
The Journal of Systems & Software xxx (2018) xxx-xxx

Author preprint version

The Journal of Systems & Software
journal homepage: www.elsevier.com

A framework for semi-automated co-evolution of security knowledge and system
models
Jens Bürger⁎, a, Daniel Strübera, Stefan Gärtnerb, Thomas Ruhrotha, Jan Jürjensa, d, Kurt Schneiderc

a University of Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany
b adesso AG, Stockholmer Allee 200, 44269 Dortmund, Germany
c Lebniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
d Fraunhofer ISST, Emil-Figge-Straße 91, 44227 Dortmund, Germany

A R T I C L E I N F O

Article history:
Received 1 April 2017
Received in revised form 20 December 2017
Accepted 5 February 2018
Available online xxx

Keywords:
Security requirements
Software evolution
Co-evolution
Software design
Security impact analysis

A B S T R A C T

Security is an important and challenging quality aspect of software-intensive systems, becoming even more
demanding regarding long-living systems. Novel attacks and changing laws lead to security issues that did
not necessarily rise from a flawed initial design, but also when the system fails to keep up with a changing
environment. Thus, security requires maintenance throughout the operation phase. Ongoing adaptations in re-
sponse to changed security knowledge are inevitable. A necessary prerequisite for such adaptations is a good
understanding of the security-relevant parts of the system and the security knowledge.

We present a model-based framework for supporting the maintenance of security during the long-term
evolution of a software system. It uses ontologies to manage the system-specific and the security knowledge.
With model queries, graph transformation and differencing techniques, knowledge changes are analyzed and
the system model is adapted. We introduce the novel concept of Security Maintenance Rules to couple the
evolution of security knowledge with co-evolutions of the system model.

As evaluation, community knowledge about vulnerabilities is used (Common Weakness Enumeration
database). We show the applicability of the framework to the iTrust system from the medical care domain and
hence show the benefits of supporting co-evolution for maintaining secure systems.

© 2017.

1. Introduction

Security and privacy are critical success factors for software-inten-
sive systems. Security flaws and data breaches may impair customer
satisfaction and sales revenues, while entailing a high cost for flaw re-
pair and compensations. Even if a system is built with great efforts
to shield against the security1 threats known at the time of its initial
deployment, a challenging situation arises when the system is to be
maintained for an extensive lifetime. Such long-living systems are par-
ticularly prone to security issues, since assumptions and design de-
cisions made during their development may be invalidated when the
environment changes: due to newly discovered attack types, increas-
ingly ambitious security laws, and continuously evolving stakeholder
requirements, employed security mechanisms may become obsolete.

Therefore, an achieved level of security must be actively main-
tained during the long-term evolution of a system.

⁎ Corresponding author.
Email addresses: buerger@uni-koblenz.de (J. Bürger); strueber@uni-koblenz.de
(D. Strüber); stefan.gaertner@adesso.de (S. Gärtner); ruhroth@uni-koblenz.de (T.
Ruhroth); kurt.schneider@inf.uni-hannover.de (K. Schneider)
URL: http://jan.jurjens.de
1 In this paper, we consider privacy as a security aspect, acknowledging the
ontological debate around these terms.

For these reasons, it is crucial to support developers during the de-
tection and repair of security flaws after the environment changes. It is
desirable to enable automated support for these tasks as far as possible,
relieving developers from unnecessary burden, while involving them
whenever their input is necessary. From this goal, three main chal-
lenges arise. First, the automated detection of security flaws requires
to leverage available knowledge on security threats. This knowledge
needs to be managed explicitly and updated continuously, since it is
subject to constant change. Second, to identify security flaws in a spe-
cific system when the context knowledge is updated, its security re-
quirements need to be accounted for. To support the automated val-
idation of these requirements, they need to be maintained in a ma-
chine-readable form. Third, whenever violations of security require-
ments are detected, an immediate reaction becomes necessary: parts of
the systems affected by vulnerabilities need to be identified; a suitable
countermeasure needs to be determined and suggested to the security
expert.

To address these challenges, in this paper, we present the SecVo-
lution approach. The overall aim of SecVolution is to sustain the se-
curity of long-living systems whenever environmental changes have
an impact on security properties. Our approach comprises three main
components.

• Security Context Knowledge is expressed in terms of a layered on-
tology that allows the evolution of Security Context Knowledge to

https://doi.org/10.1016/j.jss.2018.02.003
0164-1212/© 2017.

2 The Journal of Systems & Software xxx (2018) xxx-xxx

be managed and expressed in a formal manner. A central compo-
nent of the layered ontology is an upper ontology of security-rele-
vant concepts and their relationships.

• To detect threats in the system automatically whenever the Secu-
rity Context Knowledge evolves, we enable the specification of Es-
sential Security Requirements (ESRs). ESRs are amenable to an au-
tomated analysis against the Security Context Knowledge. To es-
tablish traceability between identified threats and the knowledge
changes that provoked them, the analysis takes the difference deltas
of the Security Context Knowledge as an input.

• Semi-automated reactions to co-evolve the security knowledge and
the respective system models are specified using Security Mainte-
nance Rules. As part of a Security Maintenance Rule, we employ
model transformation rules to specify the system model evolution.
A major benefit of this approach is that it can identify parts of the
system models affected by security flaws automatically.

With this paper, we continue our ongoing work on the SecVolu-
tion approach (Ruhroth et al., 2014; Bürger et al., 2015), extending
our earlier works in three main directions. First, the upper ontology
presented here extends the one from our earlier work (Ruhroth et al.,
2014) considerably by incorporating the results of a systematic liter-
ature review, allowing a more exact specification of security proper-
ties. Second, in our earlier work (Bürger et al., 2015), Essential Secu-
rity Requirements were specified in natural language. With our new
formalized notion of Essential Security Requirements, we provide a
missing concept to enable an automated analysis of security require-
ments. Third, the aforementioned analysis, based on the formalized
Essential Security Requirements and the Security Context Knowledge
deltas, allows to detect potential threats in the system and map them to
specific system artifacts.

To evaluate the extended SecVolution approach, we present a case
study involving the open-source system iTrust. iTrust is a medical in-
formation system that fits well into our security setting.

As the evolution context, we use the privacy legislation of the Eu-
ropean Union and Germany, comprising a set of privacy acts that have
been changed repeatedly in the past years. Therefore, this setting is
adequate to show the power of our approach in a realistic evolution
scenario. The changes in the privacy legislation triggered changes in
the underlying knowledge structure. The knowledge changes in turn
called for changes to the system model of iTrust for recovering com-
pliance to the privacy legislation. In sum, the evaluation shows the
feasibility of our approach to identify security issues reliably and gen-
erate semi-automated reactions to security flaws.

The remainder of this paper is structured as follows: In Section 2,
we sketch the SecVolution approach and define the scope of the re-
search presented in this paper as well as relevant research questions.
The evolution of environmental knowledge and a heuristic method to
determine its impact on natural-language requirements is explained in
Section 3.1. Based on this impact, the adaptation (or co-evolution) of
the system model to retain a desired level of security is explained in
Section 3.2 and Section 3.3. To evaluate our approach, we conducted a
qualitative case study in Section 4 and discuss our results and insights.
For this purpose, we used the medical care application iTrust. Related
research in the field of security requirements and knowledge evolution
as well as model co-evolution is listed in Section 5. In Section 6, we
conclude our work and outline future research.

2 SecVolution approach and research challenges.SecVolution
Approach and Research Challenges

According to Lehman and Ramil (2003), software evolution is the
ongoing progressive change of software artifacts in one or more of

their attributes over time. Progressive in this context means that the
change results in improvement of the corresponding software. Each
change preserves most properties (e.g. functionality and security) of
the former system and is justified by a rationale. But changes may
also lead to the emergence of new properties. Thus, evolution is
caused by a wide variety of environmental changes such as technolog-
ical changes, new stakeholders’ needs, modified requirements and as-
sumptions, changes in laws, rules as well as regulations, corrections of
discovered problems and many others. Maintaining security of infor-
mation systems by taking into account a continuously changing envi-
ronment is therefore a challenging task in software engineering.

The term co-evolution is used in software engineering to describe
the change of artifacts in response to a change in another artifact (cf.
Mitleton-Kelly and Papaefthimiou, 2002). If artifact A evolves in re-
sponse to changes in artifact B, B is called the causal artifact and A the
effect artifact. Thus, co-evolution is the result of cause-effect changes
between software artifacts. One reason for co-evolution is based on
the fact that software artifacts depend on each other.

2.1. Overview of the SecVolution approach

The SecVolution approach is a holistic framework to deal with
evolving knowledge in the environment of a software project. The
overall goal is to restore security levels of an information system when
changes in the environment put security at risk.

The SecVolution approach is the result of continuing research
and extending the SecReq approach developed in our previous work
(Houmb et al., 2009; Schneider et al., 2011; Jürjens and Schneider,
2014). As a core feature, SecReq supports reusing security engineer-
ing experience gained during the development of security-critical soft-
ware and feeding it back into the model-based development process.
To this end, SecReq combines three distinctive techniques to sup-
port security requirements elicitation as well as modeling and analy-
sis of the corresponding system model: (1) Common Criteria
(International Standardization Organization, 2007) and its underlying
security requirements elicitation and refinement process, (2) the
HeRA tool (Knauss et al., 2009) with its security-related heuristic
rules, and (3) the UMLsec tool set (Jürjens, 2005) for secure system
modeling and security analysis. This bridges the gap between security
best practices and the lack of security experience among developers.
However, a significant limitation of SecReq is that it cannot cope with
evolution of the required security knowledge and, thus, has to be re-
garded as a “one–shot” security approach.

In SecVolution, to overcome this limitation of SecReq, the sys-
tem’s environment is monitored to infer appropriate adaptation oper-
ations. Fig. 1 depicts an overview of the resulting approach in the fo-
cus of this publication. Inputs to the approach are specification docu-
ments like (security) requirements, use cases, and misuse cases. Laws
and regulations provide knowledge about general security obligations.
Vulnerability databases contain knowledge about security best prac-
tices and also frameworks / algorithms that are known to be vulnerable
and appropriate mitigations.

Security relevant knowledge for the system under consideration
is elicited and captured in an explicit representation called Security
Maintenance Model (SMM) (Gärtner et al., 2014). Security require-
ments that are defined on a coarse grained, essential, scale, are used
to define security requirements independent from their concrete tech-
nical realization. The security knowledge is based on a upper ontol-
ogy for security notions we provide. Changes of the system’s envi-
ronment (evolutions) and the system itself are captured as changes of
the security knowledge. Evolution of the security knowledge is cap-
tured as difference information which triggers execution of appropri

The Journal of Systems & Software xxx (2018) xxx-xxx 3

Fig. 1. Overview of the SecVolution approach.

ate co-evolution actions, called Security Maintenance Rules (SMR).
Thus, application of SecVolution leads to a co-evolved system model
that is compliant to the evolved environment again.

Monitored changes can trigger reactions, which leads to a co-evo-
lution of security precautions and the corresponding system model.
However, updating security precautions manually is time-consuming
and error-prone. Therefore, there should be automated reactions to
changes wherever possible. To this end, SecVolution uses security-en-
riched UML models, built upon the UML security extension UMLsec
(Jürjens, 2005). To maintain an achieved security level, these models
must be adapted to deal with environmental changes affecting security
properties of the system. Current tool support to check security prop-
erties of UMLsec-enchanced models is available through our tool plat-
form CARiSMA (Ahmadian et al., 2017).

