2

F: {} Φ: {} F: {} Φ: {}

LHSF: {R} Φ: {} F: {R} Φ: {}

F: {Base} Φ: {} F: {Base, Beep} Φ: {Beep→Base}

Rule 1: FoldIncomingActions()

Rule 2: ExtractActionsToStates(R, a, a1, a2)

Rule 3: AddBeepFeature(Base, x1, x2)

Beep

NACF: {} Φ: {}

Beep

Beep

¬ Beep

¬ Beep

¬ Beep

y1

y2

[t]/a

x1

x2

x

entry/a1

/a

/a

[t] [t]R ¬R

[t]/a [t]/a [t]/a

R ¬R

¬R

¬R

R

R

x1

Fig. 2. Transformation rules.

Rule 2 presents an editing rule. Such rules have several
applications in model-driven engineering: for instance, one
can specify the editing operations of a model editor [15],
and use them to detect high-level differences between model
versions [9]. We would like to specify an editing rule that
behaves differently for different products, depending on their
features. Feature assignments then represent additional pre-
and postconditions, which gives rise to an extended form of
lifting to capture this product-wise behavior. In addition, the
rule can be used to express safe evolution steps in the context
of SPL refinement [14]. The rule’s intention is to extract two
actions of the same name a into distinct states with different,
user-provided names a1 and a2. It matches two parts of the
input domain model that are annotated with a user-specified
feature R and its negation. The original transitions are replaced
with transitions to the newly created states, which obtain the
same, potentially empty, trigger and action, called t and a. For
instance, this rule can be applied to the overall product line
to turn the QuickCool() transitions into states QuickCooling
(after drying) and SlowCooling (after washing).

Rule 3 presents a rule for encapsulating an evolution step.
By creating a new feature, the rule specializes the SPL [8], in
the sense that new products are added while also specifying the
intended change of the domain model. This rule, in contrast
to Rules 1 and 2, refers to a specific feature, Beep. To enable
a controlled evolution like in SPL refinement [14], the user
provides certain restrictions of the rule application as parame-
ters: The feature Base is a user-specified parameter that acts as
the parent feature of Beep – hence the implication in Φ. In the
domain model, two states for beeping are inserted between two
existing, user-specified states, so that the “beeping” is silent

when Beep is not selected. In the example, this rule can be
used to introduce loud and silent beeping between washing
and unlocking by specifying Wash as the base feature, and
Washing and Unlocking as x1 and x2. The newly created
transitions obtain the trigger t and action a of the deleted one.
An evolution step such as the one specified by Rule 3 might
be reused in SPLs representing other embedded systems, e.g.,
coffee machines or microwave controllers.

Contributions. To support the specification of and reasoning
with such rules, in this paper, we present a formal framework
for rule-based transformations of SPLs using category theory.
Specifically, we make the following contributions:
1. We formalize the category of software product lines. The

key benefit of this formalization is that it allows our
framework to largely abstract from the type of model being
considered, which makes it applicable to a great variety of
models, including UML models and Petri nets.

2. We formally define transformations over software product
lines, and show that our transformations are sound in the
sense that for a given matching site of a rule in an input
SPL, the rule application yields a well-defined product line
as result and this result is unique. We discuss how our
framework lays the basis for new kinds of SPL analyses
with well-behaved tool support.

3. We demonstrate the applicability of our formalization
using the example introduced above. We show that our
approach supports modifications such as those in the
aforementioned works, as well as entirely new kinds of
modifications resulting from their combination. Thus, our
framework offers users a highly expressive and flexible
means for specifying SPL transformations.

The rest of this paper is structured as follows. In Sect. II, for
readers not familiar with category theory, we revisit the con-
cepts used in this work in a semi-formal manner. In Sect. III,
we define the category of SPLs. In Sect. IV, we introduce our
framework for rule-based transformations of SPLs. In Sect. V,
we discuss the implications of our framework. In Sect. VI, we
conclude, discuss related work, and outline future work.

II. BACKGROUND

Category theory provides a uniform approach to concepts,
constructions, and proofs across a wide range of structures.
This property makes category theory very interesting to use it
in mathematics and computer science in general, and model-
driven engineering (e.g., [16], [17], [18]) in particular. In this
section, we give a short and semi-formal introduction into all
those notions of category theory we need for our approach.
For more details see [19], [20], [21], and [22].

Categories. A category C is a mathematical structure that has
objects collected in ObC and morphisms MorC(A,B) relating
pairs of objects A,B ∈ ObC in some way. There needs to be
a composition operation ◦ for morphisms f ∈ MorC(A,B)
and g ∈ MorC(B,D) as well as an identity morphism idA for
each object A ∈ ObC . The composition ◦ has to be associative.

A B

C D

X

(PO)

g

h k

l

k′

l′

x

A B

C D

Y

(PB)

g

h k

l

g′

h′

a

Fig. 3. A schematic depiction of a pushout (left) and a pullback (right).

Examples are the category Set of all sets and functions, the
category Rel of all sets and relations, the category Poset of
all partially ordered sets and order-preserving mappings, and
the category Graph of all graphs and graph morphisms being
functions between their node and edge sets, resp., such that
they are compatible with source and target functions.

There are special types of morphisms: An isomorphism
is a morphism to which an inverse morphism exists, i.e.,
composing them in either order leads to identities. Objects
related by an isomorphism exhibit exactly the same structure
and can thus be considered as equal in many contexts. If we
have m ◦ f = m ◦ g =⇒ f = g for any two morphisms
f and g, m is called monomorphism. In the category Set,
isomorphisms are bijective functions while monomorphisms
are injective ones.

Boolean algebras. To represent presence conditions in product
lines, we use the term algebra of propositional formulas. For
its formal definition, we need the signature BOOL with the
sort Bool and the operations true, false: → Bool, not: Bool →
Bool, and and,or: Bool × Bool → Bool. All BOOL-algebras
and homomorphisms, i.e., mappings of algebras along their
signature, form a category, called Alg(BOOL).

