
Softw Syst Model
DOI 10.1007/s10270-016-0546-9

REGULAR PAPER

VMTL: a language for end-user model transformation

Vlad Acreţoaie1 · Harald Störrle1 · Daniel Strüber2

Received: 28 October 2015 / Revised: 6 April 2016 / Accepted: 24 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Model transformation is a key enabling technol-
ogy of Model-Driven Engineering (MDE). Existing model
transformation languages are shaped by and for MDE
practitioners—a user group with needs and capabilities
which are not necessarily characteristic of modelers in gen-
eral. Consequently, these languages are largely ill-equipped
for adoption by end-user modelers in areas such as require-
ments engineering, business process management, or enter-
prise architecture. We aim to introduce a model transfor-
mation language addressing the skills and requirements
of end-user modelers. With this contribution, we hope to
broaden the application scope of model transformation and
MDE technology in general. We discuss the profile of end-
user modelers and propose a set of design guidelines for
model transformation languages addressing them. We then
introduce Visual Model Transformation Language (VMTL)
following these guidelines. VMTL draws on our previous
work on the usability-oriented Visual Model Query Lan-
guage. We implement VMTL using the Henshin model
transformation engine, and empirically investigate its learn-
ability via two user experiments and a think-aloud protocol
analysis. Our experiments, although conducted on computer

Communicated by Prof. Jon Whittle.

B Vlad Acreţoaie
rvac@dtu.dk

Harald Störrle
hsto@dtu.dk

Daniel Strüber
strueber@mathematik.uni-marburg.de

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kgs. Lyngby, Denmark

2 Department of Mathematics and Computer Science,
Philipps-Universität Marburg, Marburg, Germany

science students exhibiting only some of the characteristics
of end-user modelers, show that VMTL compares favorably
in terms of learnability with two state-of the-art model trans-
formation languages: Epsilon and Henshin. Our think-aloud
protocol analysis confirms many of the design decisions
adopted for VMTL, while also indicating possible improve-
ments.

Keywords End-user modelers · Transparent model
transformation · VMTL · Henshin · Epsilon · Learnability ·
Experiment · Think-aloud protocol

1 Introduction

Model transformation (MT) is “the heart and soul” [44]
of Model-Driven Engineering (MDE), a software develop-
ment paradigm in which models replace code as the central
artifact of the software development process [42]. Model
transformation languages (MTLs) play a very specific role
in MDE: They bridge the gap between models at different
abstraction levels, as well as between models and secondary
artifacts such as code and documentation [44]. Reflect-
ing their MDE origins, existing MTLs operate under two
assumptions: (1) Models exist for the purpose of eventually
generating working implementations, and (2) MTL users are
software engineers, developers, and architects.

At the same time, conceptual models are widely used out-
side of MDE. Examples include models employed in less
technical subfields of Software Engineering (e.g., require-
ments and domain models), models used in neighboring
disciplines (e.g., business process and enterprise architecture
models), and models used in classical engineering disci-
plines. Just like the models employed in an MDE context,
such models are occasionally refactored, translated, and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0546-9&domain=pdf

V. Acreţoaie et al.

Table 1 Typical skill sets of end-user modelers and MDE practitioners

Domain knowlege Modeling Meta-modeling Rule languages MT Programming

End-user modeler � � × × × ×
MDE practitioner × � � � � �

migrated. Presently, these potential model transformation
scenarios are for the most part unsupported. We argue that
this lack of support is due to a mismatch between the features
of existingMTLs and the requirements of end-usermodelers.

1.1 End-user modelers

Before proposing technical solutions addressing their needs,
we must first define end-user modelers and show how they
differ from MDE practitioners—the target audience of most
existingmodel transformation languages. The following def-
inition and the ensuing discussion are based on the authors’
own industrial experience and may, therefore, be questioned.
It may even be argued that end-user modelers do not exist as
a user category distinct fromMDE practitioners, or that end-
user modelers have no need for model transformation tools.
These arguments can only be settled conclusively via broad
empirical studies (e.g., surveys) involving practitioners. No
such studies are currently available.1

Definition 1 End-user modelers are non-programmer users
of a modeling language familiar with its syntax and seman-
tics, but unfamiliar with its meta-model, abstract syntax, and
applicable manipulation languages.

End-user modelers are highly trained domain experts, but
do not have the level of Software Engineering expertise
demanded to master today’s model transformation lan-
guages. Their skills typically do not include rule languages
such as the Object Constraint Language (OCL [37]), meta-
modeling, or computer programming using general-purpose
programming languages. As illustrated in Table 1, this skill
set differs significantly from that of an MDE practitioner.

End-user modelers’ primary motivation is achieving
meaningful domain goals with the help of models. Thus,
the cost–benefit ratio of applying MTLs is a key concern
for them. The learning curve imposed by a transformation
language must be gentle, suggesting that MTLs should adopt
modeling notations already in place in a given domain. How-
ever, end-user modelers are often knowledgeable in multiple
modeling notations relevant for their domain, such as Busi-
ness Process Model and Notation (BPMN [35]) and Unified
Modeling Language (UML [38]) class models for business

1 We are presently carrying out a large-scale practitioner survey inves-
tigating the various contexts in which models are employed. The results
of this survey are as of yet unpublished.

process and information modeling, respectively. Introducing
a separate MTL with custom transformation concepts for
each modeling language would entail a substantial learning
effort. This effort can be reduced by providing a genericMTL
with consistent transformation concepts.

The second key concern for end-user modelers is their
ability to understand transformations and trust the outcome
of their application. Therefore, MTLs targeting this user
category must be intuitively understandable. Furthermore,
applying a transformationmust produce predictable, reliable,
and traceable results.

Finally, domain modeling places a much greater emphasis
on model-to-model transformations compared to model-to-
text transformations. Code generation, one of the main use
cases for model transformation in MDE, loses much of its
importance. Instead, use cases involving consistent global
model updates, such as quality-oriented model refactoring,
take center stage.

1.2 Transparent model transformation

To address the needs of end-user modelers, we argue that
a model transformation language must be transparent: It
must focus on what the modeler wants to achieve, rather
than on technical aspects. In [2] we contend that an MTL
for end-user modelers must exhibit syntax, environment, and
execution transparency, concepts which we further elaborate
in Sect. 3.1.

Syntax transparency refers to anMTL’s ability to leverage the
syntax of any hostmodeling languagemeeting someminimal
criteria to specify transformations. A transformation speci-
fied using a syntax transparentMTL is simultaneously a valid
model in its hostmodeling language. End-usermodelers ben-
efit from this property by not having to learn a new language
for the sole purpose of specifying transformations.

Environment transparency indicates that an MTL does not
impose restrictions on the editor used to specify trans-
formations. It comes as a direct consequence of syntax
transparency, but can also exist separately. For instance, most
textual MTLs are environment transparent, as they can be
used with any text editor. End-user modelers benefit from
environment transparency by not having to install and learn
how to use new tools.

Execution transparency places end-users in control of how
transformations are executed by allowing them to select

123

VMTL: a language for end-user model transformation

the MT engine most suitable for a given task. The same
specification should be executable via several engines with
different capabilities, such as optimized performance or for-
mal verification. Separating the MTL from its execution
engine also helps avoid “technology lock-in” with respect
to a particular modeling technology, such as the Eclipse
Modeling Framework (EMF [47]). Execution transparency
therefore benefits end-user modelers and MDE practitioners
alike.

There are currently no MTLs targeting the needs of
end-user modelers, nor are there any MTLs implement-
ing all three aspects of transparency introduced above (see
Sect. 6.2 for a review of existing MTLs implementing a
subset of these aspects). We address this gap by propos-
ing the Visual Model Transformation Language (VMTL),
a usability-focused transformation language closely related
to the existing, demonstrably usable Visual Model Query
Language (VMQL [51]). VMTL is a model-to-model, uni-
directional transformation language supporting endogenous
transformations, rule application conditions, rule schedul-
ing, and both in-place and out-place transformations. VMTL
transformations can be specified for models expressed in
any general-purpose or domain-specific modeling language
meeting the preconditions defined in Sect. 4.3.

1.3 Contributions and limitations

This paper significantly extends previous work presented
in [2], where VMTL and the transparent model transforma-
tion principles were first introduced. The new contributions
with respect to this earlier work are:

– a definition and characterization of end-user modelers
as a distinct category of model transformation language
users;

– a complete description of VMTL’s syntax and informal
execution semantics;

– a more detailed account of tool support for VMTL;
– an empirical evaluation of VMTL’s learnability, includ-
ing both quantitative and qualitative methods.

VMTL is built on the groundwork laid with VMQL, a
usability-oriented model query language for software mod-
els [51] and business processmodels [48]. Due to the fact that
model transformation is inmanyways amore complex opera-
tion thanmodel querying, VMTL introduces several new lan-
guage constructs. Examples include transformation rules and
differentiated pattern types. VMQL’s existing textual annota-
tion language has received a general overhaul, accompanied
by the introduction of transformation-specific annotations
such as those supporting model element manipulation and
rule execution control. In addition, the implementation of
VMTL based on EMF and the Henshin model transforma-

tion engine [5] differs substantially from the Prolog-based
tool support provided for VMQL [4].

Apart from defining VMTL and describing its implemen-
tation, the main contribution of this paper is the empirical
validation of VMTL’s learnability. Despite their importance
when addressing usability-related topics, human factors eval-
uations such as the one presented here are relatively uncom-
mon in model transformation research (see Sect. 6.3). That
said, our evaluation suffers fromsome limitationswhichmust
be stated upfront. The chief threat to the validity of our user
experiments is related to participant selection. Participants in
both experiments were computer science students with vary-
ing degrees of modeling expertise, a background arguably
different from that of end-user modelers. However, these
participants also share some of the defining characteristics
of end-user modelers, such as a lack of model transforma-
tion and meta-modeling experience. For a comprehensive
discussion of threats to the validity of our experiments, see
Sect. 5.1.4.

The think-aloud protocol analysis complementing the
presented experiments benefits from a broader range of
participants. However, their low number prevents us from
making generalizations and drawing definitive conclusions.
This and other validity concerns pertaining to this analysis
are addressed in Sect. 5.2.3.

VMTL has so far not been validated on large model
transformation scenarios. The sizes of the transformation
specifications used in our experiments are in the same range
as the examples presented in this paper. Therefore, the possi-
bility that someofVMTL’s beneficial attributesmaynot scale
to larger transformations cannot be ruled out. Nevertheless,
learnability is most critical in the early stages of adopting a
new language, where small examples are more likely to be
employed in the first place.

The remainder of this paper is structured as follows:
Sect. 2 offers an intuitive understanding of VMTL via a
running example from the banking domain, Sect. 3 presents
VMTL’s syntax, semantics, and limitations, Sect. 4 describes
tool support, Sect. 5 presents empirical results regarding
VMTL’s learnability, Sect. 6 summarizes related research,
and Sect. 7 presents conclusions and directions for future
work.

2 Motivating example: model quality assurance

Quality assurance is a central concern in the life cycle of
software models. The removal of anti-patterns (or smells) is
therefore an important application area formodel transforma-
tion tools [1]. Analysis-level models emphasize quality even
further, motivated by compliance to legislation such as the
Sarbanes–Oxley Act [40]. In what follows, we illustrate how
quality assurance transformations on analysis-level models

123

V. Acreţoaie et al.

can be specified using VMTL. For this purpose, consider
the UML model in Fig. 1, representing a financial institu-
tion’s loan operations. Models of this kind are produced by
domain experts and business analysts, rather than software
engineers.

The information model in Fig. 1 (top left) is expressed as
a UML class diagram. It describes the two loan types offered
by the financial institution: installment loans and revolving
loans. Optionally, customers may purchase credit insurance.
The use case model in Fig. 1 (bottom-left), expressed as a
UML use case diagram, lists the interactions that a customer
may havewith the institution. Namely, customers can request

a loan with specified details or buy credit insurance. Finally,
the process model in Fig. 1 (right), expressed as a UML
activity diagram, lays out the process followed by the insti-
tution when responding to a loan request. Based on customer
background and account details, a loan eligibility report and,
optionally, a credit insurance offer are produced and sent to
the customer.

In what follows, we introduce the core features of VMTL
via three simple transformation examples, all operating on
the information model in Fig. 1. A somewhat more elaborate
VMTL transformation on the same model is discussed in
“Appendix.”

Fig. 1 Analysis-level model representing a financial institution’s loan operations. It consists of an information model expressed as a UML class
diagram (top left), a use case model expressed as a UML use case diagram (bottom-left), and a process model expressed as a UML activity diagram
(right)

123

VMTL: a language for end-user model transformation

Fig. 2 Single-rule VMTL transformations on the example source model in Fig. 1: Transformation 1 (top left), Transformation 2 (top-right),
Transformation 3 (bottom)

2.1 Patterns and annotations

The “Customer” actor in Fig. 1 (bottom-left) is associated to
the “Buy credit insurance”, “Request installment loan”, and
“Request revolving loan” use cases, the last two of which
extend the first. However, a UML use case extending another
use case “typically defines behavior that may not necessarily
be meaningful by itself” (see [38], p. 671). This anti-pattern
canbe removedbydeleting the associations between the actor
and the extending use cases.