SecVolution only requires the essential security knowledge and
UML design models as input, therefore, it can be applied to all ex-
isting software systems for which these artifacts are made available.
To support the elicitation of the security knowledge, an heuristic
mechanism based on natural language processing of use-case descrip-
tions (Gärtner et al., 2014) is available, which, however, is outside the
scope of this paper.

2.1.1. Preliminary work
This publication extends our ongoing research on the SecVolution

approach by contributing substantial new results. We first briefly sum-
marize our preliminary work along the concepts introduced in our ear-
lier discussion of Fig. 1.

An earlier, substantially smaller Upper Security Ontology of se-
curity-relevant methods, threats and mitigations was presented in
Gärtner et al. (2014).

The ontology in this work was used to support a heuristic approach
for the identification of security requirements in natural-language doc-
uments. Since the ontology was focused on a different purpose, it
did not provide the required level of expressiveness for an automated
co-evolution approach.

The plan to use layered ontologies for representing the Security
Context Knowledge at different abstraction levels was presented in
Ruhroth et al. (2014). This work presented a set of operations to de-
scribe ontology evolution as well as co-evolution strategies. However,
it did not support an automated analysis, since the Essential Security
Requirements included in the Security Context Knowledge were only
given in natural language.

Co-evolving system models by using Security Maintenance Rules
was first considered in Bürger et al. (2015). For illustration, this work

used a particular rule-based technology, graph transformation. How-
ever, this work lacked a more formal representation of Security Main-
tenance Rules, including their relationship to changes of the Secu-
rity Context Knowledge (triggers arrow in Fig. 1). Consequently, the
condition under which co-evolution takes place was not explicitly de-
fined, which lead to a substantial manual effort to identify the need for
co-evolution.

In summary, our earlier work fell short to provide systematic
means to support the semi-automated reaction to knowledge changes.
In particular, it did not allow users (i) to specify Security Context
Knowledge at the required level of expressiveness, due to the lack of
a suitable upper ontology, (ii) to represent Essential Security Knowl-
edge in a formalized way, and (iii) to automatically trigger the appli-
cation of Security Maintenance Rules.

2.1.2. Contributions
This publication’s focus, as reflected by the research questions we

will present in Section 2.3, is to overcome the above mentioned limita-
tions. We present substantial new contributions and use them to eval-
uate the applicability of the approach. Specifically, we make the fol-
lowing contributions:

• A new upper ontology that, based on a systematic literature re-
view (Brereton et al., 2007), considerably improves the expressive-
ness of the Security Context Knowledge specification. Compared to
Gärtner et al. (2014), the user can specify various new concepts and
relations, such as Security Properties as well as containment rela-
tions between Assets.

• A newly introduced representation of Essential Security Require-
ments that aims to support the automated analysis of knowledge
changes. This contribution is a substantial improvement to
Ruhroth et al. (2014), in which these requirements were only avail-
able in natural-language form.

• A more systematic representation of Security Maintenance Rules
that supports the automated reaction to knowledge evolution steps.
Compared to Bürger et al. (2015), users can now specify triggers for
Security Maintenance Rules based on changes of the Security Con-
text Knowledge.

Based on these extensions, we also present an extended version of
the case study originally presented in Ruhroth et al. (2014). The up-
dated case study demonstrates the need for the new concepts and rela-
tionships of the upper ontology, and investigates how Essential Secu-
rity Requirements and Security Maintenance Rules in their new form
enable semi-automated co-evolution steps.

4 The Journal of Systems & Software xxx (2018) xxx-xxx

2.1.3. Fundamental concepts
The SecVolution approach is based on a number of fundamental

concepts that interact with each other as shown in Fig. 1. In the fol-
lowing paragraphs, each concept is briefly explained.

Essential Security Requirements (ESR) capture the security needs
of the system, focusing on potential attacks or threats (Braz et al.,
2008), in a machine-readable form. ESRs are independent of concrete
technologies and algorithms; their actual implementation depends on
the given domain and environment. For example, the term “secure en-
cryption” can require different algorithms and parameters when ap-
plied to an ordinary web application as when used in the banking sec-
tor. To implement a system that fulfills the given ESRs, extensive
knowledge about current technologies, security principles, laws, and
many others is needed.

Security Context Knowledge (SCK) is the security knowledge re-
quired to instantiate ESRs for a specific system. SCK includes, but is
not limited to attacker types and their abilities, encryption protocols,
and their robustness against various attacks. SCK is usually gathered
from natural language documents of various kind, e.g. the security
knowledge as part of the IT baseline protection guidelines proposed
by the German Federal Office for Information Security (BSI, 2012),
or attack and vulnerability reports as provided by the MITRE Corpo-
ration in the Common Vulnerabilities and Exposures (CVE) database
(MITRE, 2013). Moreover, individual persons such as white hats or
developers can also contribute to the SCK. SCK is supposed to evolve
more often than the ESR, as knowledge about security techniques may
change quickly and has direct impact on the security of the system.

Security Maintenance Rules. A change to the Security Context
Knowledge reflects an evolution step of the considered system’s en-
vironment. To cope with these changes properly, the development ar-
tifacts of the system need to be adapted accordingly by means of
co-evolution. The connection between evolutions of the Security Con-
text Knowledge and possible adaptations of the development artifacts
is realized by Security Maintenance Rules (SMR). SMRs enforce pre-
conditions that have to match with changes of the Security Context
Knowledge and also with certain adaptations.

Security Maintenance Model. The core security information is ag-
gregated in the Security Maintenance Model (SMM) which is con-
nected to each activity of our approach as shown in Fig. 1. It mainly
consists of declarative and procedural knowledge according to
Robillard (1999). In SecVolution, the declarative knowledge describes
what is known about a system and its environment with respect to se-
curity as well as about security problems and their solutions (semantic
knowledge). It is concerned with concepts, objects, persons, events,
facts, and their relationships. The Security Context Knowledge is part
of the declarative knowledge and can be obtained from security as
well as domain experts. In addition, the procedural knowledge com-
prises how to adapt a system or a set of system in order to fulfill the
given security requirements. The Security Maintenance Rules are part
of the procedural knowledge and can be derived from security guide-
lines and principles. Development artifacts such as requirements and
system models are not part of the Security Maintenance Model.

2.2. Scope and research questions

In this paper, the overall research objective is to support co-evolu-
tion of the system based on environmental knowledge evolution. For
this purpose, we focus on the artifacts, activities and data flows of the
SecVolution approach as presented in Fig. 1.

Within the scope of this paper, we consider the evolution of the
system environment. Changes to the environment may have an impact
on security properties of a particular functionality implemented in the
system. As a prerequisite, the knowledge about the environment needs
to be made explicit in a form where it can be managed and contin-
uously updated, which leads to the question (RQ1:) How to explic-
itly represent the Security Context Knowledge (SCK), whose evolution
may affect the security of the system?

The resulting Essential Security Requirements (ESR) are used to
determine elements of the system model which do not fulfill the se-
curity requirements anymore. This information is needed to decide
which co-evolution of the model should be performed to retain associ-
ated security properties. For this purpose, predefined Security Mainte-
nance Rules (SMR) must be selected properly. Thus, we need to know
(RQ2:) How to model Essential Security Requirements and Security
Maintenance Rules?

To perform the adaptation of the UMLsec system model semi-au-
tomatically, selected Security Maintenance Rules are parametrized us-
ing changes of the Security Context Knowledge as well as determined
model elements. The determined co-evolutions guide developers on
which parts of the design model to look at first and deepest. On this
account, this leads to the question RQ3: How to apply relevant Secu-
rity Maintenance Rules for co-evolving the UMLsec system model?

To examine our research questions, we focus on the major compo-
nents of the SecVolution approach as illustrated in Fig. 2. In addition,
we present a case study to show the feasibility of our approach.

3. Semiautomated co-evolution of security knowledge and system
models

We now present the three main components of SecVolution in de-
tail. First, to enable the systematic management of Security Context
Knowledge, we present our layered ontology. Second, we consider the
specification of Essential Security Requirements and their automated
analysis based on the provided security knowledge and its changes.
The analysis identifies security issues which may endanger a given
security property. Third, to fix these properties, the system model is
adapted, so that the system remains secure. If the adaptation of the sys-
tem model cannot be performed automatically, software engineers are
guided to change the system model semi-automatically.

Fig. 2. Scope of our approach presented in this paper including research questions.

The Journal of Systems & Software xxx (2018) xxx-xxx 5

3.1. Capturing Security Context Knowledge (RQ1)

Security knowledge changes over time. Changes may lead to secu-
rity loopholes as made assumptions and requirements are not longer
valid and new attack vectors become possible. For example, the ci-
pher suite RC4 has been popular over a long period of time and has
been used in TLS for providing security for HTTP sessions. There
have been a number of attacks shown on it. After the publication
of an attack that can be carried out in merely 75 h (Vanhoef and
Piessens, 2015), the use of RC4 has been prohibited in a RFC by the
Internet Engineering Task Force (RFC, 2015). At that time, the esti-
mation of TLS traffic relying on RC4 was 30%. HTTP is also used to
implement APIs for the interoperability of distributed systems. Thus,
systems using RC4 are principally vulnerable and need to be evolved.
Based on incident reports or newly discovered knowledge such as new
attacks, existing requirements must be adapted or new requirements
must be elicited to prevent the threat. To properly react on knowledge
changes, knowledge must be modeled explicitly to make it capable for
our assessment approach.

The Security Context Knowledge (SCK) needed in our approach
is modeled in an ontology using security-relevant concepts and their
relationships. The motivation to use ontologies for this purpose was
twofold: Regarding security knowledge, we have to deal with the un-
known unknowns (McManus and Hastings, 2005). Therefore, we de-
cided to use ontologies for knowledge modeling, because they are
based on the open-world assumption. Second, reuse of knowledge be-
tween ontologies of is natively supported by an import mechanism, so
that the layering of ontologies with an arbitrary number of layers is di-
rectly supported (Ruhroth et al., 2014).

Systematic literature review
To define an upper ontology, we conducted a systematic literature

review (SLR). SLR is an empirical method used to aggregate, summa-
rize, and critically assess all available knowledge on a specific topic
(Kitchenham and Charters, 2007). In our case, we searched for scien-
tific publications related to the modeling of security-specific knowl-
edge in the context security management or software and systems
modeling. In particular, we addressed publications in which concrete
ontologies for the modeling of knowledge related to IT security are
described.

To find the relevant publications, we used the literature databases
ACM Digital Library, IEEE Xplore, ScienceDirect, and SpringerLink,
since they cover the largest part of scientific journals, conferences,
and workshops in the domains of software engineering and knowl-
edge management (Brereton et al., 2007). The search query for the au-
tomated search was obtained by combining the search terms Security
(in title), Information System, Software (in title or abstract), and Ontol-
ogy, Metamodel (in title, abstract or text). This search yielded a total
population of 284 publications, which we subsequently filtered to re-
tain only those that (i) were available in English, (ii) describe an exist-
ing, practically applicable approach (rather than e.g. a position state-
ment), (iii) address the modeling, application, or acquisition of secu-
rity knowledge in software engineering, and (iv) were not specific to
a particular domain. The remaining 46 publications contained 26 se-
curity-related ontologies, that we analyzed in detail to aggregate the
minimal set of concepts required to enable the modeling of security
knowledge.