Given a set of variables F (later called features), there is a
special BOOL-algebra TBOOL(F) containing all propositional
formulas over F . TBOOL(∅) contains terms over true and
false only. 2 is the BOOL-algebra that just contains true and
false. Given a function f : F → G between two variable sets,
there is an induced BOOL-homomorphism f∗: TBOOL(F)→
TBOOL(G) between their term algebras. Given a function
α : F → 2, there is a unique BOOL-homomorphism α∗:
TBOOL(F) → 2 which lifts this assignment to all terms
over F . And finally, there is a unique assignment α∅ :
TBOOL(∅) → 2 such that α∗ ◦ f∗∅ = α∅ for the unique map
f∅ : ∅ → F and all α.

Initial objects, pushouts and pullbacks. An object I of
category C is called initial if for each object A of C, there
exists a unique morphism iA : I → A. In the category Set,
the initial object is the empty set since it can be uniquely
embedded into any other set.

A pushout can be considered as a kind of union of two
objects over a common one. Given two morphisms g: A→ B
and h: A → C, a pushout, if it exists, consists of an object
D and two morphisms k : B → D and l : C → D such that
k ◦ g = l ◦ h and the following property holds: If there are
morphisms k′ : B → X and l′ : C → X with k′ ◦ g = l′ ◦ h,
then there is a unique morphism x : D → X with x ◦ k = k′

and x◦ l = l′ (see the left diagram in Fig. 3). These properties
ensure that the union of the considered objects is large enough
but not too large. A colimit can be considered as an even more
general kind of union of a set of inter-related objects.

Reversing the direction of all morphisms, a pullback can
be seen as a generalized intersection of two objects over a
common object. Given two morphisms k : B → D and l :
C → D, a pullback consists of an object A and morphisms
g: A → B and h: A → C if k ◦ g = l ◦ h and the following
property holds: If there are morphisms g′ : Y → B and h′ :
Y → C with k ◦ g′ = l ◦ h′, then there is a unique morphism
a : Y → A with g◦a = g′ and h◦a = h′ (see the right diagram
in Fig. 3). These properties ensure that the intersection of the
considered objects covers their common part completely but
not more.

In the category Set, if a morphism g is injective, the pushout
object is D = C∪(B−g(A)). Since a pushout is unique up to
isomorphism, any set isomorphic to D would also be a pushout
object. A pullback object, for l being injective, is constructed
by A = k(B) ∩ l(C). In the category Graph, pushouts and
pullbacks can be constructed component-wise on node and
edge sets.

Given a morphism l : C → D, an initial pushout is the
smallest possible pushout such that l is one of the pushout
morphisms. In Set, an initial pushout is constructed over the
morphisms ∅ → C and ∅ → (D − l(C)). In Graph, A might
contain some boundary nodes needed to glue C with D−l(C)
along A→ C and A→ (D − l(C)).

A pushout complement can be considered as a kind of
generalized difference between two objects. It is shown in [22]
that pushout complements are unique, i.e., given monomor-
phisms A → C and morphism C → D , there is at most
one complement, up to an isomorphism, B with A→ B and
B → D such that the left diagram in Fig. 4 is a pushout.

M-adhesive categories. Product lines form a lattice of ob-
jects; to be able to reason about unions of objects and sub-
objects in a general setting, we recall M-adhesive categories
from [21] and [22]. A category C with a morphism classM is
anM-adhesive category if the following properties hold:
1. M is a class of monomorphisms closed under isomor-

phisms (f isomorphism implies that f ∈M), composition
(f, g ∈ M implies g ◦ f ∈ M), and decomposition
(g ◦ f, g ∈M implies f ∈M).

2. C has pushouts and pullbacks along M-morphisms, i.e.,
pushouts and pullbacks, where at least one of the given
morphisms is in M, and M-morphisms are closed under
pushouts and pullbacks, i.e., given a pushout like the left
diagram in Fig. 4, m ∈ M implies n ∈ M and, given a
pullback (1), n ∈M implies m ∈M.

3. Pushouts in C along M-morphisms are stable under pull-
backs, i.e., for any commutative cube in C where we have
the pushout with m ∈ M in the bottom, b, c, d ∈ M, and
pullbacks on all sides, the top is a pushout as well. Such
a cube (Fig. 4) is called M-Van Kampen (VK) square.

Examples forM-adhesive categories are sets with injective

A B

C D

(1)

m

n

B′ D′

B D

A′ C′

A C
b d

c

m

Fig. 4. A schematic depiction of an M-VK square.

functions, graphs with injective graph morphisms, several
variants of graphs like typed and typed attributed graphs with
special forms of injective graph morphisms, place-transition
(Petri) nets with injective net morphisms, and algebraic spec-
ifications with restricted injective specification morphisms. In
these categories, a M-VK square characterizes the property
that a union of objects can be reduced to a union of sub-
objects.

III. CATEGORY OF PRODUCT LINES

In this section, we formally define product lines and their
relations. To be able to largely abstract from the kind of
domain models considered in product lines, we characterize
the constraints that have to be fulfilled by structures acting as
domain models. Product line relations such as embeddings or
refinements can be expressed by product line morphisms. The
soundness of these definitions is established by our first main
result showing that product lines and product line morphisms
form a category. Our transformation approach for product
lines is based on gluing (or union) of product lines without
replicating their common parts. This glueing can be formally
characterized as a pushout in this new category.

In the following, we define the underlying category Model
of finite domain models, generalized product lines, relations
between product lines called product line morphisms, and
finally, the category of product lines over models. We use basic
notions from category theory summarized in Sect. II.

A. Domain models

The underlying domain models of product lines are not
restricted to a specific kind of structures; we just require that
they come from a category Model fulfilling the following
constraints:

Definition 1 (Category Model): Category Model can be
any finitaryM-adhesive category that has initial pushouts. An
object of Model is referred to as model.

Examples of Model are the categories of finite sets, Petri
nets, labeled graphs, typed graphs, and typed, attributed
graphs, as shown in [24], [23].

We define some notions and terminology generalized from
set theory to be used in the remainder of the paper.

Definition 2 (Notation and terminology): Let models M , N ,
and Ms be given.
1. We can put a preorder on M-morphisms into a model M

by defining an M-morphism a : A → M to be less than
or equal to an M-morphism b : B → M iff there is a

morphism c : A → B with b ◦ c = a. A submodel of M
is an equivalence class w.r.t. the equivalence generated by
this preorder. Submodel a : A → M is also denoted by
A ⊆M .

2. A submodel MC of M is a complement of a submodel
MS ⊆ M if there is an initial pushout over an M-
morphism s : MS →M of the corresponding equivalence
class. As part of the result, there is an M-morphism
MC → M as second pushout morphism. MC is also
denoted as M − s(MS).