Transformation 1, shown in Fig. 2 (top left), expresses
this specification. It consists of a VMTL Update Pattern
named “Delete Association.” The delete annotation
included in this pattern specifies that Associations between
an actor and an extending use case must be removed from
the source model. The pattern is applied twice, once for
the “Request installment loan” use case and once for the

“Request revolving loan” use case.When transformingUML
models, Comments are an appropriate vehicle for VMTL
annotations, with the «VM* Annotation» Stereotype
distinguishing these annotations from regular Comments.

VMTL patternsmay optionally include visual annotations
referred to as icons, which indicate their type. Such an anno-
tation, expressed as a stereotyped Comment,2 is visible in the
top-right corner of the “Delete Association” pattern. While
icons help visually identify pattern types, the type of a pat-
tern is formally established by the stereotype applied to its
encapsulating Package—in this case, «VM* Update».

Update Patterns can also create new model ele-
ments, as illustrated by Transformation 2 in Fig. 2 (top left).
This transformation ensures that all loan requests require

2 UML allows Stereotypes to replace model elements’ default visual-
izations with arbitrary images.

123

V. Acreţoaie et al.

the specification of loan details. A create annotation is
employed to add an Include relationship between each use
case inheriting from the “Request loan” use case and the
“Specify loan details” use case.

2.2 Multiple-pattern rules

Financial institutions are required to ensure that critical back-
ground checks are performed several times [40]. The model
in Fig. 1 violates this requirement, as the “Check eligibility”
Action is performed only once. Transformation 3, shown in
Fig. 2 (bottom), illustrates how VMTL can be used to dupli-
cate this Action so that it is performed twice in parallel.

As opposed to the previous examples, this transformation
is specified using two patterns: a Find Pattern and a
Produce Pattern, which intuitively correspond to the
“before” and “after” states of the transformation. The Find
Pattern is matched in the source model, determining
where the Produce Pattern is applied. In Transforma-
tion 3, the Find Pattern will match any sequence of
three Actions where the middle Action is named “Check
eligibility.” It will do so regardless of the outer Actions’
types: all instances of activity node, an abstract UML meta-
class generalizing all Action types, are considered. This is
accomplished via an assignment to VMTL’s type special
variable.

The $A and $B user-defined variables are used in the
Find Pattern in place of the outer Actions’ names.
When the pattern is matched, these variables are instanti-
ated with the matched Actions’ names. Once instantiated,
the $A and $B variables retain their values in the Produce
Pattern. The differences between the two patterns deter-
mine which elements will be added to or removed from
the source model. In this example, a second Action named
“Check eligibility”will be created, togetherwith a ForkNode
and a JoinNode.Note that this transformation could have also
been specified using a single Update Pattern.

3 The Visual Model Transformation Language

3.1 A transparent approach to model transformation

Intuitively, an MTL aiming for end-user modeler accessibil-
ity should leverage languages and tools familiar to end-user
modelers. This intuition forms the basis of Transparent
Model Transformation, a collection of three general prin-
ciples underlying the development of MTLs for end-user
modelers: syntax transparency, environment transparency,
and execution transparency. While a number of existing
MTLs follow a subset of these principles (see Sect. 6.2),
VMTL is the first to follow all three of them.

3.1.1 Syntax transparency

The transformation specifications in Fig. 2 do not just resem-
ble the concrete syntax of UML diagrams. They are, in fact,
valid UMLmodels. Formally, syntax transparency is defined
as follows:

Definition 2 An MTL capable of expressing specifications
for model transformations operating on source models con-
forming to a meta-model M and producing target models
also conforming to meta-modelM is said to be syntax trans-
parent with respect toM iff all such specifications conform
toM.

Meta-model M is referred to as the host meta-model or
host language of the transformation.

VMTL ensures syntax transparency by introducing
conformance-preserving host meta-model extensions. The
constructs of VMTL—rules, patterns, and annotations—are
mapped to existing host meta-model elements using meta-
model extension mechanisms or, if such mechanisms are
not available, naming conventions. Figure 3 illustrates the
realizations ofVMTLconstructs inUMLandBPMN, respec-
tively. The UML realizations rely on Stereotypes, such as the
«VM* Update» and «VM* Annotation» Stereotypes
applicable to Packages and Comments, respectively. The
equivalent BPMN realizations rely on naming conventions,
such as the [VM* Update] and [VM* Annotation]
prefixes for Package names and Text Annotation IDs, respec-
tively.

<<VM* Annotation>>

U
M

L

Annotation

VMTL

<<VM* Update>> ...

BPM
N

 Annotation

VMTL

[VM* Update] ...

[VM* Annota�on]

Transformation
Rule

Pattern

Transformation
Rule

Pattern

Fig. 3 Mapping the VMTL meta-model to UML (top) and BPMN
(bottom)

123

VMTL: a language for end-user model transformation

3.1.2 Environment transparency

The learning curve imposed by an MTL has two distinct
contributing factors: learning the MTL itself, and learning to
use the tools supporting it. The syntax transparency principle
mitigates the impact of the first factor, while the second factor
is addressed by the principle of environment transparency.

Definition 3 AnMTL is environment transparent if it allows
users to adopt their preferred compatible editor for each
transformation artifact: the source model(s), transformation
specification, and target model(s).

Environment transparency is facilitated by syntax trans-
parency, but can also exist independently. For instance, most
textual MTLs are supported by dedicated editors, while also
allowing the use of general-purpose text editors as specifica-
tion tools. They therefore exhibit environment transparency.
However, since specifications created using these MTLs are
not valid instances of the host meta-models, textual MTLs
do not exhibit syntax transparency.

Since most current MTLs are experimental, few are sup-
ported by mature, production-ready editors. The ability to
specify transformations using existing model editors thus
benefits end-user modelers in two respects: (1) avoiding the
learning curve imposed by a new editor, and (2) leveraging
a tested, mature tool. On the other hand, using the model
editor to accomplish a task it was not originally designed for
may bring some disadvantages, as discussed in Sect. 4.3. By
promoting the loose coupling between transformation editors
and execution engines, environment transparency facilitates
alternative deployment avenues such as remote transforma-
tion execution, an approach likely to be beneficial in the case
of large source and target models.

3.1.3 Execution transparency

In addition to selecting the editors of their choice, end-
users should also have the freedom to select a transformation
engine appropriate for the task at hand. For instance, in a
safety-critical scenario, users might prefer a transformation
engine that supports model checking and state-space explo-
ration over one that aims at highly efficient rule execution.
Avoiding a tight coupling between the transformation lan-
guage and its execution engine also increases the number
of host modeling languages that can be supported, since
different execution engines may target different modeling
technologies.

Definition 4 An MTL is execution transparent if specifica-
tions expressed using it can be executed by compilation to
one of several transformation engines operating at a lower
abstraction level.

A pre-condition imposed on the transformation engine is
that itmust support a level of expressiveness at least as high as
that of the execution transparent MTL. The semantics of the
MTL should not depend on the execution engine employed
to implement it.

The number and complexity of language constructs
included in VMTL is deliberately limited in order to facili-
tate its compilation to existing transformation engines. Since
these constructs can be mapped to graph transformation
concepts, the most intuitive compilation targets are graph
transformation engines. However, implementations based on
imperative engines (e.g., EOL [28]), transformation primitive
libraries (e.g., T-Core [55]), or general-purpose program-
ming languages enhanced by modeling APIs are all possible.

3.2 VMTL transformations: structure and execution

VMTL is a model-to-model transformation language. It sup-
ports endogenous transformations, that is, transformations
in which the source and target models conform to the same
meta-model [16,32].VMTL transformations can be executed
in-place to modify an existing model, as well as out-place to
produce a new model.

VMTL specifications can be mapped to the meta-model
shown in Fig. 4. According to this meta-model, a
Transformation consists of one or more Rules, each
having a positive integer priority. Rules with lower val-
ues assigned to their priority attribute are executed first,
while rules with equal priorities are selected for execution
non-deterministically. Execution terminates when no rule is
applicable.

Rules consist of one or more Patterns expressed using
the host modeling language, typically at the concrete syntax
level. Patterns consist of instances of the host modeling lan-
guage’s elements. Elements and meta-attributes that do not
have a concrete syntax representation are also included in the
transformation specification. VMTL patterns correspond to
the notions of left-hand side (LHS), right-hand side (RHS),
negative application condition (NAC), and positive applica-
tion condition (PAC) from graph transformation theory [17].
The following pattern types are defined:

– Find Pattern Represents the left-hand side (LHS) of a
transformation rule, specifying the source model loca-
tions atwhich the transformation is to be applied.AFind
Pattern can be seen as a model query, and a rule may
contain at most one such pattern. If the rule does not
contain a Find Pattern, it must contain an Update
Pattern.

– Produce Pattern Represents the right-hand side (RHS) of
a transformation rule, specifying how the target model is
to be obtained from the sourcemodel. A rulemay contain

123

V. Acreţoaie et al.

at most one Produce Pattern, and its presence is
conditioned by the presence of a Find Pattern.

– Update PatternAconcise specification of both the source
model locations at which a transformation is to be
applied, and how the target model is to be obtained
from the source model. A rule may contain at most one
Update Pattern, under the condition that it does not
contain a Find Pattern.

– Require Pattern Represents a positive application condi-
tions (PAC) for a transformation rule. A rule can contain
any number of Require Patterns and will be exe-
cuted only if all of these patterns are matched in the
source model.

– Forbid Pattern Represents a negative application condi-
tions (NAC) for a transformation rule. A rule can contain
any number of Forbid Patterns, and will be exe-
cuted only if none of these patterns are matched in the
source model.

Transformations, rules, and patterns can include any num-
ber of VMTL-specific textual annotations, which are also
expressed as host language model elements. When anchored
to a host language element included in a VMTL pattern,
annotations provide additional information regarding that
specific element. When anchored to a rule or to the trans-
formation itself, annotations specify execution options, such
as rule priorities or injective pattern matching. See Sect. 3.3
for descriptions of the available annotations.

Only Find Patterns and Update Patternsmay
trigger the application of a rule. The rule is triggered when
one such pattern is matched in the source model, assuming
that all of the rule’sRequire Patterns are alsomatched
and none of itsForbid Patterns arematched. Based on

the considerations introduced so far, the full VMTL trans-
formation execution process is illustrated as a UML activity
diagram in Fig. 5. The core of this process is a rule priority
queue.

It should be noted that this execution process does not mit-
igate non-terminating transformations. It is the responsibility
of the end-user to ensure that VMTL transformations even-
tually terminate. This task is facilitated by the fact that the
only execution control mechanisms supported by VMTL are
rule priorities and application conditions. Some basic heuris-
tics can be applied to determine if a risk of non-termination
exists. The most important such heuristic is the presence
of a create clause within a given rule. In the absence
of a Forbid Pattern, a Require Pattern, or an
omit clause limiting its applicability, the creation of new
model elements can continue without termination. On the
other hand, VMTL rules including the delete clause in
the absence of any create clauses are guaranteed to termi-
nate. As a good practice, we encourage the use of Forbid
Patterns and Require Patterns to make rule appli-
cation conditions explicit, even in cases where they could be
embedded as clauses in a Find Pattern or an Update
Pattern.

Basedon thepresentedmeta-model and executionprocess,
we argue that VMTL is theoretically and practically expres-
sive enough for most endogenous transformation scenarios
faced by end-user modelers. First, the constructs of VMTL
(i.e., the meta-classes in Fig. 4) are a common subset of
the constructs found in current mainstream transformation
languages. This is a deliberate choice that promotes exe-
cution transparency. The subset is minimal in the sense
that removing any of the constructs would bring obvious
practical expressiveness limitations. In terms of theoretical

Fig. 4 The VMTL meta-model

123

VMTL: a language for end-user model transformation

Fig. 5 The VMTL transformation execution process

expressiveness, we point out that the execution semantics of
VMTLshown inFig. 5 is implicitly recursive,whileForbid
Patterns and Require Patterns allow the expres-
sion of branching constructs. Together with support for
user-defined variables, these features likely make VMTL

Turing complete, although a formal proof of this property
remains as future work.

Following the principle of syntax transparency, theVMTL
meta-model elements in Fig. 4 are mapped to host meta-
model elements. The mapping can be implemented using
the host metamodel’s extension mechanism, or, if such a
mechanism is not available, using model element nam-
ing conventions. Meta-model extension mechanisms are the
more systematic, and therefore preferred solution. As an
example of such a mapping, the VM* Profile for UML,
defined in Table 2, includes a Stereotype for each VMTL
meta-model element.

Among the stereotypes listed in Table 2, those identify-
ing VMTL patterns can be applied to both Packages and
Comments. However, package stereotypes are sufficient for
defining a transformation’s structure. These stereotypes may
optionally be applied to comments displayed in diagrams in
order to visually indicate the type ofVMTLpattern contained
in a Package. When such a Stereotype is applied to a com-
ment, the standard UML comment notation is replaced by
the corresponding icon shown in Table 2.

The optional pattern icons provide an intuitive way of
identifying the type of a pattern. A magnifying glass indi-
cates the “search” functionality of a Find Pattern, while
a cogwheel hints at the model modifications performed by a
Produce Pattern. Since Update Patterns merge
the functionality of Find/Produce pattern pairs, the icon
for Update Patterns is also a merger of these patterns’
icons. The icons for Forbid Patterns and Require
Patterns employ common symbols (an “access forbid-
den” sign and a checkmark) and color coding.