Ontology analysis
In the analysis of the 26 ontologies, our objective was to answer

the following research question: What is the minimum set of terms re

quired for modeling security knowledge to enable a heuristic security
analysis of development artifacts? By focusing on the minimum set of
terms, we address a key prerequisite for the design of our ontology,
related to ontological commitment.

Ontological commitment (Gruber, 1995) is an important principle
in ontology engineering. To support flexible use of a created ontol-
ogy, it proposes to impose as few restrictions as possible. A minimal
ontological commitment is achieved if the ontology contains only the
essential and most general terms in the considered domain. This al-
lows others to use the ontology in their particular applications, special-
izing it where necessary. Based on our SLR, we achieved a minimal
ontological commitment by extracting the essential and most general
terms. A term fulfills this criterion if it occurs in multiple ontologies,
or if it was pointed out as particularly relevant in the underlying ontol-
ogy’s description.

To address the research question, we developed a classification of
all terms included in all ontologies. To this end, the terms were as-
signed to classes, based on the descriptions in the publications from
which they were obtained. Various concepts occur under different
terms across publications, mostly due to the different research back-
grounds of the authors. For instance, in most considered ontologies,
the term asset is used to refer to a protection-worthy object; yet, in
some cases, the terms affected element, resource, or information were
used. Our classification represent all of these terms as one particular
class asset.

Result upper ontology
From the classification, we obtained the security-relevant classes

for our upper ontology. Fig. 3 shows the resulting upper ontology in
VOWL 2 syntax; circles and lines denote classes and relationships be-
tween them. A double border represents equivalent classes.

The classes system, access point, asset, and trust level represent
system-specific knowledge about the system and its parts. These as-
pects are addressed by the 10 of the 29 considered ontologies, in
which the terminology is subject to some variability. For instance
(Elahi et al., 2009) distinguish the system parts product, component,
and function. According to Swiderski and Snyder (2004), an access
point is an integral part of a system, application, module, or compo-
nent.

The class security property describes security requirements to an
asset of the considered system. 15 out of the 29 considered ontolo-
gies specify a corresponding term. The relationship between a security
property and an asset is highlighted in several ontologies, such as the
one by Dubois et al. (2010).

The classes threat and attack are dedicated to attack and threat
modeling. Corresponding terms are included in 26 out of the 29 con-
sidered ontologies; 21 of them also represent vulnerabilities or weak-
nesses of the considered system explicitly. Usually, a vulnerability is
related to a particular attack or threat. Moreover, the proposed ontol-
ogy assigns an intent to attackers, which is required to specify the goal
or motivation of attackers. Comparable terms are included in the on-
tologies of, for instance, Elahi et al. (2009) and Miede et al. (2010).

The class action is used to specify the concrete steps performed
by an attacker to exploit a specified security weakness. Modeling
these concrete steps is necessary to facilitate the detection of weak-
nesses where the order of steps performed by an attacker matters
(Jhawar et al., 2015). 9 out of 29 ontologies considered this aspect; the
most detailed description is found in the one by Elahi et al. (2009), in
which an attack consists of a sequence of steps, called malicious ac-
tions.

6 The Journal of Systems & Software xxx (2018) xxx-xxx

Fig. 3. Upper ontology of security concepts and their relationships.

The classes stakeholder and process are dedicated to users and
business processes. 9 out of the 29 ontologies consider this aspect.
Stakeholder is a sub-class of agent used in particular for represent-
ing the users of the considered system. Based on the ontology of
Baras et al. (2014), stakeholders can be assigned responsibility over
assets. In addition, agents can refer to components to perform specific
actions. Processes represent a type of activity with consists of a num-
ber of actions. Related terms are found in the ontologies of Launders
and Polovina (Launders and Polovina, 2013; Mouratidis et al., 2003).

By defining fundamental security concepts and relations, this up-
per ontology is the foundation of a layered ontology that we use
to represent security knowledge in general and in a specific system.
The lower layers are more system specific: In the example shown in
Fig. 4, it is represented that a specific communication path uses RC4
as an encryption algorithm to achieve secure encryption. Thus, a part

Fig. 4. Example of Security Context Knowledge to provide an encryption algorithm.

of the security knowledge is specific for the system at hand. Adapting
the knowledge to other systems is possible with regard to system- or
domain-independent parts of the security knowledge.

3.2. Determine impact of knowledge evolution to the system (RQ2)

Using the specification of Security Context Knowledge as illus-
trated in the previous section, evolved requirements or new attacks can
be used as a trigger to assess the impact on the system model under
consideration: After an evolution step, it needs to be checked if the
system model needs to be co-evolved.

In Fig. 5, we outline how evolution and co-evolution are related
to each other in the SecVolution approach. We assume that the initial
system model (SyM) fulfilled all security requirements regarding the
Security Context Knowledge (SCK), as was ensured by an upfront se-
curity analysis.

After an evolution of the Security Context Knowledge has taken
place (evSCK), the challenge is to assess the related knowledge changes
and, if necessary, adapt the system model (evSyM) such that the adapted
model (SyM′) meets all Essential Security Requirements (ESRs) re-
garding the updated security knowledge (SCK′). To this end, our ap-
proach can discover appropriate co-evolutions that, when applied to
the system, can recover the system’s security.

This is done semi-automatically by leveraging information about
the difference in the knowledge in order to infer necessary adaptation
steps.

Fig. 6 gives an overview of the process how an emerged knowl-
edge difference is analyzed and possible co-evolution actions are in-
ferred. The input to the algorithm is a knowledge difference, emerging
by the evolution of the Security Context Knowledge. The knowledge
difference is analyzed to discover a change event which is relevant
for further investigation. For example, this can be done using model
differencing methods (Kehrer et al., 2012). Possibly affected Essen-
tial Security Requirements are identified. Evolved Security Context
Knowledge parts can then be used by Security Maintenance Rules to
co-evolve the system.

The Journal of Systems & Software xxx (2018) xxx-xxx 7

Fig. 5. Relationship between evolution and co-evolution as used in the SecVolution ap-
proach.

Fig. 6. Concepts used in the co-evolution approach and their relation.

Co-Evolutions can be realized by various methodologies. These
and all relevant components are presented in detail during the next
paragraphs.

Essential Security Requirements
An Essential Security Requirement (ESR) consists of the following

components:

• its name
• A detailed description concerning vulnerabilities and mitigations
• A formal selection criterion to check if the current Security Context

Knowledge exhibits this vulnerability
Whenever the Security Context Knowledge evolves, this is consid-

ered an event that needs to be analyzed. The selection criteria of the
available Essential Security Requirements can be evaluated to deter-
mine the affected ones. Further investigation and eventual application
of co-evolution steps are handled by Security Maintenance Rules.

Security Maintenance Rules
Security Maintenance Rules (SMRs) build the connecting link be-

tween changes to the Security Context Knowledge (evolution) and
necessary adaptations to the system model to recover its security
(i.e. compliance to Essential Security Requirements, co-evolution)

(Bürger et al., 2014). Given a change to the environmental knowledge
of the regarded system, a sequence of co-evolution operations on the
system model needs to be inferred from the evolution operations on
the security knowledge.

To support this, Security Maintenance Rules are structured follow-
ing the Event-Condition-Action principle (Dayal, 1994), which means
that a rule follows this schema:

ON Event IF Condition DO Action
Event indicates the event given by a change of the Security Context

Knowledge (SCK) which can be used to get relevant Essential Secu-
rity Requirements (ESR) and UMLsec stereotypes. Using the Events,
possible relevant Security Maintenance Rules can be selected, but
deeper investigation is needed, which is defined by the second part:

The Condition examines if the system is in a non-compliant state.
This is realized using model queries, compliance checks, etc. with re-
spect to the (unchanged) ESRs. Preconditions ensure that queries and
possible later actions are only applied to a system model that prin-
cipally is annotated with the respective security property. A query
can make use of the security knowledge difference or impact trigger
data. For example, Security Maintenance Rules addressing state charts
should only be applied to a model containing appropriate information.

The Action part defines steps that can be applied to recover Essen-
tial Security Requirements compliance. If a query has discovered one
ore more model flaws, appropriate reactions can be triggered. A reac-
tion consists of a sequence of steps. As depicted in Fig. 6, a reaction
step can be either a direct manipulation of the system model by us-
ing graph transformation, Java code (EMF manipulation) or user inter-
action with the security expert, either to realize changes manually or
further parameterize reactions (like defining new class names, choose
desired position of new elements in model hierarchy, etc.). All compo-
nents can have input- and output data and thus share parameters and/
or results to optimize/parameterize subsequent steps.

Every Security Maintenance Rule focuses on the preservation of
one or more Essential Security Requirements (ESR). To realize this,
every Security Maintenance Rule makes use of model queries to iden-
tify model elements violating corresponding ESRs. It further infers re-
actions to correct the violations which actually is done using graph
transformations, user interactions and reflection code. Moreover,
graph transformations can be extended by using Java code as dis-
cussed in our previous work (Bürger et al., 2015).

In the following, we introduce main concepts and techniques as
used by our approach.

Model Queries
To retrieve specific information from a model, model queries can

be used. Since system models can be interpreted as graphs
(Bürger et al., 2015), various techniques based on graph algorithms
can be incorporated to investigate properties of a given model. Model
queries are a widely used concept (Habela et al., 2008; Ujhelyi et al.,
2015). A model query is carried out by firstly providing a query string
based on a query language and a model as input to an evaluation al-
gorithm. Execution of this algorithm determines a set of model el-
ements matching the query, which also can be empty. To check if
a model violates certain properties, one can proceed as follows: the
non-compliance to this properties is modeled as query. If the query
result is empty, it means that the model does not contain non-com-
pliant elements and thus is compliant to the property in question. By
now, our approach focuses on the following possibilities to query
models. First, we can formulate queries by a graph transformation
and its underlying matching algorithm (Bürger et al., 2015). Second,

8 The Journal of Systems & Software xxx (2018) xxx-xxx

we can make use of our tool platform for risk and compliance checks,
CARiSMA (Ahmadian et al., 2017)) which supports analyzing mod-
els e.g. in UML using approaches such as OCL to formalize the secu-
rity properties under investigation.

Graph Transformation
Graph transformation is a well established concept to describe

change operations of graphs in a formal way, mainly used for de-
scribing changes, synchronizing two graphs, e.g. coming from differ-
ent meta-models or generating code out of a software system model.
Graph transformations can also be used to conduct model queries by
designing graph transformation rules where the left-hand side (LHS)
equals the right-hand side (RHS) (Bürger et al., 2015). To model and
execute graph transformations, we make use of the graph transforma-
tion framework Henshin (Arendt et al., 2010). Henshin has a unified
view on the LHS and RHS of a transformation rule. In a nutshell,
mappings between LHS and RHS are represented as so-called actions.
These actions are annotated as stereotypes in a graphical represen-
tation. We shortly introduce the fundamental action types. ⟨⟨pre-
serve⟩⟩ means that an element is member of the LHS as well as the
RHS. ⟨⟨create⟩⟩ means that an element is only member of the RHS.
⟨⟨delete⟩⟩ means that an element is only member of the LHS. Hen-
shin features a powerful API that provides access to results of a match
and thus gives a flexible way to interpose Java code between rule ex-
ecutions. For example, partial match allows us to use transformation
rules with fewer nodes. Here, usage of partial match as well as the
Henshin API allows us to design more abstract transformation rules
that are parameterized using program code with information gathered
from model queries and the knowledge delta. We make use of Henshin
in two ways. First, we use Henshin to carry out model queries. This
is accomplished by modeling graph transformation rules solely using
⟨⟨preserve⟩⟩ type nodes. This way, we achieve that there is no real
modification of the underlying model carried out, but the matcher as
part of Henshin is used as a pattern matcher for the given model.