3. P(M) (called a power set of M) consists of all submodels
of M . It forms a complete (finite) lattice w.r.t. submodel
union and intersection.

4. Given an M-morphism i : MS → M and a morphism
m : M → N , the composed morphism m ◦ i is called
restriction and is denoted by m|MS

.
5. Given two submodels S1, S2 of M , the union of S1 and

S2, written S1∪S2, is constructed by the pullback of both
submodels and taking the pushout of this pullback. More
generally, given a finite set S of submodels of M , the
union of submodels in S, denoted by

⋃
S, is constructed by

taking the pullbacks of submodels pairwise and taking the
colimit of all these pullbacks, i.e., unifying all submodels
along their pairwise overlap.

In our running example, we represent Statecharts as graph-
based models. As pointed out above, typed attributed graphs
are shown to beM-adhesive [24], [22]. Submodels are graphs
that can be embedded into larger graphs by injective graph
morphisms. The complement C of a graph S being a submodel
of G contains all graph elements of G not in the image of S.
Since the set of these elements usually does not yield a proper
graph, so-called boundary nodes have to be added, i.e., there
is a graph B consisting of boundary nodes only that can be
embedded into both S and C.

B. Product lines and product line morphisms

In annotative product lines, each element of the domain
model is annotated with a Boolean presence condition. We
have to annotate the domain model in the right way, e.g.,
annotating a state but not its adjacent transitions would lead to
products with dangling transitions. For a structure-compatible
annotation, we say that each submodel of the domain model is
annotated with a Boolean presence condition. The submodel
approach forms the basis for our definition as the power set
P(MP) of a domain model MP forms a BOOL-algebra which
can be mapped to presence conditions by a homomorphism
fP such that, whenever M1 ⊆M2 ⊆MP , then fP (M2) =⇒
fP (M1).

Definition 3 (Product line): Given a category Model as in
Def. 1, a product line P = (FP ,ΦP ,MP , fP) over Model
consists of the following parts:
1. a feature model that consists of a set FP of features, and

a set of feature constraints ΦP ⊆ TBOOL(FP),
2. a domain model MP being an object of category Model,

3. a set of presence conditions expressed as a BOOL-
homomorphism fP : P(MP)→ TBOOL(FP).

P is called featureless if FP = ∅, ΦP = {}, and fP (M) =
true for all M ⊆MP , and element-free if MP is empty.

Note that a featureless product line can be defined straight-
forwardly from any domain model, and an element-free prod-
uct line from any feature model. Note further that fP (MP) =
ΦP does not have to hold.

Example 1 (Product line): Fig. 1 shows an example of a
product line. The feature set, the set Φ of feature constraints,
and the domain model, a state machine, are denoted directly.
Various elements of the state machine in Fig. 1 are annotated
with presence conditions. Elements with the same presence
conditions, potentially completed to a graph by boundary
nodes, form submodels being mapped to the corresponding
Boolean terms over the given feature set. For example, the
state Drying and the transitions between states Washing and
Drying as well as Drying and Unlocking are annotated with
the condition Dry, i.e., the submodel consisting of these three
states and two transitions is mapped to a term Dry.

Given a product line, the set of all of its products can be
derived by considering all possible feature assignments.

Definition 4 (Feature configuration): A valid feature con-
figuration of a product line P is an assignment α: FP → 2
such that α∗(φ) = true, ∀φ ∈ ΦP . The set of all valid feature
configurations in P is denoted by Conf (P).

Definition 5 (Product): Given a product line P =
(FP ,ΦP ,MP , fP),

1. a product M is derived from P under the valid feature
configuration α if M is the union of all those models M ′ ⊆
MP for which fP (M ′) is satisfiable by α∗, i.e.,
M =

⋃
{M ′ ⊆ MP |α∗(fP (M ′)) = true and α is valid},

and
2. the set Prod(P) of all products of P with their configura-

tions is defined as Prod(P) =
{(M,α)|M is a product of P under α and α is valid}.

Note that we do not require Prod(P) to have at least one
product.

Example 2 (Product): Given the product line P in Exam-
ple 1 and a feature assignment α(Wash) = true and α(Heat) =
α(Delay) = α(Dry) = false, the corresponding product (M,α)
consists of the start and end states, states Locking, Washing,
and Unlocking, and transitions between them.

Our formalization is essentially based on relations between
product lines which are expressed by morphisms. In the
following, we define a morphism m from product line P to
product line Q as a pair of mappings between their feature
sets and their domain models. Such a morphism has to ensure
that each product of P is mapped to a submodel of a product
of Q assuming compatible feature assignments.

Definition 6 (Product line morphism): Given two product
lines P = (FP ,ΦP ,MP , fP) and Q = (FQ,ΦQ,MQ, fQ)

SR Washing

Drying

Washing

Beeping
Washing

Drying

Logging
Washing

{Wash}

{Wash}

{Wash,Dry}

{Wash,Dry,Beep}Drying

Washing

{Wash,Dry}

Fig. 5. Product line morphism (product-wise representation).

over category Model, a product line morphism m: P → Q
over category Model is defined by m = (mF ,mM) with
1. mF : FP → FQ being a function over feature sets FP and

FQ such that ΦQ =⇒ m∗F (ΦP) and
2. mM : MP → MQ being a Model-morphism such that
∀(MP , αP) ∈ Prod(P) : ∃(MQ, αQ) ∈ Prod(Q) with
mM (MP) ⊆MQ and αQ ◦mF = αP .

A product line morphism m = (mF ,mM) is feature-
preserving (feature-refining) if mF is bijective (injective). It is
constraint-strict if it is feature-refining and ΦQ ⇔ m∗F (ΦP).

Example 3 (Product line morphism): Fig. 5 shows two
example product lines R and S based on the running example.
For illustration purposes, the product lines are shown in a
product-wise representation; an annotated representation of R
can be derived based on Fig. 1. The relation of R and S can be
specified by a product line morphism n = (nF , nM). Since the
features of R are a subset of those of S, nF is injective. The
Model-morphism nM embeds R’s domain model, comprising
the union of all shown states and transitions, into that of S. As
shown in the figure, each product in R is mapped to a product
in S potentially extending its configuration and its submodel,
thus satisfying the condition.