In general, VMTL transformations can only be specified
if the host meta-model meets the following prerequisites, the
first two of which are mandatory:

1. The host meta-model must include a container element,
such as Packages in UML and BPMN. Container ele-
ments are used to structure VMTL transformations into
rules and patterns.

2. The host meta-model must include an annotation ele-
ment, such as Comments in UML and Text Annotations
in BPMN. All host meta-model elements must support
annotations, which act as vehicles for VMTL clauses.

3. The host meta-model should support a lightweight exten-
sion mechanism, such as UML Stereotypes, allowing the
identification of model elements as VMTL constructs.
Such a mechanism is optional, and can be substituted by
element naming conventions.

3.3 Annotation syntax

VMTL patterns are valid models in the host modeling lan-
guage. Although it supports syntax and environment trans-

123

V. Acreţoaie et al.

Table 2 The VMTL profile for UML. The VMTL profile for UML. This profile is applied to UML packaged containing VMTL transformation
specifications

Stereotype Applies to Description Icon

«VM* Annotation» Comment Stereotype applicable to Comments containing VMTL annotations –

«VM* Transformation» Package Stereotype applicable to Packages containing a VMTL transformation –

«VM* Rule» Package Stereotype applicable to Packages containing a VMTL rule –

«VM* Find» Package,
Comment

Stereotype applicable to Package containing a Find Pattern or to
Comments included in such Packages, in which case the Find icon
replaces the UML Comment notation

«VM* Produce» Package,
Comment

Stereotype applicable to Packages containing a Produce Pattern or
to Comments included in such Packages, in which case the Produce icon
replaces the UML Comment notation

«VM* Update» Package,
Comment

Stereotype applicable to Packages containing an Update Pattern or
to Comments included in such Packages, in which case the Update icon
replaces the UML Comment notation

«VM* Forbid» Package,
Comment

Stereotype applicable to Packages containing a Forbid Pattern or to
Comments included in such Packages, in which case the Forbid icon
replaces the UML Comment notation

«VM* Require» Package,
Comment

Stereotype applicable to Packages containing a Require Pattern or
to Comments included in such Packages, in which case the Require icon
replaces the UML Comment notation

parency, this design decision has the potential of severely
limiting the expressiveness and usefulness of VMTL. The
root cause of this is the fact that modeling languages are
not designed to support pattern specifications—and they
have no reason to do so. Therefore, specifying VMTL
patterns sometimes requires sidestepping well-formedness
constraints included in the host meta-model (e.g. element
multiplicity limits), as well as referring to elements of the
VMTL meta-model (e.g., for specifying execution options
and transformation rule priorities). Kühne et al. [29] propose
achieving this by explicitly modifying, or relaxing, the host
meta-model. VMTLdoes not adopt this approach, as it would
violate syntax and environment transparency.

Instead, under the assumption that existing elements of the
host meta-model must not bemodified, VMTL defines a sim-
ple textual annotation language used to “lift” models to the
status of model patterns. From an end-user modeler perspec-
tive, learning this annotation language is the only significant
prerequisite of usingVMTL.Thedefined annotations support
pattern definition, model manipulation, and transformation
execution control. As examples, several VMTL annotations
are included in Figs. 2 and 14 as UML Comments carrying
the «VM* Annotation» Stereotype.

The specification of this annotation language is one of the
most sensitive aspects of VMTL’s overall design. To begin
with, adopting an annotation syntax resembling that of a
widely used general-purpose programming language such as
Java or JavaScript brings no benefits in an end-user modeler
context. These languages are unfamiliar and too complex
for end-user modelers. A second option would be to use

an “off-the-shelf” annotation language, such as OCL. How-
ever, OCL has been shown to be severely lacking in terms
of usability, especially when compared to natural language-
like alternatives [49]. We have therefore decided to equip
VMTL with its own textual annotation language. This lan-
guage is loosely based on logic programming principles:
an annotation consists of a set of clauses, each express-
ing a constraint on the annotated pattern elements or the
VMTL specification as a whole. Clauses are tied together by
logic operators. Our hypothesis, based on previous findings
regarding VMQL [48,51], is that such a mechanism is both
sufficiently expressive and easy to learn by end-user model-
ers. Its features are detailed in the following paragraphs.

Dynamically typeduser-defined variablesmaybedeclared
and manipulated in VMTL annotations, and also used as
meta-attribute values. The scope of these variables is limited
to a single rule application: Once declared, their value can be
accessed in all patterns belonging to the applied rule, but not
in patterns belonging to other rules. Due to their rule-wide
scope, user-defined variables are employed for identifying
corresponding model elements across a rule’s patterns. User-
defined variable’s names are prefixed by the $ character.

The type of a user-defined variable is inferred at rule
execution time. VMTL supports the Boolean, Integer,
Real, and String data types, in addition to the Element
data type used for storing instances of host language meta-
classes. Regardless of their type, user-defined variables also
accept the undefined value (“*”). A variable with this value
is interpreted as representing any valid value of its respective
data type.

123

VMTL: a language for end-user model transformation

Table 3 Special variables supported in VMTL annotations. The type, scope and description of each special variable is provided, accompanied by
usage examples

Variable Type Scope Description Examples

id String Element Stores an optional user-defined pattern element identifier in
order to facilitate the identification of corresponding elements
across patterns

id := “1”

injective Boolean Rule If set to true (the default value), each pattern element can be
matched to at most one source model element. Otherwise,
each pattern element can be matched to several source model
elements

injective :=
true

priority Integer Rule Determines the application priority of a rule. Only positive
values are allowed, with lower values implying a higher
execution priority

priority := 1

self Element Element Allows access to the annotated model element. self.visibility
:= “public”

steps Integer Element States that the annotated model element, which must represent
a relation, can be matched to a chain of relations of the same
type in the source model. The length of the chain is
determined by the value of this special variable

steps := 3,
steps > 3,
steps := *

type String Element Provides access to the name of the annotated model element’s
meta-class. Assigning a new value to this special variable
modifies the annotated model element’s meta-class

type := “Actor”

For variable manipulation, VMTL supports arithmetic,
comparison, and logic operators. Logic operators can be
invoked through textual notations (“and”, “or”, “not”,
“if/then”) or logic programming-style notations (“,”,
“;”, “!”, “->”). The implication and disjunction operators
can be combined to form a conditional “if/then/else”
construct (see Rule 1 of the refactoring in “Appendix” for
example). The navigation operator (“.”) accesses model ele-
ments’ meta-attributes, operations, and association ends.

Apart from user-defined variables, VMTL relies on spe-
cial variables as a means of controlling transformation
execution (the injective, priority, and steps vari-
ables) and accessing the contents of the sourcemodel (theid,
self, and type variables). The special variables defined
by VMTL are listed in Table 3. All operators applicable
to user-defined variables are also applicable to special vari-
ables. As an example, the type special variable is used to
specify the meta-type of several model elements in Transfor-
mation 3 (Fig. 2). Because ActivityNode is an abstract
meta-type, it cannot be assigned to UML model elements.
However, as this example shows, assigning this meta-type to
pattern elements may be required and can be achieved via
VMTL’s type annotation.

Special variables have a pre-defined scope, identifying
the specification fragment to which they are applicable. For
instance, the scope of thepriority special variable, which
represents the mechanism used to specify rule priority in
VMTL, is limited to one rule, while the scope of the id,
self, and type variables is limited to the annotated model
element.

Clauses are the main building blocks of VMTL annota-
tions: each annotation consists of one or more such clauses
connected by logic operators. The use of clauses is inspired
by logic programming languages and adopted as a means
to achieve annotation conciseness. A VMTL clause is an
assertion made about the pattern model elements to which
its containing annotation is anchored, about its containing
pattern or rule as a whole, or about user-defined or spe-
cial variables. Some clauses specify modifications to the
source model (the create and delete clauses), while
others act as constraints on pattern matching (the either,
indirect, omit, optional, and unique clauses).
Variable assignment (“:=”) is also treated as a clause. The
clauses included in VMTL’s annotation language are listed
in Table 4.

Notably, the either clause can only be included in
annotations anchored to several pattern model elements. All
other clauses listed in Table 4 can be included in annota-
tions anchored to one or more pattern elements. In general,
anchoring a clause to several pattern elements instead of cre-
ating several annotations containing the same clause allows
more compact specifications. The variable assignment clause
(“:=”) can also appear un-anchored to any pattern elements,
as variables always have a rule-wide scope.

4 Tool support

WhileVMTL as a language is syntax transparent, its environ-
ment and execution transparency depend on its implementa-

123

V. Acreţoaie et al.

Table 4 Clauses supported in VMTL annotations. A description and a list of pattern types in which it can be applied is provided for each clause

Clause Description Patterns types

:= Assigns a value to a user-defined variable, special variable, or model element
meta-attribute

Find, Produce, Update,
Forbid, Require

create Creates the annotated pattern model element in the target model. If a model
element not included in the Find Pattern of a rule is included in the
rule’s Produce Pattern, the element is implicitly created in the target
model. In such cases, the create clause is optional

Produce, Update

create if not
exists

Creates the annotated pattern model element in the target model only if it
does not exist in the source model

Produce, Update

delete Deletes the annotated pattern model element from the source model. If a
model element included in the Find Pattern of a rule is not included in
the rules’s Produce Pattern, the element is implicitly deleted in the
target model. In such cases, the delete clause is optional

Produce, Update

either Specifies that exactly one of the annotated pattern model elements must be
matched in the source model

Find, Forbid, Require

indirect Specifies that the annotated pattern model element, which must represent a
relation, can be matched to a chain of relations of the same type (i.e., the
relation’s transitive closure) in the source model

Find, Forbid, Require

omit Specifies that the annotated pattern model element must not be matched in the
source model

Find, Forbid, Require

optional Specifies that the annotated pattern model element may or may not be
matched in the source model

Find, Forbid, Require

unique Specifies that the annotated pattern model element must be unique within its
scope (e.g., its containing Package) in the source model. When this
annotation is included in an Update Pattern, the uniqueness condition
is applied to both the source and the target model

Find, Produce, Update,
Forbid, Require

tion. As detailed in this section, our implementation follows
all three Transparent Model Transformation principles.

4.1 Executing VMTL specifications

The implementation ofVMTL is based on theEclipseModel-
ing Framework (EMF [47]) and the Henshin [5] transforma-
tion engine. The core of this implementation3 was developed
over a period of three months by the first author, with
no previous experience using the Henshin engine. Henshin
was adopted due to the fact that its graph transformation-
based operational semantics aligns well with the semantics
of VMTL. As a stand-alone API, it also supports VMTL’s
environment transparency. However, following the principle
of execution transparency, any sufficiently expressive trans-
formation engine could be used instead. Such an engine must
meet the following minimal requirements:

– Rules: Self-contained execution units that can bemapped
to VMTL rules must be supported.

– Pattern matching: The engine must support a mecha-
nism for expressing model patterns and matching them
on models.

3 Only a subset of the textual annotations described in Sect. 3.3 are
currently supported.

– Variables: Either statically or dynamically typed vari-
ables with user-defined names and values must be sup-
ported.

Additional features such as a rule scheduling mechanism
and rule application conditions can be implemented on top of
the execution engine. In our case, Henshin already supports
these features. Ultimately, VMTL could be implemented
using a general-purpose programming language, much like
its predecessor VMQLwas implemented using standard Pro-
log. However, execution transparency encourages the reuse
of existing transformation engines.

TranslatingVMTLspecifications into a format compatible
with the underlying execution engine requires a one-time
software development effort. This is obviously not a task
for the end-user modeler, but one for a tool provider. The
development effort and skills required from this provider are
a function of the selected execution engine: the closer its
constructs and semantics to those of VMTL, the less effort
is required.

The high-level architecture of our implementation, shown
in Fig. 6, consists of three components. A general-purpose
model editor is used to create the source model and trans-
formation specification, as well as view the target model.
The Henshin engine applies the transformation to the source

123

VMTL: a language for end-user model transformation

Model editor
(e.g. MagicDraw, Papyrus)

Henshin
engine

Source Transfor-
Target

Transfor-

1
Extract

2
Translate

3
Match

4
Nest

Loop Unit
Priority Unit

Independent
Unit

Independent
Unit

VM
TL

VM
TL

VM
TL

Fig. 6 The architecture of VMTL’s implementation.Numbers encircled in black indicate the sequence of steps in theVMTL toHenshin compilation
process

model, producing the target model. The VM* Runtime—
the only component of this architecture created specifically
for the purpose of supporting VMTL—compiles VMTL
specifications into equivalent Henshin specifications. The
compilation performed by the VM* Runtime can be seen
as a higher-order transformation (HOT), the four steps of
which are shown in Fig. 6 and described in what follows.
The first step is transformation engine-independent, while
the last three steps are specific to the Henshin engine and
would need to be re-implemented to accommodate a differ-
ent transformation engine.

In step 1© model fragments representing transformation
components are identified in the VMTL specification. These
are the transformation’s left-hand side (LHS), right-hand side
(RHS), negative application conditions (NAC), and positive
application conditions (PAC).As the components correspond
to VMTL rules and patterns, their identification is informed
by VMTL stereotypes or naming conventions.

In step 2© the extractedmodel fragments are translated into
structurally equivalent Henshin graphs intended to play the
same role (LHS, RHS, NAC, or PAC) in the generated Hen-
shin transformation. To avoid binding the implementation to

a particular modeling language, the fragments are processed
in terms of the Ecore meta–meta-model. Thus, the task at
hand is to perform an exogenous transformation between an
Ecore model instance and a Henshin graph instance. This
transformation is facilitated by the fact that Henshin model
elements (e.g., Node, Edge, and Attribute) maintain
explicit references to corresponding Ecore model elements
(e.g., EClass, EReference, and EAttribute).