In Fig. 7 we present a model query which is used to search a state
in a state chart by a given name.

Thus, every match of such a query rule means that the respective
pattern has been found in the model.

Second, we also use Henshin to carry out co-evolutions.
Additional details on Henshin and how we use it to find model

flaws is in our previous work (Bürger et al., 2015; 2015).

Java access to EMF meta model implementation of UML
The Eclipse EMF implementation (Eclipse Foundation, 0000) of

meta models offers a rich set of methods to get and set properties
of model elements and also traverse models. For example, regarding
state machines, for a given state, the method getOutgoings() re-
turns the set of transitions that have the given state as source. Using
methods like this and graph traversing algorithms, customized explo-
ration of paths through the state machine is feasible. Moreover, using
methods provided via the meta model such as add(), remove()

Fig. 7. Henshin model query to search a state in a UML state chart by its name.

and auxiliary methods of Ecore, the model can directly be manipu-
lated.

3.3. Semiautomatic co-evolution of models (RQ3)

After a knowledge evolution has emerged and the evolution to re-
act to has been identified as discussed in the preceeding section, the
system under consideration needs to be co-evolved. In this section we
briefly introduce the proposed algorithm for co-evolution. The algo-
rithm was first introduced in previous work (Bürger et al., 2015) and
is presented in Fig. 8. Differing from the usual flow chart notation,
dashed lines represent important data flows. The goal of the algorithm
is to determine violated Essential Security Requirements (ESR) and
propose necessary recovering steps. A core assumption of the SecVo-
lution approach is that the system was secure and compliant to all
Essential Security Requirements with the respective Security Context
Knowledge (SCK) when it was initially designed. To validate this, nu-
merous approaches exist, e.g. the UMLsec approach and tool support
(Jürjens, 2005; Ahmadian et al., 2017).

In the first place, the algorithm is triggered by a Security Context
Knowledge evolution (i.e. a ΔSCK exists (Ruhroth et al., 2014)) or an
impact analysis that derived a potential flaw of the information system
(event part of the Security Maintenance Rule). A list of candidate Es-
sential Security Requirements is determined. This can either be done
as part of the event because a preceding impact trigger has determined
it or as part of model queries in the condition part. In the first step of
the algorithm, model queries are used to investigate if there are Essen-
tial Security Requirements endangered (condition part of the Security
Maintenance Rule).

This is realized by evaluating model queries, supported by the trig-
ger information as well as the existing Essential Security Require-
ments. The model queries here are constructed in a way that they de-
termine model elements that violate a given Essential Security Re-
quirement (ESR).

The set of violating model elements is used by the succeeding ac-
tivity. Here, the reactions part of the Security Maintenance Rules is
brought into action. As there can be multiple reactions to treat a given
maintenance object or query, every reaction is checked with respect
to its applicability. Every reaction step can have input and output pa-
rameters. Thus, reactions can be composed by (re-)using modularized
reaction steps.

To actually realize co-evolutions, a reaction of a Security Mainte-
nance Rule has to be applied. This means that the reactions are car-
ried out at the system model. As discussed above, there are different
kinds of reactions that can be used as a co-evolution. This can be done
by executing graph transformations to alter the model directly. Using
the partial match mechanism of Henshin, it is possible to preallocate
nodes of the transformation rules with concrete model elements. Thus,
we just need a reduced set of simple rules which we can concrete with
information gathered in preceding steps.

Fig. 8. Overview of our algorithm to co-evolve system models.

The Journal of Systems & Software xxx (2018) xxx-xxx 9

As shown in Fig. 6, a reaction step can also include user interac-
tion. One kind of interaction is to request input from the security ex-
pert, such as a name for a model element that needs to be created. An-
other kind of interaction is to instruct the security expert to do some-
thing to recover the system’s security that cannot be applied directly
by changes to the model, for example to instruct all users to pick new
passwords after a new policy is introduced. To enable complex re-
actions that cannot easily expressed using graph transformation (i.e.
path expressions, clone operations with containment hierarchy), reac-
tion steps make use of EMF meta model and utility methods. If there
is only one reaction applicable for a given Security Maintenance Rule,
it can be applied semi-automatically. Otherwise, a security expert is
presented the alternatives and needs to choose the Security Mainte-
nance Rule that is suitable in the given context. In summary, the fol-
lowing situations can occur: (1) The reaction is determined fully au-
tomatically, (2) the reaction requires some user input or (3) the user
needs to manually adapt the system. If there is no further ESR that is
potentially violated after applying the co-evolutions, the algorithm ter-
minates. Otherwise, the algorithm starts over with the activity Query
violating model elements. Thus, the algorithm is repeated as long as
there is an ESR that is potentially violated.

Afterwards, it has to be checked if still all Essential Security Re-
quiements (ESR) are fulfilled. If an ESR is now violated that was re-
spected before execution of the algorithm, or if there is an ESR that
still is violated, the assistance of the security expert becomes neces-
sary. The security expert needs to investigate the ESRs, eventually
manually adapt the model to prevent side-effects, and re-run the al-
gorithm. In particular, this becomes necessary if two security require-
ments are to be applied that (logically) contradict each other (such as
non-repudiation and anonymity).

3.4. Implementation

Our approach is supported by an implementation prototype, which
uses a number of underlying frameworks and tools. As common base,
the prototype as well as its supporting approaches use the Eclipse
Modeling Framework EMF (Eclipse Foundation, 0000).

The upper ontology as well as ontologies of domain levels are
modeled using Protégé (Stanford Center for Biomedical Informatics
Research (BMIR), 0000). Protégé makes use of OWL-API to persist
ontologies, e.g. in OWL-XML format. To bridge the gap to EMF, we
implemented a transformation which transforms ontologies instanti-
ated from the OWL-API meta model to the Ecore meta model pro-
vided by W3C2. To determine changes in the knowledge, we access
the ontologies using EMF tooling. We use the SiLift tool for seman-
tic differencing (Kehrer et al., 2012). The user provides high-level dif-
ferences which should be detected in terms of a graph transformation
language. SiLift calculates the difference between two ontologies and
can be controlled using an API.

System model co-evolution steps are realized using the Henshin
graph transformation language (Arendt et al., 2010). This is realized
by modeling rules that alter UML models which can be further cus-
tomized, which leads to a high flexibility while the number of rules
needed can be kept low. In addition, we use Henshin to specify model
queries. Additionally, in a few instances, we extended them with sup-
plementary Java code to support queries on paths between two model
elements.

Based on the implementation, we conducted the case study pre-
sented in Section 4.

2 https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel (accessed Dec
20, 2017).

4. Case study

To evaluate our approach, we conducted a case study in health-
care, a particularly security-critical domain, since patient records are
subject to strict confidentiality requirements. We used three sources
of security knowledge: First, Common Weakness Enumeration (CWE,
(MITRE, 2017)), a dataset of common software security weaknesses.
The knowledge represented in CWE is provided by about 50 different
organizations and companies of the software engineering community.

Second, the German privacy laws, which have been subject to var-
ious changes since 1990. By declaring specific types of data as partic-
ularly protection-worthy, these laws present a suitable source of secu-
rity knowledge evolution.

Third, knowledge about a particular encryption algorithm, which
was rendered ineffective by newly discovered attacks. To study the
ability of our approach to support semi-automated co-evolution for
adapting the system after knowledge changes, our discussion focuses
on the three research questions outlined in Section 1.

4.1. Case study design

Subject system
We studied the open source healthcare system iTrust. iTrust is a

role-based medical information system implemented as a web-based
application. Its purpose is to provide patients with medical informa-
tion, let medical staff organize their daily work, and provide a mes-
saging system so that all users can communicate with each other.
The iTrust project was initiated at North Carolina State University
and is currently maintained by the Realsearch Research
Group (Meneely et al., 2012). It is a fully operational system, whose
development artifacts, in particular, requirements and code, are pub-
licly available. Its 51 use cases are documented in natural language
(we used version 23 of the requirements and the corresponding code
version 17 for our study), some of them addressing privacy and secu-
rity issues regarding personal and medical data.

As a large system maintained over a long period of time, iTrust is
a well-suited example of a long-living system with substantial prac-
tical relevance: First, it underwent organizational changes. Being in
use since 2004, responsible architects and developers changed several
times, and functional requirements have also changed.

Second, it was subject to substantial functionality changes. Over
the years, new use cases have been implemented and others have been
removed, according to continuously changing requirements. For ex-
ample, in requirements version 27, the system is implemented based
on 39 use cases, while the overall sum of documented use cases
is 79 (cfer. Realsearch Research Group North Carolina State
University (2017)).

Third, it is affected by the evolution of well-documented environ-
ment changes, in particular, the law changes considered in this section.
As a healthcare system, iTrust is particularly prone to privacy and se-
curity issues (Bowman, 2013). All of these properties are also typical
for a long-living system used in industry.

Since the iTrust project does not provide any models, the de-
sign models were obtained in a reverse engineering process. The
process was conducted manually, as automated reverse engineering
approaches typically produce implementation-centric models, being
too low-level for our purposes. To avoid the risk of a biased team
that (unknowingly) optimizes the model towards the approach or vice
versa, reverse engineering was performed by an independent team.
The team consisted of a researcher with 10 years of industry experi-
ence as software architect, a PhD student and two student assistants,

10 The Journal of Systems & Software xxx (2018) xxx-xxx

all of them being computer scientists. The overall team size of 4
people is a typical team size in practical settings (Schwaber and
Sutherland, 2017). The reverse engineering team did not take part in
developing the prototype as well as in implementation of the approach.

The re-engineering was started out by inspecting the code base.
While doing so, a three-tier architecture was identified and thus taken
into account, so that the design model reflects this architecture. The
overall system model included class diagrams, deployment diagrams,
and state charts, and which are common diagram types to specify
structure and behavior, respectively (Hutchinson et al., 2014). The
class diagram is based on the architecturally relevant code parts. By
mapping relevant parts of the use case descriptions to operations, sup-
posed call flows were identified. The correctness of the state machine
was checked by running test cases on an iTrust instance.

The team defined a test plan based on use cases found in the iTrust
documentation. The tests were carried out on an iTrust instance, by
manually checking if the sequence of states an control flow corre-
sponds to the model.

Security knowledge
Our approach supports semi-automated co-evolution for reacting

to changes in the security knowledge. The security knowledge consid-
ered in our case study comes from three sources:

First, we selected five CWE entries, three of them being part of
the 2011 CWE/SANS Top 25 most dangerous software errors3. These
CWE entries are representative examples of weaknesses that can be
addressed at the system design level.

In our case study, we modeled Security Maintenance Rules
(SMRs) to detect and react to presence of these weaknesses. Specifi-
cally, we considered the following CWE entries:

• CWE-284: Improper Access Control
• CWE-306: Missing Authentication for Critical Function
• CWE-311: Missing Encryption of Sensitive Data
• CWE-326: Inadequate Encryption Strength
• CWE-732: Incorrect Permission Assignment for Critical Resource

Second, as source for knowledge evolution, we used the German
Federal Data Protection Act (in German: Bundesdatenschutzgesetz,
BDSG (Bundesministerium des Inneren, 2005)). In particular, we
considered the history of recent changes to this law, and their security
impact to the system model of the iTrust system. The security impact
is assessed against the five selected CWE entries explained above.