Definition 7 (Special product line morphisms): Given a
product line morphism g: P → Q with g = (gF , gM), it
is injective (bijective) if gF is injective (bijective) and gM is
an M-morphism (isomorphism).

Product line morphisms can be used to embed one product
line into another, to add or rename features or domain model
elements, or to glue them together:
1. The product line morphism m : P → Q between feature-

less product lines P and Q is clearly determined by the
Model-morphism mM . mF is the empty morphism with
true =⇒ true.

2. A bijective mF allows a renaming of features.
3. Since mF may be non-injective, it allows to glue features.
4. Since mF may be non-surjective, it allows to introduce

new features.
We show later that product line transformations can also be

used to remove features and domain model elements. Next,
we show that product lines and product line morphisms as
defined above form a category. To do so, we first define
identity morphisms on product lines as well as the composition
operator for product line morphisms.

Proposition 1 (Category ProdLine): Product lines and prod-
uct line morphisms over a given category Model with the
identities and composition operator as defined above form a
category, called ProdLineModel.

Proof sketch: There is an identity morphism for each product
line P being defined by the identities on the feature set and
the domain model of P . The composition of two product line
morphisms g: P → Q and h: Q→ R defined component-wise
on functions and Model-morphisms again yields a product
line morphism. Associativity of product line morphisms holds
due to the associativity of the composition of functions and
morphisms. The full proof is given in [26].

C. Pushouts in the category of product lines

Product line transformations as we consider them below
are largely based on the gluing of product lines, i.e., their
union. As pointed out above, pushouts can characterize a kind
of union of two structures over a common one. Hence, we
need to clarify how pushouts of product lines look like. In the
following, we only consider the case where one product line
morphism is injective. This setting is already sufficient to base
product line transformations on pushouts later on.

Proposition 2 (Pushout in category ProdLineModel): Given
two product line morphisms g: P → Q, h: P → R over
Model with g = (gF , gM) being injective and h = (hF , hM),
there is a pushout (S, k : Q → S, l : R → S), where S =
(FS ,ΦS ,MS , fS) is constructed as follows:
1. Pushout of feature sets: (FS , kF , lF) is the pushout of

(gF , hF) in Set. Let FS = FR ∪ (FQ − gF (FP)).
2. Construction of feature constraint set:

ΦS = l∗F (ΦR) ∪ k∗F (ΦQ).
3. Pushout of domain model: (MS , kM , lM) is the pushout of

(gM , hM) in Model. Let MS = MR ∪ (MQ − gM (MP))
(with gM being an M-morphism). (Compare with Def. 2,
items 2 and 5.)

4. Construction of presence conditions: To construct fS , we
distribute each submodel MS of MS along its pushout
construction yielding MS = MR ∪ (MQ − gM (MP)).

(a) Product comes from R: fS(MS) = l∗F (fR(MR)) if
(MR, αR) is a product while (MP , αP) is not. All
(MS , αS) are products for which a valid feature con-
figuration is given by ∀f ∈ FS : αS(f) = αR(f) for
f ∈ FR, and αS(f) ∈ Conf(Q) otherwise.

(b) Product comes from Q: fS(MS) = k∗F (fQ(MQ)) if
(MQ, αQ) is a product while (MP , αP) is not. All
(MS , αS) are products with valid feature configuration
∀f ∈ FS : αS(f) = αQ(f) for f ∈ FQ, and αS(f) ∈
Conf(R) otherwise.

(c) Products from R and Q are unified:
fS(MS) = l∗F (fR(MR)) ∧ k∗F (fQ(MQ)) if (MR, αR),
(MQ, αQ) and (MP , αP) are products. All (MS , αS)
are products with valid feature configuration ∀f ∈ FS :
αS(f) = αR(f) for f ∈ FR, and αS(f) = αQ(f)
otherwise.

(d) For all remaining submodels MS ∈ P(MS):

x1

x2

Beeping
x1

x2

Logging

F: {Base} Φ: {} F: {Base,Beep} Φ: {Beep→Base}

Beep

Beep

Beep

¬ Beep

¬ Beep

¬ Beep

Washing

Drying

Beeping
Washing

Drying

Logging

Beep ∧Dry ¬ Beep ∧Dry

¬Beep
∧Dry

F: {Wash,Dry} Φ: {Wash} F: {Wash,Dry,Beep} Φ: {Wash,Beep→Dry}

Dry Dry ¬Beep
∧Dry

Beep
∧Dry

Beep
∧Dry

Q

S

P

R

Fig. 6. Pushout for applying a part of Rule 3 to a part of the washer SPL.

fS(MS) =
∨
{fS(M)|M is product ∧ MS ⊆ M}.

Note that
∨
∅ = false.

Proof sketch: The pushout is computed component-wise.
Step 1 computes the pushout of feature sets. Step 2 combines
sets of feature constraints. Step 3 computes the pushout of
the domain models. Finally, in Step 4, the presence conditions
are computed for each submodel. Since category Model is
M-adhesive, MS can always be split up as shown above.
The products of the pushout product line are constructed from
the products of the original product lines: either two products
stemming from the two original product lines are unified over
a common subproduct, or a product of an original product line
is “adopted” (but it can be renamed and extended).

We have to show that all sub-models of the pushout ob-
ject model are equipped with a unique presence condition.
Moreover, all newly constructed mappings have to be product
line morphisms. Furthermore, the pushout property has to be
shown. The complete proof is given in [26].

Example 4 (Pushout construction): Fig. 6 shows four prod-
uct lines P , Q, R, and S participating in a pushout. While P
has just one product, Q and R have two products each, and
S has three products. Note that R just shows the part of the
SPL in Fig. 1 which is needed to construct a pushout, and, for
conciseness, we omit the treatment of the transitions’ effects.
We later show an extended version of this example.

The product line morphism P → Q summarizes all of the
creating actions of Rule 3 in Fig. 2: a new concrete feature
Beep is added together with a new implication; in the domain
model, two states with their adjacent transitions are added.
The product line morphism P → R maps the preserved part
of Rule 3 to a submodel of the state machine in Fig. 1. The
feature variable Base is mapped to the feature Wash. In the
domain model, state x1 is mapped to state Washing while state
x2 is mapped to Drying. The pushout glues Q with R over
their common subproduct line P . According to steps 1 and 2 of
the construction in Prop. 2, the feature sets and their constraint
sets are unified over the common feature Base. In step 3, the
domain models are glued over states x1 and x2. Domain model
elements are annotated along products in step 4.