In step 3© a set of atomicHenshin rules are created by con-
structingmappings between the nodes of eachLHSgraph and
the corresponding nodes in every other graph belonging to the
same rule. As a mapping is a connection between twomatch-
ing nodes, obtaining the set of mappings between two graphs
is equivalent to computing a match between the graphs. The
EMFComparemodel comparison framework [34] is used for
match computation. In order for the generated Henshin rules
to have the expected behavior, the computed match must be
exact. The use of VMTL’s id special variable to uniquely
identify unnamed pattern elements across patterns guaran-
tees an exact match.

In step 4© the generated rules are nested in Units, Hen-
shin’s control flowmechanism.EachHenshin rule is assigned

123

V. Acreţoaie et al.

Model Editor
(e.g. MagicDraw, Papyrus)

VM* Back-End

Transforma�on
Engine

(e.g. Henshin)

VM* Run�me

REST API

VM* Web
applica�on

VM* Plugin

Transforma�on
Engine

(e.g. Henshin)

VM* Run�me

Model Editor
(e.g. MagicDraw, Papyrus)

VM* Plugin

VM* Back-End

Transforma�on
Engine

(e.g. Henshin)

VM* Run�me

REST API

REST
request

API
call

API
call

Plugin
integra�on

API
call

REST
request

Plugin
integra�on

Model Editor
(e.g. MagicDraw, Papyrus)

Manual
file upload/
download

Fig. 7 Deployment options available for VMTL: a self-contained model editor plug-in (top left), a thin client model editor plug-in (top-right), and
a web application (bottom)

the priority of the VMTL rule from which it was derived.
First, all rules with the same priority are nested inside a sin-
gle Independent Unit, allowing non-deterministic rule
selection. Next, all Independent Units are assigned as
subunits to a Priority Unit, ensuring that the highest-
priority Independent Unit is executed. Finally, the
Priority Unit is encapsulated in a Loop Unit, so
that it is executed as often as it is applicable. The resulting
control structure implements the operational semantics of
VMTL: the highest-priority applicable rule is executed until
no applicable rules exist, at which point the transformation
terminates.

4.2 Deployment options

The architecture presented in Fig. 6 is amenable to several
deployment options. In a monolithic plugin-based deploy-
ment, illustrated in Fig. 7 (top left), a VMTL plugin for
a conventional model editor encapsulates both the VM*
Runtime and the MT engine. This is arguably the most wide-
spread deployment approach adopted by MT tools today,
many of which, including Henshin, are developed as full-
featured plugins for the Eclipse IDE. However, this approach
offers limited portability, since a separate plugin must be
developed for every model editor that is not based on the
Eclipse platform.

To improve portability without sacrificing editor inte-
gration, the VM* Runtime and the MT engine can be
deployed remotely and accessed via a REST API,4 as shown
in Fig. 7 (top-right). This way, business logic is removed
from the editor plugin, facilitating its re-implementation. On
the other hand, this type of distributed deployment brings
a number of inherent drawbacks. Transferring large mod-
els over a network may become a performance bottleneck,
while remotemodel processing requires sound access control
provisions.

A third option, illustrated in Fig. 7 (bottom), is to forego
editor integration entirely and develop a separate web appli-
cation as a user interface for VMTL. This solution allows
specifying VMTL transformations using any editor support-
ing the host modeling language, without requiring a custom
plug-in. The cost is that users must leave the model edi-
tor in order to apply the transformations, making interactive
transformation execution infeasible. The already mentioned
issues related to remotemodel processing also apply.Wehave
previously demonstrated that such an approach is viable by
adopting a service-oriented deployment for the Hypersonic
model analysis API. A more in-depth analysis of its advan-
tages and drawbacks is available in [3].

The deployment option in Fig. 7 (bottom) is the only one
to strictly follow the environment transparency principle,

4 Any other remote code execution technology may be used.

123

VMTL: a language for end-user model transformation

as it does not require any customization of the host model
editor. Our ongoing implementation thus targets this deploy-
ment strategy, with themention that once the VM*Back-End
is operational, lightweight editor plugins implementing the
architecture in Fig. 7 (top-right) can be createdwith relatively
little effort. We currently target the MagicDraw5 modeling
environment with such a plug-in.

Arguably the most important concern that requires miti-
gation in our distributed deployment is unauthorized model
access. Namely, it must be guaranteed that users cannot
gain unauthorized access to models uploaded by other users.
When combined with a role-based authentication policy, a
sound authentication mechanism such as OAuth [22] is an
effective method of providing this guarantee. At a techni-
cal level, implementing OAuth requires VM* API clients to
obtain an access token prior to using the API. This process
can be carried out through a separate channel, such as a ded-
icated API management web application.

4.3 Tool support limitations

The implementation of VMTL follows the principles of
environment and execution transparency, thus facilitating its
adoption by end-user modelers. However, following these
principles also brings some limitations.

As a consequence of execution transparency, possible
incompatibilities between VMTL’s operational semantics
and the capabilities of its underlying MT engine should be
considered. One example is the indirect clause, allow-
ing VMTL patterns to express a relation’s transitive closure,
i.e., a chain of undefined length of instances of this rela-
tion. Transitive closure computation is problematic for most
graph transformation engines, but trivial for, say, a logic
programming-based engine.

In the context of environment transparency, model edi-
tors are employed for a task they were not designed
for—specifying transformations. In the case of VMTL, the
well-formedness and syntactical correctness of transforma-
tion rules cannot be verified inside the editor in the absence
of a dedicated plugin. Most model editors will, however,
enforce the conformance of VMTL patterns to the host meta-
model. The resulting expressiveness limitation is mitigated
by VMTL’s textual annotations. At execution time, transfor-
mation tracing and debugging must be performed through an
editor extension or outside the model editor, such as through
the web application described as a deployment option in
Sect. 4.2. Finally, displaying target models in the host editor
is complicated by the fact that diagram layout information
is typically not part of the host meta-model. Maintaining a
layout similar to that of the source model is therefore only
possible for in-place transformations.

5 http://www.nomagic.com/products/magicdraw.

To preserve environment transparency, VMTL does not
support explicit mappings between the elements of different
patterns included in a transformation rule. Instead, the VM*
Runtime infers the mappings as described in Sect. 4.1. In
contrast, most declarativeMTLs assume that these mappings
are specified by the transformation developer. In the gen-
eral case, inferring them programmatically requires model
elements to have unique identifiers corresponding across pat-
terns. An element’s name and type can be used to construct
such identifiers, but with no guarantee of uniqueness. Fur-
thermore, some host language elements might not have a
name meta-attribute. This may lead to ambiguities when a
transformation is executed. VMTL addresses this issue at
the language level, by providing the id special variable to
attach an optional identifier to each pattern element. It is the
transformation developer’s responsibility to ensure that cor-
responding elements have the same identifier in all patterns.

Finally, VMTL’s declarative nature may cause problems
regarding rule application and transformation termination.
Two transformation rules are in conflict if one of themmodi-
fies the sourcemodel in amanner that affects the applicability
of the other. Furthermore, some VMTL transformations
might fail to terminate. For example, any transformation
adding elements to a model without imposing application
conditions falls in this category. In such cases, the underlying
MT engine can support the VMTL transformation developer
by formally analyzing specifications. The Henshin engine
supports critical pair analysis, a technique originating in
graph transformation theory [13]. However, this technique
has limitations: The termination of a graph transformation
system is undecidable in the general case.

5 Evaluation

We have experimentally evaluated the learnability of VMTL.
The methodology and outcomes of this evaluation are pre-
sented in Sect. 5.1. As a follow-up, we have conducted a
think-aloud protocol analysis aiming to detect shortcomings
in the language and discover how users comprehend VMTL
specifications. The results of this investigation are reported
in Sect. 5.2.

5.1 Learnability experiments

5.1.1 Methods and materials

The purpose of our experiments was to evaluate the initial
learnability [20] of VMTL, i.e., user’s initial performance
when first faced with the language. This property is arguably
important in the context of end-user model transformation,
as most end-user modelers have no prior experience withMT
technology.

123

http://www.nomagic.com/products/magicdraw.

V. Acreţoaie et al.

[0..3]

[1..5]

HenshinEpsilon VMTL

9

[1..5]

[s]

Setup
* within subjects design
* paper forms

Experiment 1

34 undergraduate students with homo-

graming languages

[0..3]

[1..5]

HenshinEpsilon VMTL

27

[1..5]

[s]

Setup
* within subjects design
* online forms

 diagrams

Experiment 2

33 undergraduate students, 5 MSc, and

34

40

Fig. 8 Overview of the study designs adopted for the learnability experiments

To this end, we have carried out two questionnaire-based
experiments, both of which compare the initial learnabil-
ity of VMTL with that of a textual MTL (Epsilon) and a
visual abstract syntax MTL (Henshin). Epsilon and Henshin
were selected as representing the main transformation para-
digms in the MDE landscape: textual imperative/declarative
hybrid languages, and visual graph transformation-based
languages [16]. In addition, Epsilon andHenshin are inwide-
spread use.6

The two experiments, referred to inwhat follows asExper-
iment 1 and Experiment 2, differ in terms of design and the
difficulty of included tasks. These differences are highlighted
in the following paragraphs. The two experimental setups are
summarized in Fig. 8. A replication package containing the
questionnaires, statistical analysis scripts, and the collected
data is available online [63].

Both experiments are crossover studies, a variant of
within-subject design [23]: all participants were sequentially
exposed to each MTL. The crossover design was selected
due to its statistical efficiency, as it minimizes the number of
participants required to correctly identify statistically signif-
icant differences between the MTLs. The main threats to the

6 A list of Epsilon’s industrial users is available at https://www.eclipse.
org/epsilon/users/. A collection of publications describing Henshin’s
use in various projects is available at https://www.eclipse.org/henshin/
publications.php.

validity of our experiments are related to participant selec-
tion, learning effects, and possible participant bias in favor of
VMTL as a language developed by their teachers. The miti-
gation measures adopted against these threats are described
in Sect. 5.1.4.

Experiment 1 took place in Spring 2014 and included 34
bachelor level CS students as participants. Experiment 2 took
place in Spring 2015 and included 40 bachelor, master, and
doctoral level CS students. In a subjective self-evaluation,
over 80% of participants rated their own knowledge of UML
and programming as good or very good, and their knowledge
of OCL and MT as poor or very poor. With the exception of
participants’ programming skills, these ratings are consistent
with the skills of an end-user modeler (see Table 1).

Immediately before the experiments, participants were
offered a written handout containing a brief introduction to
MT and descriptions of the three MTLs. They were asked to
read the handout and allowed to consult it at any time dur-
ing the experiment. Participants were then presented with a
questionnaire consisting of two sections: a comprehension
section and an assessment section. Different questionnaires
were used in Experiment 1 and Experiment 2.

The comprehension sections of both experiments’ ques-
tionnaires contain nine multiple-choice questions, three for
everyMTL. To answer a question, participants were required
to select the correct natural language description of a given

123

https://www.eclipse.org/epsilon/users/
https://www.eclipse.org/epsilon/users/
https://www.eclipse.org/henshin/publications.php
https://www.eclipse.org/henshin/publications.php

VMTL: a language for end-user model transformation

Table 5 Mean (μ), median (M), and standard deviation (σ) of the sizes
of transformation specifications used in comprehension questions. For
Epsilon, size is measured by counting lines of code. For Henshin and
VMTL, size is measured by counting diagram elements, as described
in [50]

Specification size

μ M σ

Experiment 1

Epsilon 18.00 15 4.24

Henshin 22.67 27 8.34

VMTL 26.00 28 4.32

Experiment 2

Epsilon 18.44 16 8.37

Henshin 78.00 68 33.40

VMTL 21.22 21 5.49

MT specification from a set of three answer options. In
Experiment 1, each participant was presented with the same
transformation three times, once for every MTL. In Experi-
ment 2, participants were presentedwith each transformation
only once, with a balanced number of participants receiving
each transformation specified in each MTL. The MT spec-
ifications included in Experiment 1 operate on UML class,
use case, and activity diagrams. In addition to these diagram
types, Experiment 2 also includes specifications operating on
UMLObject diagrams. The comprehension section produces
the experiments’ task metrics: the comprehension score, i.e.,
the number of correct answers provided by a participant for
each MTL (ranges between 0 and 3), and the time required
by a participant to answer the questions for each MTL.

The sizes of the transformation specifications included
in our experiments are summarized in Table 5. The size
of Epsilon specifications is measured by counting lines of
code, while the size of Henshin and VMTL specifications is
measured by counting individual shapes, line segments, and
textual labels (see [50] for a discussion of diagram size met-
rics). Questions included in Experiment 2 address slightly
more complex transformations andoffer at least twoplausible
answer options per question, leading us to replace the Epsilon
Transformation Language (ETL) with the closely related but
less constraining Epsilon Object Language (EOL).

The example transformations in Figs. 2 and 14 (“Appen-
dix”) are representative for the type of transformations
included in our experiments, namely in-place model updates
as commonly used for software model quality assurance [1].
Transformation 1 in Fig. 2 is in fact used as a question
in Experiment 2, which also includes equivalent questions
formulated for Epsilon andHenshin. The answer options pre-
sented to participants for this question are listed in Table 6.