Third, as further source for knowledge evolution, we consider the
common scenario of an encryption algorithm that is discovered to be
insecure.

In the following, we present the knowledge evolution in detail and
show how assessment of it is carried out.

Knowledge evolution
We considered the effect of the introduction of a common pri-

vacy understanding in the European Union Directive 95/46/EC. This
directive required adjustments of the national privacy laws, includ-
ing the BDSG. Starting from 1995, the BDSG had to be altered
several times to be fully compliant to the European Directive. In
addition to the regular notion of private data, the 2001 version of
the BDSG introduces special categories of personal data, includ-
ing data about racial or ethnic origin, political opinions, religious or
philosophical convictions, union membership, health and sex life (cf.
Bundesamt für Datenschutz, 2014). The access to this kind of data

3 http://cwe.mitre.org/top25/ (accessed Dec 20, 2017).

needs to be more restrictive as enforced in section 13 par. 2 BDSG
(translated):

The collection of special types of personal data (Section 3 (9)) is
permissible only in so far as [...] 7. Such collection is necessary
for the purposes of preventive medicine, medical diagnosis, health
care or the administration of health services and the processing of
these data is carried out by medical personnel or other persons who
are subject to an obligation to maintain secrecy [...].

Furthermore, we consider a knowledge evolution step related to
the RC4 RFC encryption algorithm, which was declared insecure af-
ter the discovery of severe attacks in 2015. More details are found in
Section 3.1, where we first introduced RC4 as an example.

4.2. Assessing security impact using ontologies

The aforementioned changes have a significant impact to iTrust,
since it processes different sorts of privacy-relevant data. As a first
step in adapting the system to remain compliant, we assess the im-
pact of context evolutions according to the CWE entries introduced
above. To this end, we define for each CWE entry an Essential Se-
curity Requirement (ESR) and a corresponding Security Maintenance
Rule (SMR), as summarized in Table 1.

Essential Security Requirements are given in terms of their name,
description, and selection criterion; the selection criterion is at the
same time the ON part of the corresponding Security Maintenance
Rule.

In addition, a Security Maintenance Rule contains an IF and a DO
part. For brevity, the ON, IF, and DO parts are shown in a pseudo-code
notation, representing a more detailed implementation using Hen-
shin-based graph transformation queries as well as Java code. In the
implementation of the ON part, to obtain what are in fact difference
deltas of two revisions of the same ontology, we use the semantic
model differencing approach SiLift that produces these deltas. More
details on these implementation aspects are found in Section 3.2.

Each Essential Security Requirement resembles a security property
that is subject of an CWE entry. A CWE entry (MITRE, 2013) con-
tains the following aspects, among others: (1) a description of the se-
curity issue, (2) consequences, (3) applicability to specific program-
ming languages and development process phases, and (4) possible
mitigations.

In our setting, the system becomes subject to a certain CWE en-
try after the environment has changed: either a change of the domain
knowledge (e.g. an encryption algorithm becomes insecure) or a law
change (introduction and handling of the additional notion for per-
sonal data). In what follows, we present the specification of these
changes using excerpts of the Security Context Knowledge.

Fig. 9 illustrates the relevant ontology parts that enable the de-
tection of a violation of ESR1, Secure Encryption. The system-spe-
cific ontology part is not shown explicitly, since no knowledge about
the specific system is necessary in this case. The respective Security
Maintenance Rule (SMR) is designed that way that the system model
is queried for all relevant elements. Note that for the sake of clarity,
we only present ontology and model elements that are relevant for the
study’s scope.

The knowledge change presented here is induced by the general
announcement that the encryption algorithm RC4 should no longer
be used (RFC). RC4 is actually modeled as an encryption individual
able to provide the security property Secure Encryption. The knowl-
edge evolution consists of adding a threat Weak encryption to it, as
well as defining Disclose data and Hack key as the relevant attack

The Journal of Systems & Software xxx (2018) xxx-xxx 11

Fig. 9. SCK excerpt and changes regarding ESR1 (see Table 1).

Table 1
Essential Security Requirements and respective Security Maintenance Rules.

ESR1 ESR2 ESR3 ESR4 ESR5

Name Secure encryption No access to unauthorized
users

Authentication for critical functions in
place

Encryption applied to resources Locking is in place

Description CWE-326 CWE-284 CWE-306 CWE-311 CWE-732
Selection
Criterion
SMR: ON

ADD entity
t:Threat WHERE
t.domain=
”Secure
Encryption”

DEL link l:x→y
WHERE l =
”accessible By”

ADD link l:x→y WHERE y =
”Critical Function”

ADD link l:x→y WHERE
y = ”Encrypted
Persistence”

ADD link l:x→y
WHERE y = ”Lockable
Data”

SMR: IF EXISTS p:
communication
Path WHERE p
uses c:cypher
WHERE t
threatens c

!empty(forEach
(s:State,
traceAccess
(s,x,y)))

!operation(x).
stereotypes.
CONTAINS(rabacRequire)

class(x).
stereotypes.
CONTAINS(encrypted
Persistence)

class(x).
attributes.
CONTAINS(”locked”)

SMR: DO FIND c’:cipher
WHERE c’.threats
.isEmpty;
p.forEach(SET
p.uses = c’)

s’:state= Parent(s).
clone();
s.incoming.
stereotypes.
ADD(ensureRole)
s’.remove(s);

r:right= UserInput();
operation(x).
stereotypes. ADD(rabac
Require(r))

class(x).
stereotypes.
ADD(encrypted
Persistence)

class(x).
attributes.
ADD(”locked”)

vector. Thus, the system potentially now exhibits the vulnerability En-
crypted data disclosable. A mitigation Replace algorithm to this vul-
nerability is also introduced.

The knowledge evolution shown in Fig. 10 concerns ESR2, No ac-
cess to unauthorized users. As environmental change, we consider the
privacy regulation change as introduced in Section 4.1. The notion of
Special Personal Data is newly introduced. Moreover, the law states
that medical data is to be treated as special personal data.

iTrust stores that information inside a Patient asset which is ac-
cessed by the Patient View system component. iTrust comprises a hi-
erarchical role model of which the relevant elements are depicted.
The system handles different types of licensed health care person-
nel, such as designated licensed health care personnel (DLHCP) and
licensed health care personnel (LHCP). An additional role is unli

censed authorized personnel (UAP). Initially, all roles have access to
the patient view component. Consequently, Fig. 10 shows a accessi-
bleBy connection from the asset to the enclosing role HCP (health care
personnel).

To re-establish compliance, the Security Context Knowledge is up-
dated so that Patient is now treated as Health-related data and UAP
should not be allowed to have access to the patient view anymore.
This is accomplished by a more fine-grained rights assignment: the
coarse-grained right assigned to HCP is removed and fine-grained
rights to DLHCP and LHCP are added.

Fig. 11 deals with three Essential Security Requirements: ESR3
(Authentication for critical functions in place), ESR4 (Encryption ap-
plied to resources), and ESR5 (Locking is in place).

12 The Journal of Systems & Software xxx (2018) xxx-xxx

Fig. 10. SCK excerpt and changes regarding ESR2 (see Table 1).

Fig. 11. SCK excerpt and changes regarding ESR3-5 (see Table 1).

The Journal of Systems & Software xxx (2018) xxx-xxx 13

Regarding ESR3, patients can have a food diary, in which they
can view entries and edit food preferences. Thus, there is the asset
Food Choice and the respective system component Food Choice View.
As food habits can reveal also information about a persons’ religion,
viewing this information is newly considered to be critical and thus
becomes an instance of this class.

Concerning ESR4, a system communicating via secure channels
may still have an inadequate data integrity when storing data in an un-
encrypted manner. Here, the notions Requires Encrypted Persistence
and Critical Function are provided by the CWE catalog.

Given the standard deployment of iTrust, it uses a SQL server (e.g.
MySQL) to persist data assets. Thus, anybody who has access to the
database server is able to gain access to all of the server’s data easily.
Given the evolution of the privacy regulations and further regulations
for medical systems, it may be necessary to persist patient data using
encryption. Thus, Patient now requires the respective security prop-
erty.

Concerning ESR5, a change of the German Federal Data Protec-
tion Act in 2001 furnished patients with the right to lock certain data
that are subject to automated processing, such as their visit records. In
the domain ontology, we assume a class called Lockable Data, whose
instances require the presence of appropriate locking mechanisms in
the system.

4.3. Application of Security Maintenance Rules

Above, we presented five diverse knowledge changes. In our ap-
proach, we use Security Maintenance Rules to analyze the system
model regarding these changes and co-evolve it where necessary.
We now illustrate the application to the iTrust case study along the
changes.

We reiterate ESR1 from Table 1, Secure Encryption, by taking
into account the threat to the RC4 encryption algorithm introduced in
Fig. 9. The knowledge change arrives in the form of an ontology diff,
produced by the SiLift differencing tool by comparing the old and the
evolved version of the overall ontology. Since the ON part of ESR1
matches this diff, our approach recognizes the need for co-evolution
and triggers the corresponding Security Maintenance Rule from the
table, which is applied to the system model.

Fig. 12 shows the relevant excerpt from iTrust’s system model, a
deployment diagram. To support the specification of security aspects
in the deployment of the system, the diagram is equipped with the
UMLsec stereotype ⟨⟨secure links⟩⟩. The corresponding stereo-
type ⟨⟨encrypted enc⟩⟩ is attached to each communication path
between two nodes; it uses tagged values for specifying the encryp

tion algorithm to be used as well as its key length (Jürjens, 2005). The
tagged values are represented as annotations in the figure.

During the execution of the Security Maintenance Rule for ESR1
as per Table 1, the IF part is analyzed first. It requires that all Commu-
nicationPath elements are examined regarding their annotation
to gather insecure paths. As defined by DO, wherever RC4 is used, it
is to be replaced by another, secure algorithm. The surrogate algorithm
can either be inferred automatically from the knowledge or even fur-
ther specified or approved by the user. In addition, a number of pub-
lic institutions constantly provide publicly available recommendations
for encryption techniques (BSI, 2012; NIST, 0000) which can also be
incorporated into the Security Context Knowledge. The co-evolved
deployment diagram is shown in Fig. 13. The vulnerable RC4 algo-
rithm is now replaced by AES-256. It was chosen because it is the first
result of the query to the Security Context Knowledge and the selec-
tion is shown to the user.

Focusing on ESR2 from Table 1, No access to unauthorized users,
the knowledge evolution from Fig. 10 requires a reorganization of role
access: the role UAP shall not be allowed to access the Patient View
anymore. The ON part of ESR2 is triggered since a accessibleBy ob-
ject property was removed.

The relevant system model excerpt, shown in Fig. 14, is a state
chart specifying iTrust’s functional behavior. It comprises use cases
3, 26 and 44, which describe the login into the system and the access
to patient-specific information. The role access system is modeled us-
ing the UMLsec stereotype ⟨⟨enusureRole⟩⟩. This stereotype pro-
vides a tagged value to define the role a user needs to hold when try-
ing to reach a specific state. Thus, ⟨⟨ensureRole⟩⟩ is annotated to
state chart transitions. Unwanted behavior can be detected when a user
holding an insufficient role tries to traverse an annotated transition.

To make iTrust compliant again, access for UAP needs to be re-
stricted. The IF part initiates a model query to check if UAP has ac-
cess to patient data. This is the case for the transition OpenPati-
entInstructionDialog: A path from the login using the parent
role HCP to the specific transition can be traced. To this end, the state
chart elements are traversed using a breadth first search.