S

P

R

x2

x1

Logging

Washing

Drying

Washing

Beeping
Washing

Drying

Logging
Washing

{Wash}

{ {}, {Base} }

{Wash}

{Wash,Dry}

{Wash,Dry,Beep}

x2

x1

x2

Beeping
x1

{ {Beep},
{Base,Beep} }

Drying

Washing

{Wash,Dry}

Q{ {}, {Base} }

Fig. 7. Alternative, product-wise representation of the pushout.

To understand this annotation better, we present the (parts
of) products participating in this pushout construction in Fig. 7.
Since the product where just the feature Wash is selected
consists of the state Washing only, there is no source product
that can be mapped to it. Hence, this product is just taken over
into the pushout product line S according to step 4(a). Since
both products in Q contain the state x2 and since the other
product in R is obtained if the feature Dry is selected as well,
the two remaining products in S require that Dry is selected.
Hence, the corresponding products of R and Q are glued over
the only product in P per step 4(c). Note that some of the
considered products are obtained from multiple configurations,
e.g., the one in P is obtained from {} and {Base}.

Since at least one input morphism of the pushout construc-
tion is general, multiple distinct features or domain model
elements of one SPL may be mapped to the same feature or
elements in the pushout SPL.

Summary. In this section, we have accomplished our first
goal: to set up a framework for product lines over a variety
of possible domain models, not only UML-like but also other
kinds as well such as Petri nets or graph structures deduced
from program code. Def. 1 specifies the constraints that have
to be fulfilled for such domain models. On this basis, we
defined product lines and their relations expressed as product
line morphisms. Prop. 1 shows that our definitions of product
lines and product line morphisms are sound since they form
a category. As a foundation for product line transformation,
we presented a construction for the union of two product lines
over a common one. This construction is sound since it can
be characterized as a pushout, as shown in Prop. 2.

IV. TRANSFORMATION OF PRODUCT LINES

In this section, we present the new, general form of rule-
based product line transformations. They allow to modify
feature models and domain models in a single transformation
step; they capture all of the examples presented in Sect. I.
This form of product line transformation is a so-called gluing
approach since new elements are glued to the existing ones.
Due to its formalization based on category theory, we can show

L I R

P PI Q

Nj
le ri

p q

m i m′

nj

¬∃pj (1) (2)

Fig. 8. A schematic depiction of rule application.

that, given a rule and a match, the transformation (a) always
has a result, and (b) this result is unique (up to isomorphism).

Definition 8 (Transformation rule): A (product line trans-
formation) rule r is defined by r = (L

le←− I
ri−→ R,NAC),

where L, I, and R are product lines over the category Model,
le and ri are injective product line morphisms, and NAC
is a (potentially empty) set of negative application conditions
defined by injective product line morphisms L

nj−→ Nj with
j ∈ J .

Transformation rules defined above remove features if leF is
not an isomorphism and add them if reF not an isomorphism.
Feature constraints may be adapted as well. Domain model
elements are removed from (added to) a product line if leM
(reM) is not an isomorphism. Note that gluing and splitting
of feature models or domain models is not supported by our
definition of rules yet.

Example 5 (Transformation rules): Rule 3 in Fig. 2 directly
uses product lines in its LHS and RHS. Product line I is given
only implicitly as the intersection of LHS and RHS consisting
of the feature set {Base}, an empty constraint set, and states
x1 and x2 in the domain model. Its embeddings into LHS and
RHS are straightforward, and NAC is empty.

Definition 9 (Rule match): Given a rule r defined as above
and a product line P over the category Model (as defined in
Def. 1), a match is a product line morphism m : L → P
fulfilling the following conditions:
1. the PO-complement of leM and mM in the category Model

exists, and
2. ∀Nj ∈ NAC: There does not exist an injective product

line morphism pj : Nj → P with pj ◦ nj = m.

Since the rule match may be non-injective, two separate
features or domain model elements in the LHS may be mapped
to the same feature or domain model element in the product
line P . NACs can be used to disallow the existence of certain
features and domain model patterns.

Definition 10 (Rule application): Given a rule r and a match
m : L→ P as defined above, a rule application P =⇒r,m Q,
also called a transformation (step), is given by the diagram in
Fig. 8 where (1) and (2) are pushouts in ProdLineModel.

Rule r is applicable at match m if (1) in Fig. 8 is a
pushout in the category ProdLineModel. Given r and m, this
pushout can be constructed by the pushout (PO) complement
construction below. A PO-complement over product lines can
be considered as the difference between product lines. For
all products of P to which a product of L is mapped, the
difference product is constructed. All other products of P are
just copied to PI .

F: {R} Φ: {} F: {R} Φ: {}

UnLocking

F: {Wash,Dry} Φ: {Wash} F: {Wash,Dry} Φ: {Wash}

I

PI

L

P

x1

x2
[t]/a

R y1

y2
[t]/a

¬R
x1

x2

y1

y2

[]/QuickCool

[]/QuickCool

Dry
Dry

¬ Dry
UnLocking

Drying

Washing

Dry

Dry
Drying

Dry

Washing

Fig. 9. Pushout complement for applying Rule 2 to a part of the washer SPL.

Proposition 3 (Existence and uniqueness of PO-
complement): For a rule r and a match m : L → P as
defined above, the product line PI = (FPI ,ΦPI ,MPI , fPI)
with a pushout (1) exists and is unique iff MPI is the
PO-complement of leM and mM in the category Model. PI
is constructed as follows:
1. FPI = FP −mF (FL − FI),
2. ΦPI = ΦP −m∗F (ΦL − ΦI),
3. MPI is the unique PO-complement of leM and mM .

Without loss of generality, MPI = MP −mM (ML−MI).
4. ∀M ∈ P(MPI): fPI(M) = fP (pM (M))

Proof sketch: We have to show that the construction of PI
as presented above is always possible and yields a product
line. Morphism p is constructed component-wise yielding an
injective product line morphism while morphism i = (iF , iM)
is constructed by iF = mF|FI

and iM being defined by the
PO-complement construction in Model. Moreover, we have to
show that there exists no other PO-complement for the given
rule and match. The complete proof is given in [26].