The assessment section of the questionnaires addresses
participants’ subjective evaluation of the cognitive load

Table 6 Natural language description options provided in Experiment
2 for Transformation 1 in Fig. 2. The correct answer option is (a)

a. If two use cases are associated with the same actor, and one of
the use cases extends the other, delete the association between the
actor and the extending use case

b. If a use case extends another use case, delete all actors
associated with the extended use case

c. If two use cases are associated to the same actor, and one of the
use cases extends the other, delete the association between the
actor and the extended use case

d. I don’t know

imposed by each MTL. Two metrics were collected using
Likert scales: difficulty and effort ratings. Complementary
qualitative information regarding cognitive load was col-
lected via follow-up interviewswith some of the participants.

To facilitate evaluating the effect of the MTLs on partic-
ipants with different skill and capability levels, we analyze
data originating from high-performing and low-performing
participants separately. The average comprehension score is
used as a threshold value for identifying high performers and
low performers.

We rely on the analysis of variance (ANOVA [33]) as a
statistical hypothesis testing approach. The variance homo-
geneity and normal distribution of observations required as
prerequisites for applying ANOVA were verified, as recom-
mended in the literature [33], using residual plots and Q-Q
plots.Wealso employ theWilcoxon signed-rank test as a non-
parametric alternative, thus strengthening our confidence in
the observedANOVA results. Effect sizes are evaluated using
the η2 statistic in the case of ANOVA,7 and Spearman’s ρ in
the case of the Wilcoxon signed-rank test.8

5.1.2 Observations

The means and standard deviations of the comprehension
scores resulting fromExperiment 1 andExperiment 2 are pre-
sented in the leftmost data columns of Table 7 and Table 8,
respectively. The scores are also visualized as stacked bar
graphs in Fig. 9. Each horizontal bar in the figure is split into
sections corresponding to possible comprehension scores.
The size of each section is proportional to the number of
participants which have obtained that particular score. Since
in both experiments the comprehension section consists of
three questions for each transformation language, possible
comprehension scores range between 0 and 3. In Fig. 9,

7 Guidelines suggest that η2 values greater than 0.06 indicate a mod-
erate effect size, and values greater than 0.14 indicate a large effect
size [15].
8 Values for Spearman’s ρ range in the interval [−1, 1]. Values closer
to 0 indicate a lower correlation, and therefore a larger effect size.

123

V. Acreţoaie et al.

Table 7 Mean (μ) and standard
deviation (σ) of comprehension
scores, comprehension times,
and cognitive load ratings for
Experiment 1

Score [0..3] Time (s) Difficulty [1..5] Effort [1..5]

μ σ μ σ μ σ μ σ

High performers

Epsilon 2.65 0.60 325.13 110.74 3.93 0.79 3.61 0.86

Henshin 2.00 0.71 240.35 105.72 3.95 0.83 3.54 0.78

VMTL 2.53 0.63 275.41 123.93 4.22 0.75 3.65 0.88

Low performers

Epsilon 1.82 0.95 268.41 137.72 3.11 0.68 2.97 0.34

Henshin 0.76 0.56 245.00 106.84 3.28 0.73 3.11 0.68

VMTL 1.35 0.79 245.47 135.86 3.05 0.77 3.05 0.82

Table 8 Mean (μ) and standard
deviation (σ) of comprehension
scores, comprehension times,
and cognitive load ratings for
Experiment 2

Score [0..3] Time (s) Difficulty [1..5] Effort [1..5]

μ σ μ σ μ σ μ σ

High performers

Epsilon 2.22 0.52 441.00 180.81 4.06 0.87 4.06 0.94

Henshin 2.09 0.79 495.65 295.17 4.39 0.70 4.28 0.83

VMTL 1.96 0.93 326.09 115.59 3.78 0.81 3.56 0.86

Low performers

Epsilon 1.06 0.66 420.00 136.38 2.95 1.00 3.41 1.14

Henshin 0.71 0.59 351.43 107.48 2.86 1.08 3.00 1.07

VMTL 1.47 0.80 402.86 235.84 2.73 1.03 2.55 1.14

Experiment 1: Score

Experiment 2: Score

Hi
gh

Lo
w

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Pe
rf

or
m

an
ce

Hi
gh

Lo
w

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Pe
rf

or
m

an
ce

Fig. 9 Stacked bar graphs illustrating comprehension scores for each
MTL. Lighter colors correspond to higher scores: white sections show
the proportion of participants obtaining the maximum score (3), dark
grey sections show theproportionof participants obtaining theminimum
score (0) (color figure online)

lighter colors correspond to higher scores:white sections rep-
resent the proportion of participants that have obtained the
maximum score (3), while dark grey sections represent the
proportion of participants that have obtained the minimum
score (0). All plots in the figure are centered by a vertical
line drawn between the sections corresponding to scores of
1 and 2.

When it comes to comprehension scores, in Experiment
1, language is a significant factor for both high-performing
and low-performing participants (p = 0.01 and p < 0.01,
respectively). However, effect size is larger for low perform-
ers (η2 = 0.23) than for high performers (η2 = 0.17).
In the case of high performers, both Epsilon (p = 0.01,
ρ = 0.18) and VMTL (p = 0.03, ρ = 0.16) are associated
with significantly higher scores compared to Henshin, while
the difference between scores obtained under Epsilon and
VMTL is not statistically significant (p = 0.66). Similar rel-
ative score differences can be observed for low-performing
participants: Epsilon (p < 0.01, ρ = −0.07) and VMTL
(p = 0.04, ρ = −0.05) are associated with significantly
higher scores compared to Henshin, while the difference
between scores obtained under Epsilon and VMTL is not
statistically significant (p = 0.16). On the other hand, in
Experiment 2, language only has a statistically significant
effect on comprehension scores for low-performing partic-
ipants (p = 0.02, η2 = 0.18). For this participant group,
VMTL is associated with significantly higher scores than
Henshin (p = 0.02, ρ = −0.26), while other score differ-
ences are not statistically significant.

Completion times for the comprehension task are shown
in the second group of data columns in Tables 7 and 8,
respectively. They are illustrated as box plots in Fig. 10.
A first observation is that completion times are longer for

123

VMTL: a language for end-user model transformation

High-performers Low-performers High-performers Low-performers

Experiment 1 Experiment 2
100

200

300

400

500

600

700

800

Ti
m

e
(s

)
VMTLEpsilon Henshin

Fig. 10 Box plots illustrating completion times of the comprehension
questions for each MTL, grouped by experiment and participant per-
formance

Experiment 2, which features slightly more complex trans-
formations. In terms of the effect of language, Experiment 1
participants requiredmore time to answer questions under the
Epsilon language than under the other two MTLs, although
the difference is only slightly significant for high perform-
ers (p = 0.06, η2 = 0.12), and not significant for low
performers. A similar trend is visible for low performers
in Experiment 2, but again lacking significance. In con-
trast, the completion times observed for high performers in
Experiment 2 are highly dependent on language (p < 0.01,
η2 = 0.2). Here, VMTL is possibly associated with shorter
completion times than both Epsilon (p = 0.07) and Henshin
(p = 0.02, ρ = 0.27), while Epsilon is possibly asso-
ciated with shorter completion times than Henshin (p =
0.06).

Difficulty and effort ratings are summarized in the right-
most data columns of Tables 7 and 8, and illustrated in Fig. 11
as stacked bar graphs. The bars in Fig. 11 are based on a
5-point scale of possible rating values. Lighter colors cor-
respond to higher difficulty and effort ratings. In the case
of Experiment 1, difficulty ratings do not significantly differ
as a function of the considered transformation language. The
only visually apparent difference, the higher difficulty ratings
assigned by high-performing participants to VMTL, is not
statistically significant (p = 0.23 and p = 0.33 when com-
pared to Epsilon and Henshin, respectively). Similarly low
differences in difficulty ratings can be observed in the case
of Experiment 2. The only exception is represented by the
potentially significantly higher difficulty ratings assigned by
high-performing participants toHenshin compared toVMTL
(p = 0.05, ρ = −0.11).

Hi
gh

Lo
w

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Epsilon
Henshin
VMTL

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

Pe
rf

or
m

an
ce

Hi
gh

Lo
w

Hi
gh

Lo
w

Hi
gh

Lo
w

Experiment 1: Perceived Di culty

Experiment 1: Perceived E ort

Experiment 2: Perceived Di culty

Experiment 2: Perceived E ort

Fig. 11 Stacked bar graphs illustrating cognitive load ratings for each
MTL. Lighter colors correspond to higher ratings: white sections show
the proportion of participants assigning the maximum rating (5), dark
grey sections show theproportionof participants assigning theminimum
rating (1) (color figure online)

For Experiment 1, effort ratings generally follow the
same pattern as difficulty ratings. However, whereas VMTL
was rated as slightly more difficult by high-performing par-
ticipants, the same participants appear to rate Henshin as
requiring higher effort, though the increase is not statisti-
cally significant (p = 0.75 and p = 0.44 when compared
to Epsilon and VMTL, respectively). The only statistically
significant impact of an MTL on any of the cognitive load
measurements is registered for the effort ratings of Exper-
iment 2. Here, high-performing participants rate VMTL as
requiring significantly less effort than Henshin (p < 0.01,
ρ = 0.41), and potentially significantly less effort than
Epsilon (p = 0.1, ρ = 0.19). A similar trend, but lacking
statistical significance, can be observed for low-performing
participants.

5.1.3 Interpretation

Our results show that VMTL outperforms Henshin in
terms of comprehension scores. However, comprehension
scores obtained under Epsilon are slightly higher than those
obtained under VMTL. At the same time, VMTL is associ-

123

V. Acreţoaie et al.

11
27 30

43
68

95

40

154

89 95

53
65

28 20 30 21 28
12 14 18 24 26 20 28

0

50

100

150

200

Cl
as

s

U
se

 C
as

e

Ac
tv

ity

Cl
as

s

Cl
as

s

U
se

 C
as

e

U
se

 C
as

e

O
bj

ec
t

O
bj

ec
t

Ac
tv

ity

Ac
tv

ity

Ac
tv

ity

Henshin
VMTL

Experiment 1 Experiment 2

Di
ag

ra
m

El
em

en
ts

Fig. 12 Number of diagram elements (shapes, line segments, labels)
included in the Henshin and VMTL specifications presented to partici-
pants

ated with shorter completion times and lower cognitive load
ratings than Epsilon.

The comprehension score differences between the visual
MTLs (VMTL and Henshin) can be interpreted in at least
two ways. First, the superiority of VMTL may result from
its adoption of concrete syntax. The very reason why UML
and other modeling languages adopt a concrete syntax on
top of the abstract one is to improve comprehension. This is
achieved by employing expressive visual notations and hid-
ing unessential meta-model details. A second explanation for
VMTL’s better performance has to dowith specification size.
As shown in Fig. 12, the VMTL specifications included in
Experiment 2 are considerably more concise than their Hen-
shin counterparts. Completion times observed for Henshin
in this experiment are significantly higher, as are cognitive
load ratings (although Henshin obtains better comprehen-
sion scores for high-performingparticipants). The hypothesis
that diagram size has an important effect on comprehension
is supported by previous findings on UML diagram under-
standing [50].

The high comprehension scores associated with Epsilon
are, to us, the most surprising result of the two experiments.
Considered together with the high task completion times,
Epsilon’s high comprehension scores point to a higher level
of engagement of participants with this language. We offer
two possible explanations for this. The first is participant
background, given that participants are Computer Science
students with strong programming skills—over 80% rated
their own programming skills as good. With its C-style syn-
tax and imperative execution semantics, Epsilon may have
appeared familiar to them. This hypothesis suggests that
repeating our experiments with actual end-user modelers as
participants may yield a different outcome.

An alternative explanation for the high comprehension
scores associated with Epsilon is offered by cognitive fit the-
ory [61], which has primarily been applied in the field of
information visualization [58,62]. According to this theory,

the accuracy of a problem solving process increases when
the problem solving task matches the problem representa-
tion. In our case, the answer options of the comprehension
questions are the problem solving task, and the transforma-
tion languages are the problem representation. Because the
task is represented textually, a textual MTL such as Epsilon
represents a better fit for solving it. The cognitive fit hypoth-
esis is supported by a participant’s remark in a follow-up
interview: “I couldn’t relate the text to the pictures”. Were
this to be true, an experiment providing visual answer options
may yield different outcomes.

The low completion times and cognitive load ratings
observed for VMTL appear to suggest that its simple syn-
tax has promoted an intuition-based approach to question
answering. While fast and not very demanding, relying on
intuition is not always accurate, as shownbyVMTL’s slightly
lower comprehension scores compared to Epsilon.

Finally, the differences between the results obtained by
participants in the two experiments are largely unsurpris-
ing. The increased difficulty of the questions in Experiment
2 are very likely the cause of the increases in completion
times and cognitive load ratings observed for all three lan-
guages. The comprehension score differences are, however,
more intriguing. First, question difficulty does not seem to
have an important effect on the scores obtained by either
high- or low-performing participants under VMTL and Hen-
shin. This comes in contrast with Epsilon, under which
low-performing participants score considerably worse when
question difficulty increases. In this case, we hypothesize
that the combination of high task difficulty and a relatively
complex notation makes it unlikely for less skilled users to
intuitively guess the intention of a transformation.