In the DO part, the system behavior for the role UAP needs to be
changed in a way that access to the critical transition OpenPati-
entInstructionDialog is removed. For all other roles, the sys-
tem behavior remains unchanged.

This is realized by restricting access to the critical state (target of
the above mentioned transition) by cloning the parent state Modi-
fyOV first and removing the critical state. The user needs to provide

Fig. 12. Deployment diagram of iTrust before co-evolution.

14 The Journal of Systems & Software xxx (2018) xxx-xxx

Fig. 13. Deployment diagram of iTrust after co-evolution.

Fig. 14. Combined state chart showing the use cases 3, 26 and 44.

a name for the cloned complex state. The login state (begin of the
path) has no UAP annotation, so this state is cloned, too, and as-
signed UAP as ⟨⟨ensureRole⟩⟩ tagged value. These changes are
performed to the diagram shown in Fig. 14, re-establishing the com-
pliance to the privacy requirements.

Regarding ESR3 from Table 1, Authentication for critical func-
tions in place, we consider the knowledge evolution in Fig. 11. The
Food Choice View has become a critical function, since it may sup-
port to infer a patient’s religion. Consequently, the ON part of ESR3
is triggered because a link to the Critical Function class has been in-
troduced.

IF initiates a model query and checks if the operation which pro-
vides access to the food choice view is secured. On the class dia-
gram level, UMLsec provides the ⟨⟨rabacRequire⟩⟩ to specify ac-
cess control according to the role-centric attribute-based access con-
trol model (RABAC, (Jin et al., 2012)). If an operation is tagged with
this stereotype, it may only be executed if the current user has a role
which is equipped with at least one right as defined in the tagged value
right. As defined by DO, the stereotype is added automatically. Af-
terwards, the user is requested to provide a appropriate set of rights.

Fig. 15 presents a relevant excerpt from iTrust’s system model: a
class diagram excerpt portraying the Patient class. It shows the
state after co-evolution and highlighted elements which have been Fig. 15. Excerpt: Patient data class of iTrust.

The Journal of Systems & Software xxx (2018) xxx-xxx 15

added during the co-evolution. During the evaluation of the IF part,
the lack of the required ⟨⟨rabacRequire⟩⟩ stereotype on the
viewFoodChoice operation was observed. To ensure the enforce-
ment of the required right, the stereotype was added in the DO part.

ESR4, Encrypted Persistence, is affected by Encrypted Per-
sistence becoming mandatory for Patients, as shown in
Fig. 11. The ON part of ESR4 is triggered by newly adding a con-
nection between the Encrypted Persistence Class and an individual.
Subsequently, the IF part checks if the respective model element Pa-
tient is equipped with a respective stereotype, and the DO part adds
the stereotype where this applies. As presented in Fig. 15, UMLsec’s
stereotype ⟨⟨encrypted persistence⟩⟩ is used to tag data
classes that are not allowed to be persisted without encryption.

Focusing on ESR5, Locking is in place, the German Federal Data
Protection Act furnishes people the right to lock diagnosis-relevant
data, which imposes particularly strict confidentiality requirements on
visit reports. The corresponding Security Context Knowledge change
involves the addition of a requires link between VisitRecord and
LockableData. The ON part of ESR5 is designed to trigger the cor-
responding Security Maintenance Rule on such additions.

In consequence, the IF part of the rule checks if the affected data
classes also have a locked property. If this is not the case, the ap-
plication of DO leads to the addition of this property. The developer
is informed to update the implementation so that it uses the property.
The rule application works largely the same as in the above mentioned
changes to Fig. 15.

4.4. Discussion

We carried out a case study by applying our approach to iTrust.
As environment knowledge evolution scenario we used a newly in-
troduced category of private data as happened to the German Fed-
eral Data Protection Act in 2001, as well as a typical scenario in soft-
ware security engineering when a encryption algorithm is discovered
to be insecure. We investigated five general security requirements as
addressed by the community driven database of Common Weakness
Enumerations (CWE).

Regarding RQ1, we used our conception of layered ontologies to
represent security knowledge. To this end, we complemented the up-
per ontology from Section 3.1 with domain and system ontologies,
representing (1) domain knowledge about laws and security mecha-
nisms how to achieve security properties, (2) relevant elements from
the iTrust system to bridge the gap between knowledge modeling and
the system model. As indicated by the examples in Section 4.2, we
found that the graphical representation of ontologies supports gaining
insight in crosscutting concepts of a system design like access control,
role hierarchies, and security mechanisms used to implement security
requirements of a system.

This knowledge can be modeled at a central place and uncluttered
from more concrete system design details, which would be scattered
over the system model or even not visible at all otherwise. On the
downside, we found that working with two tools, Protégé and our
own prototype, time-consuming. For providing system elements to
the Security Context Knowledge, we started modeling system design
elements manually and later on used a transformation which parses
the system design model and integrates it into an ontology layer.
A conceivable enhancement could be to build a plug-in for Protégé
which lets one explore and link elements from the system design. A
tighter integration or even building an ontology editor as part of our
prototype would be useful to improve usability. However, re-imple

menting existing tooling is a large additional effort, while Protégé is
well-known and widely used in the ontology community. Apart from
these usability issues, modeling the knowledge and ontologies went
out without further challenges, and it turned out be intuitive.

With regard to RQ2, we used the concepts of Essential Secu-
rity Requirements and Security Maintenance Rules, as introduced in
Section 3.2. In all considered cases, our approach was able to de-
tected requirement violations by utilizing the knowledge structure and
graph expressions. Whenever a potential vulnerability was discovered,
the Security Maintenance Rule investigated the system model by us-
ing model queries, eventually supported by Java code, to propose a
co-evolution.

Essential Security Requirements, defining central security require-
ments of a system, were the starting point of our case study. As in-
dicated by the examples in Section 5.4, we could define suitable Es-
sential Security Requirements in all cases. Evolutions of the environ-
mental knowledge were detected using SiLift, triggering the applica-
tion of the corresponding Security Maintenance Rules. SiLift supports
our approach in bridging the gap between ontology-based knowledge
modeling and the UML-based system modeling.

We found that the Henshin graph transformation language is use-
ful for expressing most of the required rules in a declarative and in-
tuitive manner. First, model queries can be modeled by using simply
⟨⟨preserve⟩⟩ nodes in the transformation rules. Due to its unified
view on transformations by displaying LHS and RHS in one view,
the user does not experience doubling of rule nodes which keeps the
user interface clear. This is especially helpful when modeling complex
rules. Using Henshin in conjunction with its auxiliary mechanism par-
tial match, co-evolution steps can also be kept simple. To alter model
elements in a definite scope of the model, there is no need to provide
rules which model the whole containment hierarchy up to the model’s
root element. It will suffice to focus on the directly related elements
and provide a partial match for a number of anchor elements to sup-
port the matcher enough to find the desired spot in the model.

Additionally, Henshin also serves as the user interface of the SiLift
tool. Semantic differences which can be processed by SiLift are mod-
eled using Henshin transformation rules. This keeps the learning curve
flat.

For example, Fig. 16 depicts a rule we use for co-evolution to add
an UMLsec annotation ⟨⟨ensureRole⟩⟩ to a transition in a state
chart. By utilizing Henshin’s partial match mechanism, we can reuse
knowledge already acquired by preceding steps, provide the concrete
Transition instance as and can directly apply the rule.

In a few cases, we had to surpass expressiveness restrictions of
Henshin by involving a moderate amount of supporting Java code.
Examples include path expressions, and cloning of model parts with
a containment hierarchy, we accompanied graph transformation rules
with it.

We found that using UMLsec stereotypes provide a lightweight
possibility of annotating concrete parts of the system design with sup-
plementary details concerning security requirements, like restrictions

Fig. 16. Example of Henshin transformation rule minimized due to use of partial match
mechanism.

16 The Journal of Systems & Software xxx (2018) xxx-xxx

for accessing certain methods or states of a system. The annotations
integrate into the existing UML models and extend the syntax via the
officially provided profile mechanism. Designing the models is not
hampered because all model design features work like before and are
just enhanced by the new aspects. If necessary, a view on the model
without annotations can be generated easily e.g. by temporarily re-
move every application of the UMLsec profile.

Regarding RQ3, we presented co-evolutions as carried out by Se-
curity Maintenance Rules (SMR). Co-evolution steps can be applied
automatically in case there is a single way to recover the ESR. In
other cases, the user can provide additional information. For exam-
ple, we found modeling Security Maintenance Rule for ESR1 (see
Fig. 9) quite straightforward. It required least user interaction because
all parts of the system to be altered can be directly inferred by the
knowledge change. In fact, co-evolution can be applied directly by
choosing a now secure algorithm and apply it to the whole system de-
sign, wherever the now insecure algorithm is referred.

Modeling the Security Maintenance Rule for ESR2 (see Fig. 10)
proved to require the most manual effort. As can be already seen in
comparison to Fig. 9, ESR2 interacts with a number of concepts of the
concrete system. This comprises the role model as well as parts of the
system like the Patient View user interface element and Patient data
object. The synchronization of knowledge by using a heuristics-sup-
ported round-trip approach could lower the manual effort here. By ap-
plying these co-evolutions, the given system model has UMLsec secu-
rity annotations that are compliant with the current context knowledge
again. Updates to the system model still have to be propagated to the
system implementation. In some cases, an automated generation of the
corresponding code is possible; in other cases, additional manual im-
plementation effort is required.

In summary, we found that the modularized modeling of the sys-
tem, knowledge and security aspects lead to more clarity. Our
semi-automatic approach eases co-evolving a system design when
knowledge changes come into place because it minimizes effort of in-
specting artifacts manually, which especially gets more useful the big-
ger the considered system is. With our contribution, we support the
maintenance of long-living systems.

4.5. Threats to validity

According to Wohlin et al.’s taxonomy of threats to validity
(Wohlin et al., 2012), external validity is key in applied research: re-
sults should generalize to other systems of a particular size or appli-
cation domain. Our two main threats for external validity concern the
considered system and participants in our case study.

The considered system, iTrust, comes from an academic setting
rather than from an industry partner. In Section 4.1, we argue that it
is representative for systems in industry, since several key properties
of long-living, complex, and security-critical systems apply. In the fu-
ture, we plan to use our approach in industrial systems as well.

The independent team responsible for creating the involved mod-
els were academics. To mitigate the associated threat, the team was
composed carefully: the team leader was equipped with ten years of
industrial development experience, and the full team was composed of
persons with development experience as well. Still, an empirical eval-
uation in the field is left as future work.

Internal validity refers to the validity of causal relationship be-
tween treatment and outcome. Since our subject system is from the
domain of long-living systems, it may be subject to maturation: As
time has passed, available weaknesses might have been mitigated, pre-
venting us from detecting and fixing them. Our set-up focuses on

selected weaknesses, in which our approach showed to be helpful: it
was able to support the semi-automated co-evolution of the system.

Construct validity focuses on the relation between theory and ob-
servation. We operationalized the considered construct, usefulness,
as the ability to support semi-automated co-evolution. This opera-
tionalization does not focus on the usefulness concern of effort, which
would require a quantitative evaluation setup. However, all prime ben-
efits of our approach are related to the reduction of effort: Represent-
ing security knowledge in a central knowledge base reduces redundant
communication effort. Model queries reduce manual analysis effort.
Our semi-automated co-evolution reduces manual maintenance effort.