Example 6 (PO complement construction): Fig. 9 shows
an example of a pushout complement as Rule 2 (depicted in
Fig. 2) is applied to a part of the washing machine PL in
Fig. 1. The rule match L → P maps the feature R to Dry,
x1 to Drying, y1 to Washing, and x2, y2 to Unlocking. The
transitions and their actions are mapped accordingly. Note that
this mapping is non-injective. The category of typed, attributed
graphs and graph morphisms has PO-complements whenever
the match does not delete nodes so that context edges may
dangle. Since transitions, i.e., edges, are the only elements
we can delete, this condition is fulfilled, and thus the PO-
complement of the underlying domain models exists.

Since the rule does not change the feature model, this model
is not changed in the rule application as well. The domain
model of PI still has the same states as P since none of the
states are deleted by the rule. Two transitions, however, are
deleted. The remaining domain model elements are annotated
as in P .

Due to our formalization of product line transformations,
we can show that transformation steps are sound, i.e., given a

rule with a match, there exists a well-defined transformation
result and this result is unique.

Corollary 1 (Existence and uniqueness of transformations):
Given a rule r = (L

le←− I
ri−→ R,NAC) and a match m :

L → P in the category ProdLineModel, the rule application
P =⇒r,m Q exists and is unique up to an isomorphism.

Proof : Because of Prop. 3, there exists a unique PO-
complement (PI, p, i) as constructed above. Moreover, the
pushout (Q, q,m′) is unique up to an isomorphism, due to
pushout properties.

Illustration. We reiterate the example introduced in Sect. I in
more detail. Fig. 10 shows the application of the original rules
to suitable excerpts of the washing machine product line. (1)
For rule FoldIncomingActions, the selected excerpt includes
three products, arising from the selection of feature Delay,
Heat, or neither of them. Since the pair of wash.start() actions
is only present in the Delay product, this is the only product
where L matches P . Subsequently, during the transformation
step, the left of the two actions is removed and the right
one is assigned a new presence condition Heat, using the
pushout complement of P and I over L. In turn, based on
the pushout of PI and R over I , the Washing state obtains an
equivalent entry action, which, however, is only present in the
Delay product. (2) The deletion part of ExtractActionToStates’s
application to the example was already presented to illustrate
Prop. 3. Here we also see the creation part. The newly created
states a1 and a2 are assigned the names SlowCooling and
DryCooling as specified by the user, and each of them is
being connected to the existing states via transitions. (3) The
creation part of AddBeepFeature’s application was discussed
above, but here, we also see the prequel to the creation: The
user has specified Washing and Drying as values for x1 and x2,
respectively. Consequently, applying the pushout complement
to P and I over L removes the transition between these states.

Summary. In this section, we have accomplished our second
goal – to define sound transformations of product lines which
allow to combine transformations of feature models and of
domain models. Since a transformation step is characterized as
a double-pushout (see Def. 10), we show in Cor. 1 that, given a
rule with a match, the transformation results in a well-defined
unique product line. This result relies on characterizing the
difference construction as a pushout complement (see Prop. 3).

V. DISCUSSION

Generalizing existing approaches. We now discuss how our
framework supports the kinds of transformations discussed
in Sect. I. Lifting [10] and feature-model editing [8] are
special cases of our SPL transformations, since the “vanilla”
transformation rules considered in lifting can be represented
as featureless rules, and feature-model editing rules can be
represented as element-free rules. To enable safe evolution,
SPL refinement [12], [14] provides a catalog of rules (called
templates in these works) to change the feature model while
restricting the allowed changes to the included domain models

and asset mappings. For most of these rules – replace feature
expression, add mandatory feature, remove feature, change
asset, add asset, add optional feature – one can use our
framework to specify the intended change of the domain model
as well. An exception is the splitting of assets [12]. Splitting
is not directly possible in our framework as it would require
non-injective morphisms in the rules, whereby we only support
non-injective matching. As a workaround, splitting can be
mimicked by creating a separate feature and reassigning the
affected parts of the domain model to it.

The notion of a feature model in our work is somewhat sim-
plified: we represent feature hierarchies in terms of constraints;
however, [27] presents an efficient algorithm for deriving full-
fledged feature models from these representations.

Towards new SPL analyses and usage scenarios. Our work
lays the basis for a variety of new SPL analyses, including
conflict and dependency analysis, confluence analysis and
termination checks for SPL transformations. Possible usage
scenarios for these analyses are (1) bringing transformations
into the right order (for handling of transformation chains); (2)
composing several transformations to more complex ones (for
recurring transformations) and (3) coordination of processes
(for SPL development in larger teams). We aim to implement
the new analyses on top of the Henshin model transformation
language [28], [29]. These analyses also depend on having
additional formal results such as the Local-Church-Rosser,
Parallelism, Concurrency, and Amalgamation Theorems for
parallel and sequential executions of transformations, which
are available for M-adhesive categories [21], [22]. We leave
showing that the category of product lines is an M-adhesive
category for future work.

VI. RELATED WORK AND CONCLUSION

Having discussed the most closely related work in Sect. V,
we now discuss further related work.

First, management of a product line involves certain trans-
formations, such as the lifting of single-product rules to
an entire SPL [10], [30], and the configuration of an SPL
representation to produce individual products [3], [31], [32].
Compositional approaches manage an SPL by splitting it
into a core product and a set of changes. Batory et al.
[16] have investigated a categorical underpinning of such
approaches. However, their representation of transformations
as arrows can only add new elements to the core product. The
delta modeling approach [33], [34] is more flexible since the
changes encapsulated in a delta may also include deletions
and modifications. Abstract delta modeling [35] introduces a
notion of conflict-resolving deltas to deal with situations with
multiple conflicting deltas. Evolution histories of SPLs can
be expressed as a set of higher-order deltas [36]. Deltas are
similar to rules – they encapsulate changes to domain models.
However, the goal of delta modeling is to facilitate derivation
of products for a fixed feature model, and our approach
supports systematic modifications of the feature model.