5.1.4 Threats to validity

To evaluate the validity of our experiments, we consider the
four categories of threats to the validity of software engineer-
ing experiments described by Wohlin et al. [66].

Construct validity An experiment manifests construct
validity if it measures the actual phenomena under inves-
tigation—in our case, model transformation language learn-
ability. A possible threat to the construct validity of our
experiments is the lack of a production task in which partici-
pants create transformation specifications themselves.While
such an evaluation would be a desirable addition (especially
for an evaluation of extended learnability), the comprehen-
sion tasks employed in our experiments offer an appropriate
measure of initial learnability. Applying Cronbach’s alpha to
the comprehension resuts of Experiment 1,9 however, reveals
values below 0.5 for all languages. Although partially jus-

9 Due to the adopted experimental design, Cronbach’s alpha cannot be
reliably computed for Experiment 2.

123

VMTL: a language for end-user model transformation

tified by the low number of questions per language, these
values may indicate a low reliability of the questions. In what
concerns cognitive load, it has been shown that the subjective
measures employed in our experiments are highly correlated
with objective cognitive load measures (cf. [18]). Last but
not least, since VMTL is developed by the authors of this
study, any bias in favor of this language must be avoided. To
this end, we have presented the MTLs to participants in an
impartial manner, replacing their names with pseudonyms.

Internal validityAnexperimentmanifests internal validity
if a causal conclusion regarding the phenomena under inves-
tigation can be drawn from it. The internal validity of our
experiments is threatened by learning effects, a typical issue
forwithin-subject experimental designs. Experiment 1 is par-
ticularly vulnerable, as it presents participants with the same
questions for everyMTL. To counter this threat, we have ran-
domly assigned participants to one of three treatments, each
presenting theMTLs in a different order. We have also inves-
tigated the statistical significance of language order. ANOVA
yields p = 0.02 (i.e., language order is significant), while
Fisher’s exact test yields p = 0.42 (i.e., language order is
not significant). Thus, the possibility that language order is
significant cannot be ruled out. Learning effects are a much
smaller threat for Experiment 2, as it does not reuse ques-
tions. However, Experiment 2 is under risk of confounding
the effect of the MTLs with that of particular UML diagram
types. For this reason, we have also created three versions
of the questionnaire used in Experiment 2 by permuting the
questions asked under each MTL. Finally, we have avoided
selection bias (i.e., the self-selection of only those volunteers
that are interested in the topic of the experiment) by offering
a small participation prize.

Conclusion validity An experiment manifests conclusion
validity if the statistical relationship between its factors
and outcomes is correctly evaluated. Threats to conclu-
sion validity typically originate in incomplete or incorrect
statistical analysis procedures. We avoid such threats by pre-
senting both descriptive and inferential statistics, verifying
the assumptions of the employed statistical tests, performing
nonparametric hypothesis testing (theWilcoxon signed-rank
test), and reporting effect sizes. In particular, the assumptions
required by the ANOVA technique were verified by visu-
ally inspecting residual plots and Q-Q plots, as suggested by
Montgomery et al. [33].

External validity An experiment manifests external valid-
ity if its outcomes can be generalized to a wider population.
We ensure external validity by using sufficiently large num-
bers of participants. However, it may be argued that, as CS
students, these participants are not representative for the pop-
ulation of end-user modelers. This is partially true, as over
80% of them have rated their own programming skills as
good or very good, which cannot be said about the typical
end-user modeler. However, a similar percentage of partic-

ipants have rated their knowledge of UML as good or very
good, and their knowledge of OCL and MT as poor or very
poor. These ratings are in line with the skills of end-user
modelers illustrated in Table 1. Concerns can also be raised
regarding the representatives of the transformations included
in the experiments. To address them, we have included trans-
formations on several diagram types covering both structural
and behavioral models. Finally, the specifications used are
relatively small (see Table 5; Fig. 12), a limitation difficult
to avoid within the confines of an experiment.

5.2 Think-aloud protocol analysis

5.2.1 Methods and materials

While the experiments presented in Sect. 5.1 offer an objec-
tive measure of VMTL’s relative learnability compared to
that of Epsilon and Henshin, they do not provide any insights
into how users approach the task of comprehending a VMTL
specification. To gain these insights, we have conducted a
think-aloud protocol investigation following the methodol-
ogy described in [31]. Our study follows the concurrent
think-aloud protocol methodology, in which participants ver-
bally describe their thought process as they complete a given
task.

Four PhD students with diverse backgrounds took part in
the study. They are identified in what follows as Participant 1
through 4. The research domain, as well as the self-reported
UML and English language skill levels of each participant
are listed in Table 9. Notably, they all rate their UML knowl-
edge as poor. Participants were presented with the three
VMTL transformation specifications shown in Fig. 13. These
transformations respectively operate onUML class diagrams
(Transformation 1), UML activity diagrams (Transformation
2), and UML use case diagrams (Transformation 3).

After sitting through an introduction to MT and VMTL,
participants were asked to read the VMTL specifications and
explain their intended meaning. While doing so, they were
allowed to consult a written specification of VMTL at any
time. The experimenter took notes of participants’ answers
and other remarks as they completed the tasks, without pro-
viding assistance.

Table 9 Backgrounds of think-aloud protocol analysis participants.
UML and English language skills were self-assessed

ID Domain UML [1..5] English [1..5]

1 Nutrition science 1 4

2 Theoretical CS 1 4

3 SE 2 2

4 SE 2 3

123

V. Acreţoaie et al.

Fig. 13 VMTL transformation specifications included in the think-aloud protocol analysis. Transformation 1 is applicable to UML class diagram,
Transformation 2 is applicable to UML activity diagrams, and Transformation 3 is applicable to UML use case diagrams

123

VMTL: a language for end-user model transformation

5.2.2 Results

The think-aloud protocol analysis has yielded several inter-
esting findings. First, it has confirmed that allowing transfor-
mation developers to choose between Update Patterns
and Find/Replace Pattern pairs is a good design
decision. One participant found it difficult to relate a Find
Pattern with its corresponding Replace Pattern,
expressing a preference for the more concise notation of
Update Patterns. Meanwhile, two other participants
referred to Find/Replace Pattern pairs as “before”
and “after” states of the transformation, a concept which
they apparently found intuitive. Participants did not place
any emphasis on pattern icons, indicating that offering these
icons only as optional visual aids is indeed appropriate.

Additional observations of interest emerged regarding
VMTL annotations. Two participants expressed confusion
as to which pattern elements an annotation refers to in the
context of a class diagram. Participant 4 could not precisely
identify if the delete annotation in Transformation 1 refers
to an Attribute or to its containing class, when the annotation
in fact refers to the class. The same participant expressed sur-
prise that an annotation can be anchored to an Association
(as exemplified in Transformation 3), and could not deter-
mine which end of the Association it refers to—in fact, the
annotation refers to theAssociation itself. Finally, Participant
2 repeatedly referred to the annotations as “log messages”.
These observations suggest that VMTL’s textual annotations
may not be as intuitive as hoped, and that ambiguities intro-
duced by the model editor regarding the anchor point of an
annotation may negatively affect comprehension.

The now deprecated create singleton clause
included in the version of VMTL used in the study has also
caused participants some difficulty. This clause is employed
in Transformation 1. All participants needed to consult its
written description several times, and Participant 2 described
it as “taking an existing model element and turning it into
a singleton”. The clause’s intended effect is in fact to cre-
ate a new model element only if an identical one does not
already exist in the source model. We suspect that the term
“singleton” may have a different or unclear meaning to end-
user modelers, and have consequently replaced the create
singleton clause with the more explicit formulation of
create if not exists.

Participants’ individual backgrounds may have affected
the way they approached the tasks. Participants with a CS
background attempted to interpret the specifications by con-
sidering similar notions from general-purpose programming
languages. For example, Participant 4 correctly remarked
that VMTL’s notation for variables resembles the notation
adopted by the PHP scripting language. However, Participant
2’s intuition to equate VMTL annotations with log messages
was less helpful. As expected based on her non-computer

science background, Participant 1 encountered difficulties in
understanding the meaning and purpose of the various UML
notations, with class diagrams posing the greatest challenge.

Ultimately, the limited scale of this think-aloud pro-
tocol analysis prevents us from attempting to generalize
its outcomes. Nevertheless, the study has provided valu-
able indications regarding which aspects of VMTL require
improvements. These indications are reflected in the current
version of VMTL’s syntax presented in Sect. 3.3. The analy-
sis has also suggested possible contributing factors to the
results obtained by VMTL in the learnability experiments
presented in Sect. 5.1.

5.2.3 Threats to validity

The most important threats to the validity of this study are
related to its participants. First, the low number of partic-
ipants does not allow us to attempt a generalization of the
outcomes to any wider population. The diverse backgrounds
of participants also hinder any attempts at generalization,
while their overall poor knowledge of UML arguably makes
participants unrepresentative for the general population of
end-user modelers. Under these circumstances, the quali-
tative data gathered from this study may only be used to
complement the interpretation of our experimental results
and inform some relatively minor updates to VMTL.

Participant selection bias is also a possible threat to valid-
ity, as all participants volunteered to take part in the study.
This threat was mitigated by offering a small participation
prize.

The instrumentation of the study poses a threat to its
validity, as the three transformations employed only cover a
small subset ofUML.However, three differentUMLdiagram
types were included, featuring both structural and behav-
ioral constructs. A similar observation can bemade regarding
the relatively small number of VMTL language constructs
present in these transformations. While Find, Produce,
and Update patterns were all included, pattern types repre-
senting application conditions were not included, and neither
were most of VMTL’s textual annotation clauses. Neverthe-
less, many of the observations presented in Sect. 5.2.2 are not
limited to specific syntax elements, but are more generally
applicable to entire categories of VMTL constructs, such as
annotations or icons.

Finally, experimenter bias must be considered, since par-
ticipants’ qualitative feedback may mirror any apparent
expectations on the experimenter’s side. Participants in our
study were aware of the fact that VMTL is a language devel-
oped by the experimenter. They were, however, not informed
about the precise purpose of the study or any expectations
regarding its outcomes.

123

V. Acreţoaie et al.

6 Related work

6.1 Support for end-user modelers

The need for languages and tools supporting end-user mod-
elers has first been identified in connection to model query-
ing. The query-by-example approach adopted by Constraint
Diagrams (CD [26]) and Join Point Designation Diagram
(JPDD [46]) allows users to express queries as concrete
syntax patterns. The same technique can be applied to spec-
ify model constraints [52]. The business process modeling
community particularly emphasizes end-user friendly model
querying through languages like BP-QL [11] and BPMN-
Q [7].

VMTL itself has been developed on the foundation of
VMQL [51], a usability-focused query-by-example lan-
guage. Like VMTL, VMQL has been experimentally eval-
uated. In particular, it has been shown to offer superior
usability compared to OCL, the de facto standard model
query language, when querying UML models [51] and
BPMN models [48].

6.2 Transparent model transformation

The insight that model transformations can be viewed as
models [12] has been the first step toward syntax trans-
parency. Early MTLs such as VMT [43] and MOLA [25]
attempt to capture the usability benefits of syntax trans-
parency by integrating concrete syntax fragments in their
specification languages. More recent tools, such as the Web-
based AToMPM [54], take a similar route. However, these
approaches fail to achieve syntax transparency, as they
modify their host languages’ existing concrete syntax. The
purpose of the modifications is typically to provide expres-
sive rule execution control mechanisms [25,54].

A number of existing MTLs do, however, adhere to a sub-
set of the transparency principles defined in Sect. 3.1—albeit
without explicitly claiming this. These MTLs are listed in
Table 10.

Syntax transparency is exhibited byMATA [64], PICS [8]
and the MTL proposed by Schmidt [41], all of which delib-
erately shun expressive control flow in favor of avoiding
conformance breaking augmentations to the host meta-
model. However, none of these approaches also address
environment or execution transparency. MATA can only be
used via the IBM Rational Software Modeler, thus failing
to provide environment transparency. It generates executable
rules for theAGG[57] graph transformation engine. PICS, on
the other hand, has never been implemented, and is designed
to act exclusively as a front-end for graph transformation. The
purely conceptual proposal by Schmidt is limited to endoge-
nous UML transformations, and does not discuss model
editor integration.

Table 10 Approaches supporting explicit MT specifications and
exhibiting syntax transparency (ST), environment transparency (EnT),
or execution transparency (ExT)

Approach ST EnT ExT

AToMPM [54] × × �
MATA [64] � × �
MeTAGeM [14] × × �
MoTif [56] × × �
MoTMoT [59] × � �
PICS [8] � × ×
QVT-R [36] × × �
Schmidt [41] � × ×
TransML [21] × × �
VMTL � � �

Model transformation literature typically only mentions
environment transparency as a consequence of syntax trans-
parency. One of the few transformation solutions exhibiting
environment transparency in the absence of syntax trans-
parency is MoTMoT [59], which defines a UML profile
allowing the specification of graph transformations using any
UML editor.MoTMoT specifications can be executed by any
graph transformation engine, thus also exhibiting execution
transparency.

Several high-level MTLs are implemented by transla-
tion to lower level languages, in effect achieving execution
transparency. The QVT Relations [36] standard, meant to
be implemented by translation to QVT Core, is one such
example. TheAToMPM toolmentioned above generates exe-
cutable specifications for a transformation engine based on
the Python programming language. The recent emergence of
transformation primitive libraries such as T-Core [55], along
with their usage for implementing existing MTLs such as
MoTif [56], indicates that this implementation style is viable.
Execution transparency is also addressed in the context of
the systematic development of model transformations by the
transML [21] and MeTAGeM [14] tools.