5. Related work

In this section we give an overview of publications related to our
approach. As our approach covers several areas of research, we have
structured the related work we discuss according to the respective
main topics.

5.1. Techniques to support security requirements elicitation

In the last decade, several methods and tools have been devel-
oped to create threat models feasible to identify and mitigate threats
(cf. Myagmar et al. (2005); Oladimeji et al. (2006)). Moreover, a few
approaches consider use cases as a starting point to identify threats as
a basis for security requirements.

Sindre and Opdahl (2005) argue that use cases offer limited sup-
port for eliciting security requirements and therefore regard use cases
enriched with textual description about misuse. Based on this, guide-
lines are presented how to describe misuse cases in detail, so that, in
a next step, method guidelines for eliciting security requirements with
misuse cases can be established. While providing a general approach
on how to elicit security requirements based on use case descriptions,
in contrast to our approach there is no focus on overall security goals /
requirements and relations to the later system design.

Kaiya et al. (2013) use information about the underlying architec-
ture to elicit security requirements. Use-case descriptions are con-
verted into data-flow diagrams called asset flow diagrams. Security
requirements are then defined as countermeasures for an attack if de-
tected by the asset flow diagrams and as design and implementation
constraints if not detected. In contrast to the SecVolution approach,
there is no systematic approach for evolving stakeholder needs.

Haley et al. (2008) present a framework not only for security re-
quirements elicitation, but also for security analysis. Their method is
based on constructing a context for the regarded system. Describing
this context with a problem oriented notation makes it possible to val-
idate the system against the security requirements. The approach is
very powerful but needs a lot of security expertise to build the context
and understand the results of the analysis. Evolution of the context is
not supported here.

5.2 Security patterns incorporating requirements elicitation.Security
patterns in frontage of Requirements Elicitation

Harmain and Gaizauskas (2003) utilize Natural Language Process-
ing (NLP) for eliciting software requirements. With their technique
they are able to detect entities related to classes and attributes to build
an initial UML class model. In contrast to our approach they are not
considering requirements in context of security issues.

Compagna et al. (2008) integrate legal patterns into a requirements
engineering methodology for the development of security and

The Journal of Systems & Software xxx (2018) xxx-xxx 17

privacy patterns using NLP. This description is parsed by a natural
language processor on the basis of a semantic template. The pattern
design and validation process requires legal experts to describe pat-
terns in natural language. While providing a possibility to model enti-
ties and their security needs in an SI* model, there is no process pro-
vided how to hand the knowledge over to subsequent development
steps.

Gegick and Williams (2007) developed a methodology for early
identification of system vulnerabilities for existing threats based on
regular expressions. Patterns of possible vulnerabilities are used to
identify threats. The method is called Security Analysis for Existing
Threats (SAFE-T) and is not tailored to deal with newly discovered
thready and a system that is deployed.

5.3Managing security knowledge to appropriately react to
evolution.Managing Security Knowledge to adequate react to
Evolution

Tsoumas and Gritzalis (2006) provide a security ontology based
framework for enterprises linking high level policy statements and de-
ployable security controls. The security ontology is build by extending
the DMTF Common Information Model standard. It is used as a con-
tainer for the security related information that concerns the informa-
tion system. In contrast to SecVolution, this approach targets organi-
zational security controls (e.g. securing server hardware, recommend-
ing using a firewall) and not developing secure software systems.

Ernst et al. (2011) identified changes in requirements specification
as triggering event for software evolution. The relationship between
requirements and implementation is described formally. Together with
goals derived from software specification, implementation tasks are
computed to reach the goals in accordance with the requirements. The
goal of this formal, rather abstract approach is to provide a clearly
structured, graph-based guidance for implementation decisions. A
co-evolution scenario arises when changing requirements restate the
requirements problem, which the authors state is not solved yet. An
interface to system design level is not discussed.

Souza et al. (2013) regard requirements that cause the evolution of
other requirements. Their approach is based on goal-oriented model-
ing. The system the stakeholders expect is supposed to be modeled as
a set of goals. During run time, events can be monitored. The concept
of evolution requirements (EvoReqs) based on event-condition-action
schema, is used to adapt the goal model. Security is only considered
as a side note. The adaption capabilities are fully based on the rules as
provided upfront and as part of the closed system, there is no mecha-
nism of accessing knowledge like general security knowledge.

Salehie et al. (2012) present a requirements driven approach to
adaptive security which aims at identifying and evaluating changing
assets at run time to dynamically enable different countermeasures. A
casual network is build upon a goal model and a threat model to ana-
lyze system security in different situations. The causal network needs
to be maintained manually and dealing with unanticipated events is
not covered.

The systematic investigation of evolution of the software system
when security knowledge in the environment changes is a topic of
ongoing research. With our holistic approach the security engineer is
able to concentrate on finding new threats and attack patterns rather
than dealing with known threats.

5.4. Analyze the impact of changes with respect to co-evolution

When an evolution took place, the software artifacts under consid-
eration could be inconsistent due to unintentional side effects.

The Water wave phenomenon inspired Li et al., 2013) to develop
an impact assessment approach based on call graphs. First they ana-
lyze the core, which consists of the direct affected software artifacts.
After that, the call graph is analyzed, taking the interference of dif-
ferent changes into account. They claim that their nature inspired ap-
proach has fewer false positives compared to common call-graph ap-
proaches. Their approach is focused on predicting how big (i.e. num-
ber of methods to change) the impact of changing a number of meth-
ods in a given source code project will be. Opposed to this, our ap-
proach aims at analyzing impact regarding security properties.

The main idea of Bouneffa and Ahmad (2014) is to use semantic
knowledge about artifacts and change operations that is represented in
an ontology to realize a change management. Change operations are
formalized as graph rewriting rules and implement the change and its
impact propagation. The approach does not support processing of re-
quirements or other overall properties. The change management pre-
sented instead serves for keeping a big model consistent.

Okubo et al. (2011) regard the impact of software enhancements
on security by involving patterns of enhancements. The overall goal
is to enable the developer to estimate and compare the amount of
modifications needed by different countermeasures. The proposed se-
curity analysis process uses security requirements patterns to iden-
tify threats and security design patterns to find countermeasures (see
also Okubo et al., 2012). In contrast to SecVolution, their approach
does not cover evolution. Besides, application of the approach leads
to having a guidance of which patterns for security precautions or vul-
nerability mitigations should be applied. There is no integration with
an actual system design so far.

5.5. Vulnerability and attack management

A main type of security threats arises from the constant emergence
of new vulnerabilities and corresponding attacks.

An investigation of Kuehn and Mueller (2014) focuses on zero-day
exploits, in which previously unknown vulnerabilities are exploited by
attackers. Big players such as Microsoft or Facebook face a desperate
situation, where conventional security precautions seem to be over-
whelmed by a rapidly increasing number of these exploits. However,
rather than addressing the question how vulnerabilities can be avoided
upfront, their current reaction is to take part in the race by conducting
bug bounty programs. In contrast, SecVolution builds upon commu-
nity knowledge. Using layered ontologies, knowledge can be hierar-
chically structured. As soon as an attack is discovered (i.e. knowledge
about it is made explicit), it can be shared publicly, which speeds up
the vulnerability fixing process.

Alhazmi et al. (2007) define a metric called vulnerability density,
which puts the number of vulnerabilities of a product in relation to its
overall bug count. They define a logistic and a linear model and mea-
sure its fitness regarding the publicly available bug data of a number
of Microsoft Windows releases and two Red Hat Linux releases.

The authors state that their metric can be used to predict the num-
ber of vulnerabilities to be expected. This method could be useful for
our approach to gain additional knowledge and pointing out potential
system parts which may be vulnerable.

Since SecVolution focuses on the system level, there is a trade-off
regarding the granularity of vulnerabilities and attack types it can ad-
dress. We focus on design-level vulnerabilities, such as the use of an

18 The Journal of Systems & Software xxx (2018) xxx-xxx

outdated encryption algorithm in our case study, or a version of the
OpenSSL library affected by the Heartbleed bug. Implementa-
tion-level vulnerabilities such as buffer overflows must be detected
and fixed on the source-code level, for which a plethora of tools exist.

6. Conclusion and future research

Maintaining long-living information systems regarding security by
taking a changing environment into account is a challenging task. Se-
curity-related parts of a software have to be changed when environ-
mental knowledge changes or when assumptions about the system
context do not hold any longer due to occurred security incidents.

In this paper, we presented an approach to model environmental
knowledge, cope with its evolution and co-evolve the system model
of an information system semi-automatically. The presented work is
part of our SecVolution approach that is intended to retain security
of long-living information systems independent of the process model,
domain, or technology in use.

The presented approach determines the knowledge evolution im-
pact using the given security requirements.

We further presented how the Essential Security Requirements are
encoded to query the system model. This is important to highlight
parts of the system model that do not fulfill a particular requirement
anymore. Based on this information, appropriate adaptations are se-
lected to co-evolve the system model.

In the case study, we have shown that our approach is applicable
and at least reduces the effort for security experts to identify vulner-
able portions of the system model and to avoid conventional security
problems automatically. Although we only focus on privacy aspects
within the case study, our approach is capable to deal with other as-
pects (e.g. changing technology, occurred security incidents) as well.

6.1. Future research

The work presented in this article is part of ongoing research. The
work on the project SecVolution is extended as part of a second phase
of the priority programme. By now, our approach focused on a devel-
opment cycle consisting of design phase and implementation. Due to
enterprise service buses and further approaches, where different com-
ponents are integrated to deliver a more complex service, as well as
on-line services which ought to be used 24/7 by mobile devices, main-
tenance cycles with a substantial downtime to re-run the development
cycle often cannot be tolerated. For example, an unwanted role/rights
configuration or system behavior specified at design-time should be
monitored and (in critical cases) acted upon during system execution.
Thus, in our ongoing research, we will also focus on the deployment
and maintenance phase of information systems.

The SecVolution approach currently is designed to support devel-
opment cycles and projects by gradually wrapping an existing system
into a layer of security-related knowledge because it tends to support
long-living information systems.

Thus, the system can only be enhanced by monitoring probes to a
certain extent that generate run-time data. Our future research will fo-
cus on determine the need for adaptation at run-time based on moni-
toring and system evolution.

Moreover, we will conduct research on how to preserve compli-
ance to security requirements by run-time adaptation based on secu-
rity knowledge and its evolution. It has to be decided if a security is-
sue has to be mitigated by using run-time adaptation reactions, if a
more in-depth determining is necessary in design-time by a re-run of
the development cycle or if a temporary take-down of functionalities
is acceptable. Moreover, ordinary requirements should not be affected

as well as it has to be prevented that the system slowly degrades by
continuous adaptation applications. This is a multi-objective optimiza-
tion problem.

Acknowledgment

This research is funded by the DFG project SecVolu-
tion@Run-time (JU 2734/2-2 and SCHN 1072/4-2) which is part of
the priority programme SPP 1593 “Design For Future - Managed Soft-
ware Evolution”.

References

Ahmadian, A.S., Peldszus, S., Ramadan, Q., Jürjens, J., 2017. Model-based privacy
and security analysis with CARiSMA. Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). 989–993.

Alhazmi, O.H., Malaiya, Y.K., Ray, I., 2007. Measuring, analyzing and predicting se-
curity vulnerabilities in software systems. Comput. Secur. 26 (3), 219–228.

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G., 2010. Henshin: Ad-
vanced concepts and tools for in-place EMF model transformations. Model Driven
Engineering Languages and Systems (MoDELS). 121–135.