Second, some related work is concerned with SPL refactor-
ing for achieving a higher-level goal, e.g., to extract a managed

PIP

F: {} Φ: {}

F:{Delay,Heat} Φ:{D𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 → ¬Heat}

F: {} Φ: {}

F:{Delay,Heat} Φ:{D𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 → ¬Heat} F:{Delay,Heat} Φ:{D𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 → ¬Heat}

x1
x

entry/a
x2

x1

x

x2

x1

x

x2

/a

/a

x
entry/a1

F: {} Φ: {} F: {} Φ: {}

Washing
entry/TempCheck()

Waiting

Heat

/wash.Start() /wash.Start()
¬Heat Heat ∨ Delay

Locking

Washing
entry/TempCheck() xHeat

Washing
entry/TempCheck()
entry/wash.Start()a

Waiting

Heat

/wash.Start() Heat

Locking

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃

x1

x2

RIL

QP PI

N

x1

x2
Beeping

x1

x2

Logging

F: {Base} Φ: {} F: {Base,Beep} Φ: {Beep→Base}

Beep

Beep

Beep

¬ Beep

¬ Beep

¬ Beep

Washing

Drying

F: {Wash,Dry} Φ: {Wash} F: {Wash,Dry,Beep} Φ: {Wash,Beep→Wash}

Dry

R

Q

I

PI

x1
x2

F: {Base} Φ: {}

Washing

Drying
DryP

Washing

Drying

Logging

Dry

L
F: {Wash,Dry} Φ: {Wash}

y1

y2

F: {R} Φ: {} F: {R} Φ: {}

F: {Wash,Dry} Φ: {Wash} F: {Wash,Dry} Φ: {Wash}

R

Q

I
x2

F: {R} Φ: {}

L
F: {Wash,Dry} Φ: {Wash}

x1

UnLocking

DryingDry
[]/QuickCool()

[]/QuickCool()

Dry

Dry

¬ Dry
UnLocking

Drying

Washing

Dry

Dry

y1

y2x2

x1
[t]/a [t]/a

¬ R𝑹𝑹 a1

x1

𝑹𝑹

x2

a2

y1 y2

¬ R ¬ R

¬ R

𝑹𝑹

𝑹𝑹

UnLocking

Drying

Washing

Dry

Dry

Slow
Cooling

Quick
Cooling

Dry

Dry

Dry

¬ Dry

¬ Dry

¬ Dry

(1)

(2)

(3)

Dry

Beep∧Dry

Beep∧Dry

¬ Beep∧Dry

¬ Beep∧Dry

¬ Beep∧Dry

¬Heat∧
¬Delay

/wash.Start()

Washing

[t]/a

[t]/a [t]/a

[]/
[]/ []/Beeping

Beep∧Dry

[t] [t]

[]/

[]/

Heat ∨ Delay¬Heat

Waiting

/wash.Start() Heat

Locking

¬Heat∧
¬Delay

/wash.Start()
Heat ∨ Delay¬Heat

Fig. 10. Transformation of product lines by example: Rules FoldIncomingActions (1), ExtractActionsToStates (2), and AddBeepFeature (3) are applied to
excerpts of the washing machine product line.

product line from a set of separate products [37], or to extend
the standard object-oriented refactorings to feature-oriented
SPLs [38]. Such refactorings can be composed of atomic rule-
based editing steps, such as those introduced in this paper.

Third, some works are concerned with the internal variabil-
ity of transformation rules. Variability-based model transfor-
mation [39], [40], [41], [42] aims to improve the conciseness
and performance of syntactically similar rules by expressing
variability explicitly. Instead of SPL transformations, this work
focuses on the management of “transformation product lines”.

To summarize, in this paper, we presented a formalization
of SPLs and their rule-based transformations. Specifically,
we defined the generalized form of an annotative SPL us-
ing Category Theory, and characterized the type of artifacts
over which it can be defined. Then, we formally defined
transformation rules of such SPLs using the double pushout
approach and gave existence and uniqueness results to show
its soundness. The formalization achieves three objectives:
first, it provides a systematic and consistent way of defining
product lines over a broad class of software artifacts; second,

it extends existing work on SPL transformations by allowing
richer combinations of changes that transformation rules can
make; and third, it provides the foundation for defining general
tools and techniques for the development and analysis of SPL
transformations.

Each of these objectives points to future work. We have
illustrated our formalization on attributed graphs using exam-
ple rules over an SPL of state machines; however, we plan
to demonstrate the generality of the approach by applying
it to diverse types of software artifacts. Our approach was
motivated, in part, by three threads of research in the SPL
transformation literature but we fell short of fully unifying
them: our approach currently does not handle rules that glue
or split product lines. This extension is left to future work.
Finally, we plan to use the theoretical foundation of M-
adhesive categories on which we based our work, to build
up a rich theory of SPL transformations and integrate it into
tooling to support sound SPL transformation development.
Acknowledgements. We wish to thank Jens Kosiol and the
anonymous reviewers for their constructive comments.

REFERENCES

[1] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Springer, 2013.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”
Carnegie-Mellon Univ., Software Engineering Inst., Tech. Rep., 1990.

[3] K. Czarnecki and M. Antkiewicz, “Mapping Features to Models: A
Template Approach Based on Superimposed Variants,” in Proc. of
ICGPCE’05. Springer, 2005, pp. 422–437.

[4] Ø. Haugen, A. Wasowski, and K. Czarnecki, “CVL: Common Variability
Language,” in Proc. of SPLC’12, 2012, pp. 266–267.

[5] F. Heidenreich, J. Kopcsek, and C. Wende, “FeatureMapper: Mapping
Features to Models,” in Proc. of ICSE’08 (Companion). ACM, 2008,
pp. 943–944.

[6] R. Muschevici, J. Proenca, and D. Clarke, “Modular Modelling of
Software Product Lines with Feature Nets,” in Proc. of SEFM’11, 2011,
pp. 318–333.

[7] I. Abal, C. Brabrand, and A. Wasowski, “42 Variability Bugs in the
Linux Kernel: A Qualitative Analysis,” in Proc. of ASE’14, 2014, pp.
421–432.

[8] T. Thüm, D. Batory, and C. Kästner, “Reasoning About Edits to Feature
Models,” in Proc. of ICSE’09. IEEE Computer Society, 2009, pp.
254–264.

[9] J. Bürdek, T. Kehrer, M. Lochau, D. Reuling, U. Kelter, and A. Schürr,
“Reasoning about product-line evolution using complex feature model
differences,” Automated Software Engineering, vol. 23, no. 4, pp. 687–
733, 2016.

[10] R. Salay, M. Famelis, J. Rubin, A. Di Sandro, and M. Chechik, “Lifting
model transformations to product lines,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
117–128.