While VMTL shares some commonalities with each of
these MTLs, it is the first model transformation approach to
encompass syntax, environment, and execution transparency.
Its focus on end-user modelers also sets VMTL apart, as the
majority of the MTLs in Table 10 were proposed in an MDE
context.

Apart from the approaches listed in Table 10, Model
Transformation By-Example (MTBE [60]) is a paradigm
aimed at enabling modelers to express transformations
while largely circumventing the use of dedicated MTLs.
In MTBE, transformations are defined as concrete syntax
examples from which an underlying engine deduces rules
expressed using a traditionalMTL. In correspondence-based
approaches [6,9,27,39,65], users explicitly state the cor-

123

VMTL: a language for end-user model transformation

respondences between example source and target model
elements. Indemonstration-based approaches [30,53], trans-
formation rules are exemplified by performing edit opera-
tions on the source model. Both MTBE styles exhibit syntax
and execution transparency. However, there is an important
difference between MTBE approaches and MTLs support-
ing explicit transformation specifications, such as VMTL.
Whereas in MTBE transformation rules are deduced from
concrete syntax examples, the MTLs listed in Table 10 sup-
port specifying these rules directly.

6.3 Usability in model transformation

Whendiscussingmodel transformation approaches, usability
is often claimed but rarely investigated. The application of
sound empirical methods to this research field appears to be
in its infancy.

Most existing empirical evidence regarding MTL usabil-
ity is of a qualitative nature. Silva et al. [45] investigate the
extent towhich a selection of eightMTLs cater to the needs of
novice users, finding that most do not adequately support this
user category. The study is based exclusively on its authors’
evaluation of a set of features deemed desirable for novices.
Neither the selection of these features nor the choice of evalu-
atedMTLs is discussed, and the topic of language learnability
is not addressed. Grønmo et al. [19] investigate the usability
of three model transformation languages by comparing their
conciseness and required development effort for implement-
ing a complex model transformation. The choice of MTLs
included in this study is similar to ours: a textual MTL, an
abstract syntax visual MTL, and a concrete syntax visual
MTL. However, the presented evaluation is limited to an
intuition-guided discussion of the three transformation spec-
ifications.

Two user studies evaluating the usability of model trans-
formation approaches have been reported in the literature:
the study by Avazpour et al. [6] and the one by Batory et
al. [10]. The first study evaluates the CONVErT framework,
a Model Transformation By-Example approach enhanced
with interactive recommendations. The presented evaluation
is primarily qualitative, and features a total of 15 participants.
Each participant was asked to complete a transformation
task using CONVErT, and subsequently provide a subjective
account of the experience via a questionnaire. Most partici-
pants rated the framework as easy to learn and use, but data
describing their objective performance is not provided. No
other MTLs were included in the evaluation.

Batory et al. [10] adopt learnability as the main design
goal of their model transformation approach, MDELite. Fol-
lowing a failed attempt to teach MT using EMF, the authors
state that the EMF toolchain promotes “incantations to solve
problems”, and consequently propose MDELite, a library
for the Prolog logic programming language. The usability

of MDELite is compared to that of the Atlas Transforma-
tion Language (ATL, [24]) in a quasi-experiment including
12 undergraduate and graduate CS students as participants.
The main findings of this study are that MDELite does not
objectively improve students’ productivity, but is neverthe-
less perceived by students as significantly easier to learn and
use than ATL. The presented evaluation is rich in qualita-
tive information, especially participant remarks, but provides
little quantitative evidence. This comes in contrast with
the primarily quantitative evaluation of VMTL presented in
Sect. 5.1.

7 Conclusions

7.1 Summary

End-user modelers can broadly be described as highly qual-
ified but possibly non-technical domain experts creating and
using models as part of their work. They are expected to be
closely familiar with some particular modeling languages,
but have no incentive to master meta-modeling or rule lan-
guages such as OCL. Furthermore, the majority of end-user
modelers are not software developers, instead fulfilling roles
such as “business analyst” or “enterprise architect.”

Many of the tasks involved in the life-cycle of a model,
such as quality-oriented refactoring or migration to an
updatedmeta-model, can fallwithin the responsibility of end-
user modelers. Considering that these tasks can be seen as
model transformations, end-user modelers are currently at
a technological disadvantage compared to MDE practition-
ers. This latter group of users has access to a large variety
of MTLs, almost all designed to accommodate their exist-
ing software engineering skills. End-user modelers are left
unable to use, and often unaware of MT technologies that
could greatly benefit their productivity.

We have addressed this problem by systematically devel-
oping an MTL for end-user modelers. First, we have inves-
tigated the requirements for such an MTL, and synthesized
them into the general concept of transparent model trans-
formation. This concept stands on three pillars: syntax,
environment, and execution transparency. Together, these
principles ensure that end-user modelers can access up-to-
date MT technology using exclusively languages and tools
they are familiar with, requiring minimal or no extensions.

We have then defined VMTL, the first MTL to respect all
three transparency principles. VMTL maps the full range
of constructs typically found in a declarative transforma-
tion language to elements of the host modeling language.
This process amounts to a lightweight meta-model exten-
sion that does not break compatibility with existing model
editors. Transformation specifications created this way can
then be executed by any sufficiently expressive transforma-

123

V. Acreţoaie et al.

tion engine. In our implementation,wehave used theHenshin
transformation engine, as it offers an operational semantics
closely resembling that of VMTL. The need for extending
non-MDE model editors to support VMTL is mitigated by
the option of deployingVMTL’s entire runtime infrastructure
as a RESTful web service API.

The argument in favor of VMTL is one of superior learn-
ability, an argument requiring empirical confirmation. We
have therefore conducted complementary empirical investi-
gations into VMTL’s learnability, yielding both quantitative
and qualitative evidence.

We first performed two user experiments comparing
VMTL with a textual MTL (Epsilon) and an abstract syntax
visual MTL (Henshin) from a learnability standpoint. Our
evaluation was based on two task metrics (comprehension
score and task completion time) and two subjective met-
rics measuring the cognitive load imposed by each language
on participants (perceived difficulty and effort). VMTL was
associated with the shortest completion times and lowest
cognitive load ratings, but also with comprehension scores
slightly below Epsilon. We hypothesize that VMTL outper-
formed Henshin either due to its use of concrete syntax, or
due to the known effect of diagram size on comprehension.
We also hypothesize that the cognitive fit between Epsilon,
a textual language, and the textual questions included in the
experiment may have benefited this MTL.

To understand how users approach VMTL specifications,
we have also carried out a concurrent think-aloud protocol
analysis. This has confirmed some of the design decisions
adopted for VMTL, and has also yielded a list of possible
syntax improvements.

7.2 Contributions

Wehave introduced the notion of end-usermodeler, and char-
acterized end-usermodelers in contrast toMDEpractitioners.
Based on the principles of transparent model transformation,
which we have first defined in a previous publication [2],
we have proposed VMTL as the first model transformation
language explicitly addressing the needs and capabilities of
end-user modelers. We have provided detailed descriptions
of VMTL’s syntax, operational semantics, and implementa-
tion. Finally, we have presented and discussed the results of
two experiments addressing VMTL’s learnability, as well as
those of a think-aloud protocol analysis aimed at uncovering
its potential shortcomings.

We believe that both researchers and practitioners can
benefit from these contributions. From a research perspec-
tive, the emphasis placed in this paper (and recent similar
publications [6,10]) on the empirical validation of usability
claims illustrates the importance of human factors studies in
the area of model transformation languages. The existence
of such studies constitutes a strong argument in favor of the

industrial adoption of these languages in bothMDE and end-
user modeler contexts. At the same time, this paper’s focus
on end-user modelers can help bring a significant new cate-
gory of modeling practitioners to the attention of the model
transformation research community.

7.3 Future work

We intend to continuously improve VMTL based on empir-
ical results. Such improvements are best informed by qual-
itative evidence, motivating us to emphasize interviews and
think-aloud protocol studies in the future. The results of the
presented think-aloud protocol analysis also encourage us to
pursue this direction.

At the same time, we plan to perform a number of
follow-up experiments on MTL learnability. First, includ-
ing participants with a background more closely resembling
that of end-user modelers will improve the validity of our
results. The inclusion of participants without a computer
programming background will also help eliminate the pos-
sible bias in favor of textual MTLs such as Epsilon. The
hypothesized cognitive fit advantage enjoyed by Epsilon as
a textual language could be mitigated by providing visual
answer options for the comprehension questions. Studying
additional MTLs would allow us to either more confi-
dently generalize or re-consider our conclusions. Finally,
asking participants to produce transformation specifications
themselves, as opposed to only comprehending existing
specifications, is an advisable variation to our experimental
design.

Extending VMTL’s tool support is an equally important
future work direction. A particularly relevant concern in this
direction is the provision of end-user accessible support for
debugging VMTL specifications. Furthermore, since VMTL
specifications can currently only be executed using the Hen-
shin transformation engine, extending the VM* Runtime
to accommodate alternative engines will lend credibility to
VMTL’s syntax transparency claims.We also intend to lever-
age VMTL’s service-based deployment to create lightweight
model transformation plugins for traditional model editors
such as Microsoft Visio and MagicDraw.

Appendix: The pull-up attribute refactoring in
VMTL

As a somewhat more elaborate VMTL specification com-
pared to the introductory examples featured in Sect. 2, this
appendix presents the VMTL specification of the “Pull-Up
Attribute” refactoring. This refactoring addresses a con-
secrated UML class diagram design anti-pattern [1]. Its
description states that common attributes of all classes shar-
ing the same abstract superclass must be deleted, and an

123

VMTL: a language for end-user model transformation

Fig. 14 A multi-rule VMTL specification: the “Pull-Up Attribute”
refactoring. Rule 1 (top) and Rule 2 (bottom)

attribute with the same name, type, and visibility
(i.e., the same signature) must be created in the superclass.
In 1, this is the case for the “amount” and “confidential notes”
attributes shared by the “Installment Loan” and “Revolving
Loan” classes. TheVMTL implementation of this refactoring
relies on two rules. Rule 1, shown in Fig. 14 (top) addresses
the basic case with only two subclasses, while Rule 2, shown
in Fig. 14 (bottom), handles additional subclasses.

Rule 1 consists of an Update Pattern and two
Forbid Patterns. The Update Pattern, named
“Pull Up,” will match any class that has at least two sub-
classes sharing an attribute with the same signature. The
name of the class is stored in the $Class variable, while
the name, visibility, and type of the attribute are
stored in the $Attribute, $V, and $T variables, respec-
tively. Thedelete annotation is used to remove the attribute
from the subclasses, while the create annotation creates
a new attribute in the superclass. The name, type, and
visibility of the new attribute are set to the values
stored in the $Attribute, $V, and $T variables. Using
VMTL’s if operator, the visibility of the new attribute
is set to protected if the deleted attribute’s visibility was
private, so that it is visible to subclasses.

The two Forbid Patterns of Rule 1 act as appli-
cation conditions. If any one of them is matched, the rule
will no longer be applied to that specific source model frag-
ment, regardless if the Update Pattern is matched. The
first Forbid Pattern, named “Attribute in Superclass”,
ensures that the rule is not applied if the attribute to be pulled
up already exists in the superclass. The visibility :=
* annotation allows the pattern to match any attribute visi-
bility value. Finally, the refactoring should only be applied
if all subclasses of the considered class own the attribute to
be pulled up. This condition is enforced by the “Subclass
without Attribute” Forbid Pattern using the omit
annotation. Whenever the omit annotation is anchored to
a pattern element, that element must not appear in a success-
ful pattern match.

Rule 2 addresses the scenario in which there are more
than two subclasses owning an attribute to be pulled up.
Since an identical attribute has already been created in
the superclass, this rule removes all attributes appearing in
both the superclass and its subclasses. To this end, a single
Update Pattern with no additional application condi-
tions is required.