Baras, D.S.A., Othman, S.H., Ahmad, M.N., Ithnin, N., 2014. Towards managing in-
formation security knowledge through metamodelling approach. International
Symposium on Biometrics and Security Technologies (ISBAST). IEEE, 310–315.

Bouneffa, M., Ahmad, A., 2014. The change impact analysis in BPM based software
applications: a graph rewriting and ontology based approach. Enterprise Informa-
tion Systems. Springer, 280–295.

Bowman, S., 2013. Impact of electronic health record systems on information in-
tegrity: quality and safety implications. Perspect. Health Inf. Manag. 10. Fall.

Braz, F.a., Fernandez, E.B., VanHilst, M., 2008. Eliciting Security Requirements
through Misuse Activities. International Workshop on Secure Systems Methodolo-
gies Using Patterns (SPattern). IEEE, 328–333.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., 2007. Lessons
from applying the systematic literature review process within the software engi-
neering domain. J. Syst. Softw. 80 (4), 571–583.

BSI, 2012. IT Basic Protection Catalog.
Bundesamt für Datenschutz, 2014. BDSG Änderungen - Änderungen des Bundes-

datenschutzgesetzes seit 1990.
Bundesministerium des Inneren, 2005. Bundesdatenschutzgesetz. Bundesgesetzblatt.
Bürger, J., Gärtner, S., Ruhroth, T., Zweihoff, J., Jürjens, J., Schneider, K., 2015.

Restoring security of long-living systems by co-evolution. International Computer
Software and Applications Conference (COMPSAC). 153–158.

Bürger, J., Jürjens, J., Ruhroth, T., Gärtner, S., Schneider, K., 2014. Model-based Se-
curity Engineering with UML: managed co-evolution of Security Knowledge and
Software Models. Foundations of Security Analysis and Desing VII: FOSAD Tu-
torial Lectures. Springer, 34–53.

Bürger, J., Jürjens, J., Wenzel, S., 2015. Restoring security of evolving software mod-
els using graph transformation. Int. J. Softw. Tools Technol. Transf. 17 (3),
267–289.

Compagna, L., El Khoury, P., Krausová, A., Massacci, F., Zannone, N., 2008. How to
integrate legal requirements into a requirements engineering methodology for the
development of security and privacy patterns. Artif. Intell. Law 17 (1), 1–30.

Dayal, U., 1994. Active Database Systems: Triggers and Rules for Advanced Database
Processing. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Dubois, , Heymans, P., Mayer, N., Matulevičius, R., 2010. A systematic approach to
define the domain of information system security risk management. Intentional
Perspectives on Information Systems Engineering. Springer, 289–306.

Eclipse Foundation,. Eclipse modeling framework project (EMF).
Elahi, G., Yu, E., Zannone, N., 2009. A vulnerability-centric requirements engineering

framework: analyzing security attacks, countermeasures, and requirements based
on vulnerabilities. Requirements Eng. 15 (1), 41–62.

Ernst, N.A., Borgida, A., Mylopoulos, J., 2011. Requirements evolution drives soft-
ware evolution. International Workshop on Principles of Software Evolution and
ERCIM Workshop on Software Evolution. ACM, 16–20.

Gärtner, S., Ruhroth, T., Bürger, J., Schneider, K., Jürjens, J., 2014. Maintaining re-
quirements for long-living software systems by incorporating security knowledge.
International Requirements Engineering Conference (RE). IEEE, 103–112.

Gegick, M., Williams, L., 2007. On the design of more secure software-intensive sys-
tems by use of attack patterns. Inf. Softw. Technol. 49 (4), 381–397.

Gruber, T.R., 1995. Toward principles for the design of ontologies used for knowledge
sharing?. Int. J. Hum. Comput. Stud. 43 (5–6), 907–928.

Habela, P., Kaczmarski, K., Stencel, K., Subieta, K., 2008. OCL as the query language
for UML model execution. International Conference on Computational Science
(ICCS). Vol. 5103, Springer Berlin Heidelberg, 311–320.

The Journal of Systems & Software xxx (2018) xxx-xxx 19

Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B., 2008. Security requirements en-
gineering: a framework for representation and analysis. IEEE Trans. Software Eng.
34 (1), 133–153.

Harmain, H., Gaizauskas, R., 2003. CM-Builder: A natural language-based case tool
for object-oriented analysis. Autom. Softw. Eng. 10, 157–181.

Houmb, S.H., Islam, S., Knauss, E., Jürjens, J., Schneider, K., 2009. Eliciting security
requirements and tracing them to design: an integration of common criteria, heuris-
tics, and UMLsec. Requirements Eng. 15 (1), 63–93.

Hutchinson, J., Whittle, J., Rouncefield, M., 2014. Model-driven engineering practices
in industry: social, organizational and managerial factors that lead to success or
failure. Sci. Comput. Program. 89, 144–161.

International Standardization Organization, 2007. ISO 15408:2007 Common Criteria
for Information Technology Security Evaluation, Version 3.1, Revision 2,
CCMB-2007-09-001, CCMB-2007-09-002 and CCMB-2007-09-003.

Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R., 2015. Attack
trees with sequential conjunction. IFIP International Information Security Confer-
ence (SEC). Springer, 339–353.

Jin, X., Sandhu, R., Krishnan, R., 2012. RABAC: Role-Centric Attribute-Based Access
Control. Springer, 84–96.

Jürjens, J., 2005. Secure Systems Development with UML. Springer.
Jürjens, J., Schneider, K., 2014. The SecReq approach: from security requirements to

secure design while managing software evolution. Software Engineering (SE). GI,
89–90.

Kaiya, H., Sakai, J., Ogata, S., Kaijiri, K., 2013. Eliciting security requirements for an
information system using asset flows and processor deployment. Int. J. Secure
Softw. Eng. 4 (3), 42–63.

Kehrer, T., Kelter, U., Ohrndorf, M., Sollbach, T., 2012. Understanding model evolu-
tion through semantically lifting model differences with SiLift. International Con-
ference on Software Maintenance (ICSM). 638–641.

Kitchenham, B., Charters, S., 2007. Guidelines for performing systematic literature re-
views in software engineering. Technical Report. EBSE-2007-01.

Knauss, E., Lübke, D., Meyer, S., 2009. Feedback-driven requirements engineering:
the Heuristic requirements assistant. International Conference on Software Engi-
neering (ICSE). 587–590.

Kuehn, A., Mueller, M., 2014. Shifts in the cybersecurity paradigm: Zero-day exploits,
discourse, and emerging institutions. New Security Paradigms Workshop (NSPW).
ACM, 63–68.

Launders, I., Polovina, S., 2013. A semantic approach to security policy reasoning.
Strategic Intelligence Management. Elsevier, 150–166.

Lehman, M.M., Ramil, J.F., 2003. Software evolution – background, theory, practice.
Inf. Process. Lett. 88 (1–2), 33–44.

Li, B., Zhang, Q., Sun, X., Leung, H., 2013. Using water wave propagation phenome-
non to study software change impact analysis. Adv. Eng. Softw. 58, 45–53.

McManus, H., Hastings, D., 2005. A framework for understanding uncertainty and its
mitigation and exploitation in complex systems. INCOSE International Sympo-
sium. Vol. 15, Wiley Online Library, 484–503.

Meneely, A., Smith, B., Williams, L., 2012. iTrust electronic health care system case
study. Software and Systems Traceability. Springer, 425–438.

Miede, A., Nedyalkov, N., Gottron, C., König, A., Repp, N., Steinmetz, R., 2010. A
generic metamodel for it security attack modeling for distributed systems. Interna-
tional Conference on Availability, Reliability, and Security (ACES). IEEE,
430–437.

Mitleton-Kelly, E., Papaefthimiou, M.-C., 2002. Co-evolution of Diverse Elements In-
teracting Within a Social Ecosystem. Springer.

MITRE, 2013. Common Vulnerabilities and Exposures.
MITRE, 2017. Common Weakness Enumeration.
Mouratidis, H., Giorgini, P., Manson, G., 2003. An ontology for modelling security:

the tropos approach. International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems (KES). Springer, 1387–1394.

Myagmar, S., Lee, A.J., Yurcik, W., 2005. Threat modeling as a basis for security re-
quirements. IEEE Symposium on Requirements Engineering for Information Secu-
rity (SREIS). 1–8.

NIST,. Recommendation for Key Management. NIST Special Publication 800-57 Part
1 Revision 4.

Okubo, T., Kaiya, H., Yoshioka, N., 2011. Effective security impact analysis with pat-
terns for software enhancement. Int. Conf. Availab. Reliab. Security 527–534.

Okubo, T., Kaiya, H., Yoshioka, N., 2012. Analyzing impacts on software enhance-
ment caused by security design alternatives with patterns. Int. J. Secure Softw.
Eng. 3 (1), 37–61.

Oladimeji, E., Supakkul, S., Chung, L., 2006. Security threat modeling and analysis: A
goal-oriented approach. IASTED International Conference on Software Engineer-
ing and Applications (SEA). 13–15.

Realsearch Research Group North Carolina State University,. iTrust wiki. Accessed
Dec 20, 2017.

RFC, 2015. RFC 7465: Prohibiting RC4 cipher suite.
Robillard, P., 1999. The role of knowledge in software development. Commun. ACM

42 (1), 87–92.
Ruhroth, T., Gärtner, S., Bürger, J., Jürjens, J., Schneider, K., 2014. Towards adapta-

tion and evolution of domain-specific knowledge for maintaining secure systems.
International Conference on Product Focused Software Process Improvement
(PROFES). 239–253.

Salehie, M., Pasquale, L., Omoronyia, I., Ali, R., Nuseibeh, B., 2012. Require-
ments-driven adaptive security: protecting variable assets at runtime. International
Requirements Engineering Conference (RE). IEEE, 111–120.

Schneider, K., Knauss, E., Houmb, S., Islam, S., Jürjens, J., 2011. Enhancing security
requirements engineering by organizational learning. Requirements Eng. 17 (1),
35–56.

Schwaber, K., Sutherland, J., 2017. The Scrum Guide. Accessed Dec 20
Sindre, G., Opdahl, A.L., 2005. Eliciting security requirements with misuse cases. Re-

quirements Eng. 10 (1), 34–44.
Souza, V.E.S., Lapouchnian, A., Angelopoulos, K., Mylopoulos, J., 2013. Require-

ments-driven software evolution. Comput. Sci.-Res. Develop. 28 (4), 311–329.
Stanford Center for Biomedical Informatics Research (BMIR),. Protégé homepage.

http://protege.stanford.edu.
Swiderski, F., Snyder, W., 2004. Threat Modeling. Microsoft Press.
Tsoumas, B., Gritzalis, D., 2006. Towards an ontology-based security management.

20th International Conference on Advanced Information Networking and Applica-
tions (AINA). IEEE, 985–992.

Ujhelyi, Z., Bergmann, G., Ábel Hegedüs, Ákos Horváth, Izsó, B., Ráth, I., Szatmári,
Z., Varró, D., 2015. EMF-IncQuery: an integrated development environment for
live model queries. Sci. Comput. Program. 98, Part 1, 80–99.

Vanhoef, M., Piessens, F., 2015. All your biases belong to us: Breaking RC4 in
WPA-TKIP and TLS. USENIX Security Symposium, USENIX Security 15.
97–112.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012. Ex-
perimentation in Software Engineering. Springer Science & Business Media.

	
	
	