[11] M. Chechik, M. Famelis, R. Salay, and D. Strüber, “Perspectives of
Model Transformation Reuse,” in Proc. of IFM’16, 2016, pp. 28–44.

[12] P. Borba, L. Teixeira, and R. Gheyi, “A Theory of Software Product
Line Refinement,” Theor. Comput. Sci., vol. 455, pp. 2–30, 2012.

[13] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira, D. Sena, and
U. Kulesza, “Safe Evolution Templates for Software Product Lines,”
Journal of Systems and Software, vol. 106, pp. 42–58, 2015.

[14] G. Sampaio, P. Borba, and L. Teixeira, “Partially Safe Evolution of
Software Product Lines,” in Proc. of SPLC’16, 2016, pp. 124–133.

[15] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer, “Generation of Visual
Editors as Eclipse Plug-ins,” in Proc. of ASE ’05. ACM, 2005, pp.
134–143.

[16] D. Batory, M. Azanza, and J. Saraiva, “The objects and arrows of
computational design,” in Proc. of MoDELS ’08, 2008, pp. 1–20.

[17] Z. Diskin, T. Maibaum, and K. Czarnecki, “A Model Management Im-
perative: Being Graphical is not Sufficient, You Have to be Categorical,”
in Proc. of ECMFA’15. Springer, 2015, pp. 154–170.

[18] F. Rabbi, Y. Lamo, and I. C. Yu, “Towards a Categorical Approach
for Meta-modelling Epistemic Game Theory,” in Proc. of MoDELS’16.
ACM, 2016, pp. 57–64.

[19] S. MacLane, Categories for the Working Mathematician. New York:
Springer-Verlag, 1971, Graduate Texts in Mathematics, Vol. 5.

[20] J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete
Categories. The Joy of Cats. Wiley-Interscience, 1990.

[21] H. Ehrig, U. Golas, A. Habel, L. Lambers, and F. Orejas, “M-
adhesive transformation systems with nested application conditions. part
1: parallelism, concurrency and amalgamation,” Mathematical Structures
in Computer Science, vol. 24, no. 4, 2014.

[22] ——, “M-Adhesive Transformation Systems with Nested Application
Conditions. Part 2: Embedding, Critical Pairs and Local Confluence,”
Fundam. Inform., vol. 118, no. 1-2, pp. 35–63, 2012.

[23] B. Braatz, H. Ehrig, K. Gabriel, and U. Golas, “Finitary M-adhesive
categories,” in Proc. of ICGT 2010, 2010, pp. 234–249.

[24] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Alge-
braic Graph Transformation, ser. Monographs in Theoretical Computer
Science. Springer, 2006.

[25] S. Lack and P. Sobocinski, “Adhesive Categories,” in Proc. of FOS-
SACS’04, ser. Lecture Notes in Computer Science, vol. 2987. Springer,
2004, pp. 273–288.

[26] G. Taentzer, R. Salay, D. Strüber, and M. Chechik, “Transformations
of software product lines: A generalizing framework based on category

theory: extended version,” 2017. [Online]. Available: https://www.uni-
marburg.de/fb12/arbeitsgruppen/swt/research/publications

[27] K. Czarnecki and A. Wasowski, “Feature diagrams and logics: There
and back again,” in Proc. of SPLC’17, 2007, pp. 23–34.

[28] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced Concepts and Tools for In-Place EMF Model Transforma-
tions,” in Model Driven Engineering Languages and Systems, 2010, pp.
121–135, http://www.eclipse.org/henshin/.

[29] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf,
and M. Tichy, “Henshin: A usability-focused framework for emf model
transformation development,” in Proc. of ICGT’17, 2017.

[30] S. Greiner, F. Schwägerl, and B. Westfechtel, “Realizing Multi-variant
Model Transformations on Top of Reused ATL Specifications,” in Proc.
of MODELSWARD’17, 2017, pp. 326–373.

[31] K. Garcés, C. Parra, H. Arboleda, A. Yie, and R. Casallas, “Variabil-
ity Management in a Model-Driven Software Product Line,” Revista
Avances en Sistemas e Informática, vol. 4, no. 2, pp. 3–12, 2007.

[32] Ø. Haugen, B. Moller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svend-
sen, “Adding Standardized Variability to Domain Specific Languages,”
in Proc. of SPLC’08, 2008, pp. 139–148.

[33] I. Schaefer, A. Worret, and A. Poetzsch-Heffter, “A model-based frame-
work for automated product derivation,” in Proc. of MAPLE’09, 2009,
pp. 14–21.

[34] I. Schaefer and F. Damiani, “Pure delta-oriented programming,” in Proc.
of FOSD’10. ACM, 2010, pp. 49–56.

[35] D. Clarke, M. Helvensteijn, and I. Schaefer, “Abstract delta modeling,”
ACM Sigplan Notices, vol. 46, no. 2, pp. 13–22, 2011.

[36] S. Lity, M. Kowal, and I. Schaefer, “Higher-order delta modeling for
software product line evolution,” in Proc. of FOSD’16, 2016, pp. 39–
48.

[37] J. Rubin and M. Chechik, “Combining Related Products into Product
Lines,” in Proc. of FASE’12, ser. LNCS, vol. 7212, 2012, pp. 285–300.

[38] S. Schulze, T. Thüm, M. Kuhlemann, and G. Saake, “Variant-Preserving
Refactoring in Feature-Oriented Software Product Lines,” in Proc. of
VAMOS’12, 2012, pp. 73–81.

[39] D. Strüber, J. Rubin, M. Chechik, and G. Taentzer, “A Variability-Based
Approach to Reusable and Efficient Model Transformations,” in Proc.
of FASE’15. Springer, 2015, pp. 283–298.

[40] D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, and
J. Plöger, “RuleMerger: Automatic Construction of Variability-Based
Model Transformation Rules,” in Proc. of FASE’16. Springer, 2016,
pp. 122–140.

[41] D. Strüber, “Model-driven engineering in the large: Refactoring tech-
niques for models and model transformation systems,” Ph.D. disserta-
tion, Philipps-Universität Marburg, Germany, 2016.

[42] D. Strüber and S. Schulz, “A tool environment for managing families
of model transformation rules,” in Proc. of ICGT 2017, in Memory of
Hartmut Ehrig, 2016, pp. 89–101.