References

1. Arendt, T.: Quality Assurance of Software Models. Ph.D. thesis,
Philipps-Universität Marburg (2014)

2. Acretoaie, V., Störrle, H., Strüber, D.: Transparent model transfor-
mation: turning your favourite model editor into a transformation

123

V. Acreţoaie et al.

tool. In: Theory and Practice ofModel Transformation, LNCS, vol.
9152, pp. 121–130. Springer, Berlin (2015)

3. Acretoaie, V., Störrle, H.: Hypersonic: Model Analysis and Check-
ing in the Cloud. In: Proceedings of 2nd Workshop on Scalability
in Model Driven Engineering. CEURWorkshop Proceedings, vol.
1206, pp. 6–13 (2014)

4. Acretoaie, V., Störrle, H.: MQ-2: a tool for prolog-based model
querying. In: Joint Proceedings of Co-located Events at the 8th
European Conference onModelling Foundations and Applications
(ECMFA’12), pp. 328–331. TechnicalUniversity ofDenmark,Kgs.
Lyngby, DK (2012)

5. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: Advanced Concepts and Tools for In-Place EMF Model
Transformations. Model Driven Engineering Languages and Sys-
tems. LNCS, vpl. 6394, pp. 121–135. Springer, Berlin (2010)

6. Avazpour, I., Grundy, J., Grunske, L.: Specifying model transfor-
mations by direct manipulation using concrete visual notations and
interactive recommendations. J.Visual Lang.Comput.28, 195–211
(2015)

7. Awad, A., Sakr, S.: On efficient processing of BPMN-Q queries.
Comput. Ind. 63(9), 867–881 (2012)

8. Baar, T.,Whittle, J.: On the usage of concrete syntax inmodel trans-
formation rules. In: Perspectives of Systems Informatics. LNCS,
vol. 4378, pp. 84–97. Springer, Berlin (2007)

9. Balogh, Z., Varró, D.: Model transformation by example using
inductive logic programming. Softw. Syst. Model. 8(3), 347–364
(2009)

10. Batory, D., Azanza, M.: Teaching model-driven engineering from
a relational database perspective. Softw. Syst. Model. pp. 1–25
(2015)

11. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business
processes with BP-QL. Inf. Syst. 33(6), 477–507 (2008)

12. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow,
A.: Model transformations? Transformation models! In: Model-
driven engineering languages and systems, LNCS, vol. 4199, pp.
440–453. Springer, Berlin (2006)

13. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of
consistent EMF model transformations by algebraic graph trans-
formation. Softw. Syst. Model. 11(2), 227–250 (2012)

14. Bollati, V.A., Vara, J.M., Jiménez, Á., Marcos, E.: Applying MDE
to the (semi-)automatic development ofmodel transformations. Inf.
Softw. Technol. 55(4), 699–718 (2013)

15. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences,
2 edn. Routledge (1988)

16. Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621–645 (2006)

17. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of
Algebraic Graph Transformation. Springer, Berlin (2006)

18. Gopher, D., Braune, R.: On the psychophysics of workload: Why
bother with subjective measures? Hum. Factors 26(5), 519–532
(1984)

19. Grønmo, R., Møller-Pedersen, B., Olsen, G.K.: Comparison
of Three Model Transformation Languages. Model Driven
Architecture—Foundations and Applications. LNCS, 5562, pp. 2–
17. Springer, Berlin (2009)

20. Grossman, T., Fitzmaurice, G., Attar, R.: A survey of software
learnability: metrics, methodologies and guidelines. In: Proceed-
ings of SIGCHI Conference on Human Factors in Computing
Systems (CHI’09), pp. 649–658. ACM, New York (2009)

21. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos,
O.M.: Engineering model transformations with transML. Softw.
Syst. Model. 12(3), 555–577 (2013)

22. Internet Engineering Task Force (IETF): IETF RFC 6749: The
OAuth 2.0 Authorization Framework. http://tools.ietf.org/html/
rfc6749 (2012)

23. Jones, B., Kenward, M.G.: Design and Analysis of Cross-Over
Trials, third edn. Chapman and Hall/CRC, London (2014)

24. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model trans-
formation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)

25. Kalnins, A., Barzdins, J., Celms, E.: Model transformation lan-
guage MOLA. In: Model Driven Architecture. LNCS, vol. 3599,
pp. 62–76. Springer, Berlin (2005)

26. Kent, S.: Constraint diagrams: visualizing invariants in object-
oriented models. In: Proceedings of 12th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’97), pp. 327–341. ACM (1997)

27. Kessentini,M., Sahraoui,H., Boukadoum,M.,Omar,O.B.: Search-
basedmodel transformation by example. Softw. Syst.Model.11(2),
209–226 (2012)

28. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon object lan-
guage (EOL). In: Model Driven Architecture—Foundations and
Applications. LNCS, vol. 4066, pp. 128–142. Springer, Berlin
(2006)

29. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.:
Explicit transformation modeling. In: Models in Software Engi-
neering, LNCS, vol. 6002, pp. 240–255. Springer, Berlin (2010)

30. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transfor-
mations by demonstration. In: Theory and Practice of Model
Transformations. LNCS, vol. 6142, pp. 153–167. Springer, Berlin
(2010)

31. Lewis, C.: Using the “Thinking Aloud”Method in Cognitive Inter-
face Design. Tech. Rep. RC-9265, IBM (1982)

32. Mens, T., VanGorp, P.: A taxonomy ofmodel transformation. Elec-
tron. Notes Theor. Comput. Sci. 152, 125–142 (2006)

33. Montgomery, D.C.: Design and Analysis of Experiments, 8th edn.
Wiley, London (2012)

34. Obeo: EMF Compare. https://www.eclipse.org/emf/compare/
35. Object Management Group: Business Process Model and Notation

(BPMN) 2.0.2. OMG Document formal/2013-12-09 (2013)
36. Object Management Group: Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification 1.2. OMG Document
formal/15-02-01 (2015)

37. Object Management Group: Object Constraint Language 2.4.
OMG Document formal/2014-02-03 (2014)

38. Object Management Group: Unified Modeling Language (UML)
2.5. OMG Document formal/2015-03-01 (2015)

39. Saada, H., Dolques, X., Huchard,M., Nebut, C., Sahraoui, H.: Gen-
eration of operational transformation rules from examples ofmodel
transformations. In: Model Driven Engineering Languages and
Systems. LNCS, vol. 7590, pp. 546–561. Springer, Berlin (2012)

40. Sarbanes-Oxley Act: 107th Congress Public Law 204. US Govern-
ment Printing Office (2002)

41. Schmidt, M.: Transformations of UML 2 models using concrete
syntax patterns. In: Rapid Integration of Software Engineering
Techniques.LNCS, vol. 4401, pp. 130–143. Springer,Berlin (2007)

42. Selic, B.: The pragmatics of model-driven development. IEEE
Softw. 20(5), 19–25 (2003)

43. Sendall, S., Perrouin, G., Guelfi, N., Biberstein, O.: Support-
ing Model-to-Model Transformations: The VMT Approach. Tech.
Rep. LGL-REPORT-2003-005, École Polytechnique Fédérale de
Lausanne (2003)

44. Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw. 20(5),
42–45 (2003)

45. Silva, G.C., Rose, L.M., Calinescu, R.: A qualitative study of
model transformation development approaches: supporting novice
developers 18–27. In: Proceedings of International Workshop on
Model-Driven Development Processes and Practices (MD2P2’14),
CEUR Workshop Proceedings, vol. 1249, pp. 18–27 (2014)

123

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://www.eclipse.org/emf/compare/

VMTL: a language for end-user model transformation

46. Stein, D., Hanenberg, S., Unland, R.: Join point designation dia-
grams: a graphical representation of join point selections. Int. J.
Softw. Eng. Knowl. Eng. 16(3), 317–346 (2006)

47. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
EclipseModeling Framework, second edn.Addison-Wesley, Read-
ing (2008)

48. Störrle, H., Acretoaie, V.: Querying business process models with
VMQL. In: Proceedings of ACM SIGCHI Annual International
Workshop on Behaviour Modelling—Foundations and Applica-
tions (BMFA’13), pp. 41–410. ACM, New York (2013)

49. Störrle, H.: MOCQL: a declarative language for ad-hoc model
querying. In:Modelling Foundations andApplications. LNCS, vol.
7949, pp. 3–19. Springer, Berlin (2013)

50. Störrle, H.: On the impact of layout quality to understanding UML
diagrams: size matters. In: Model-Driven Engineering Languages
and Systems, LNCS, vol. 8767, pp. 518–534. Springer, Berlin
(2014)

51. Störrle, H.: VMQL: A Visual Language for Ad-HocModel Query-
ing. J. Visual Lang. Comput. 22(1) (2011)

52. Stricker, V., Hanenberg, S., Stein, D.: Designing design constraints
in the UML using join point designation diagrams. In: Objects,
Components, Models and Patterns, LNBIP, vol. 33, pp. 57–76.
Springer, Berlin (2009)

53. Sun, Y., White, J., Gray, J.: Model Transformation by Demonstra-
tion. Model Driven Engineering Languages and Systems. LNCS,
vol. 5795, pp. 712–726. Springer, Berlin (2009)

54. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., Huseyin, E.: AToMPM: a web-based model-
ing environment. In: Joint Proceedings of MODELS’13 Invited
Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition, CEUR Workshop Proceedings, vol. 1115,
pp. 21–25 (2013)

55. Syriani, E., Vangheluwe,H., LaShomb, B.: T-core: a framework for
custom-built model transformation engines. Softw. Syst. Model.
13(3), 1–29 (2013)

56. Syriani, E., Vangheluwe, H.: A modular timed graph transforma-
tion language for simulation-based design. Softw. Syst. Model.
12(2), 387–414 (2011)

57. Taentzer, G.: AGG: a graph transformation environment formodel-
ing and validation of software. In: Applications of Graph Transfor-
mations with Industrial Relevance. LNCS, vol. 3062, pp. 446–453.
Springer, Berlin (2004)

58. Teets, J., Tegarden, D., Russell, R.: Using cognitive fit theory to
evaluate the effectiveness of informationvisualizations: an example
using quality assurance data. IEEE Trans. Vis. Comput. Gr. 16(5),
841–853 (2010)

59. Van Gorp, P., Keller, A., Janssens, D.: Transformation language
integration based on profiles and higher order transformations. In:
Software Language Engineering. LNCS, vol. 5452, pp. 208–226.
Springer, Berlin (2009)

60. Varró, D.: Model transformation by example. In: Model Driven
Engineering Languages and Systems. LNCS, vol. 4199, pp. 410–
424. Springer, Berlin (2006)

61. Vessey, I.: The theory of cognitive fit: one aspect of a general theory
of problem-solving? In: Human-Computer Interaction and Man-
agement Information Systems, pp. 141–183. Routledge (2006)

62. Vessey, I.: Cognitive fit: a theory-based analysis of the graphs ver-
sus tables literature. Decis. Sci. 22(2), 219–240 (1991)

63. VMTL Experimental Replication Package. https://vmstar.
compute.dtu.dk/doku.php?id=vmtl:evaluation

64. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A.: Arajo,
J.: MATA: a unified approach for composing UML aspect mod-
els based on graph transformation. In: Transactions on Aspect-
Oriented Software Development VI. LNCS, vol. 5560, pp. 191–
237. Springer, Berlin (2009)

65. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards
model transformation generation by-example. In: Proceedings of
40th Annual Hawaii International Conference on System Sciences,
HICSS’07, p. 285b. IEEE Computer Society, Washington, DC
(2007)

66. Wohlin, C., Runeson, P., Höst, M., C. Ohlsson, M., Regnell, B.,
Wesslén, A.: Experimentation in Software Engineering. Springer,
Berlin (2012)

Vlad Acreţoaie received an
M.Sc. in Computer Science from
the Technical University of Den-
mark in 2012, and completed
his Ph.D. studies at the same
institution in 2016. His doc-
toral dissertation provides solu-
tions for the adoption of model
transformation, query, and con-
straint languages and tools by
end-user modelers. His research
interests are at the intersection
of Model-Based and Empirical
Software Engineering. Vlad cur-
rently works as a software devel-

oper in industry, where his primary focus is onModel-Driven Engineer-
ing.

Harald Störrle received a Dipl.-
Inform. and a Dr. rer. nat. from
the Universities of Hamburg
(1997) and Munich (2000),
respectively. From 2001 to 2009
he worked as a software archi-
tect and methodology consul-
tant in industry, sidelining as an
adjunct lecturer at the University
ofMunich. Starting 2006, he held
lecturer positions at the Univer-
sities of Innsbruck and Munich.
Since 2009 he is Associate Pro-
fessor of SoftwareEngineering at
the Technical University of Den-

mark (DTU) in Lyngby near Copenhagen. He is a Senior Member of
the ACM and elected member of the ACM Europe Council.

Daniel Strüber is a post-
doctoral researcher at University
of Marburg. In his doctoral the-
sis, Daniel investigated refactor-
ings for large models and model
transformations, key artifacts in
themodel-driven development of
complex software systems. His
research interests include strate-
gies to control the variability in
model-driven engineering and to
enable flexible modeling. Daniel
is an Eclipse committer in the
EMF Henshin project.

123

https://vmstar.compute.dtu.dk/doku.php?id=vmtl:evaluation
https://vmstar.compute.dtu.dk/doku.php?id=vmtl:evaluation

	VMTL: a language for end-user model transformation
	Abstract
	1 Introduction
	1.1 End-user modelers
	1.2 Transparent model transformation
	1.3 Contributions and limitations

	2 Motivating example: model quality assurance
	2.1 Patterns and annotations
	2.2 Multiple-pattern rules

	3 The Visual Model Transformation Language
	3.1 A transparent approach to model transformation
	3.1.1 Syntax transparency
	3.1.2 Environment transparency
	3.1.3 Execution transparency

	3.2 VMTL transformations: structure and execution
	3.3 Annotation syntax

	4 Tool support
	4.1 Executing VMTL specifications
	4.2 Deployment options
	4.3 Tool support limitations

	5 Evaluation
	5.1 Learnability experiments
	5.1.1 Methods and materials
	5.1.2 Observations
	5.1.3 Interpretation
	5.1.4 Threats to validity

	5.2 Think-aloud protocol analysis
	5.2.1 Methods and materials
	5.2.2 Results
	5.2.3 Threats to validity

	6 Related work
	6.1 Support for end-user modelers
	6.2 Transparent model transformation
	6.3 Usability in model transformation

	7 Conclusions
	7.1 Summary
	7.2 Contributions
	7.3 Future work

	Appendix: The pull-up attribute refactoring in VMTL
	References

