
C
a

b

c

a
t
m
p
v
e
a
2
e
c

(

h
0

Author preprint for a paper accepted for publication in The Journal of Systems & Software 203 (2023) 111
A benchmark generator framework for evolving variant-rich software✩

hristoph Derks a,∗, Daniel Strüber b,c, Thorsten Berger a,b

Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
Chalmers/University of Gothenburg, Department of Computer Science and Engineering, Gothenburg, 41296, Sweden
Radboud University Nijmegen, Toernooiveld 212, Nijmegen, 6525 EC, The Netherlands

a r t i c l e i n f o

Article history:
Received 9 November 2022
Received in revised form 1 March 2023
Accepted 27 April 2023
Available online 4 May 2023

Keywords:
Generator
Variants
Product lines
Evaluation

a b s t r a c t

Software often needs to exist in different variants, which account for varying customer requirements,
environments, or non-functional aspects, such as energy consumption. Unfortunately, the number
of variants can grow exponentially with the number of features. As such, developing and evolving
variant-rich systems is challenging, since they do not only evolve ‘‘in time’’ as single systems, but also
‘‘in space’’ with new variants. Fortunately, many different methods and tools for variant-rich systems
have been proposed over the last decades, especially in the field of software product line engineering.
However, their level of evaluation varies significantly, threatening their relevance for practitioners and
that of future research. Many tools have only been evaluated on ad hoc datasets, minimal examples,
or unrealistic and limited evolution scenarios, missing large parts of the actual evolution lifecycle of
variant-rich systems.

Our long-term goal is to provide benchmarks to increase the maturity of evaluation of methods
and tools for evolving variant-rich systems. However, providing manually curated and sufficiently
detailed benchmarks that cover the whole evolution lifecycle of variant-rich systems is challenging. We
present the framework vpbench, which simulates the evolution of a variant-rich system and thereby
generates an evolution enriched with metadata explaining the evolution. The generated benchmarks,
i.e., the evolution histories and metadata, can serve as ground truth to check the results of tools
applied on it. We formalize the claims we make about the generator and the generated benchmarks
as requirements. The design of vpbench comprises modular generators and evolution operators that
automatically evolve real codebases. We implement simple and advanced evolution operators—e.g.,
relying on code transplantation to incorporate features from real projects. We demonstrate how
vpbench addresses its claimed requirements, also considering multiple degrees of realism, extensibility
and language-independence of the generated benchmarks.

© 2023 Elsevier Inc. All rights reserved.
D
a
u

1. Introduction

Almost any software system needs to exist in multiple vari-
nts. Developers create variants to experiment with ideas and
o address varying stakeholder requirements—including different
arkets, environments, and non-functional properties, such as
erformance or energy consumption. Unfortunately, developing
ariant-rich systems is challenging (Berger et al., 2020; Fogdal
t al., 2016; Jepsen and Beuche, 2009; Jepsen et al., 2007; Krüger
nd Berger, 2020a,b; Kuiter et al., 2018; Vogel-Heuser et al.,
015). However, evolving them is even more complex (Berger
t al., 2019; Krüger et al., 2020; Strüber et al., 2019) , espe-
ially compared to single systems. Organizations often start with

✩ Editor: Laurence Duchien.
∗ Corresponding author.

E-mail addresses: christoph.derks@rub.de (C. Derks), danstru@chalmers.se
D. Strüber), thorsten.berger@rub.de (T. Berger).
 a

ttps://doi.org/10.1016/j.jss.2023.111736
164-1212/© 2023 Elsevier Inc. All rights reserved.
clone&own– copying and adapting individual variants – as a
simple and readily available strategy (Berger et al., 2013a, 2020;
ubinsky et al., 2013). During clone&own the different vari-
nts are evolved by manually propagating new features (end-
ser-visible functionality (Apel et al., 2013; Berger et al., 2015)),

and other code changes (e.g., bug fixes) among the cloned vari-
ants. However, while cheap at first, the maintenance overheads
quickly exceed the benefits of clone&own. Then, organizations
need to integrate several or all variants into a configurable plat-
form, realized with so-called variability mechanisms (Apel et al.,
2013; Berger et al., 2013b; Van Gurp et al., 2001) that allow
enabling or disabling features and their implementation via vari-
ation points in the code. A platform greatly reduces redundancies
among the variants and allows to quickly derive new variants—
often automatically, supported by model-based representations
(e.g., feature models (Berger et al., 2013a; Kang et al., 1990))
nd configurator tools. Still, evolving a platform is difficult, since

mailto:christoph.derks@rub.de
mailto:danstru@chalmers.se
mailto:thorsten.berger@rub.de
https://doi.org/10.1016/j.jss.2023.111736


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

d
a
f

o
l
p
(
2
2
2
a
t
c
e
m
m
t
h
e

e
e
b
r
l
a
d
W
n
t
g

C
f
s
f
f
r
s
t
t
n
s
S
t
f
i
w
n
f
c
a
e
r
A
p

s
E
a
s
h
o
i
m

S
g
t
t
t
a
e
p

m
b
o
b
u
t
e

evelopers work on many variants at the same time, with vari-
tion points (e.g., using #ifdef) cluttering the source code and
eatures being scattered across the codebase.

A huge portfolio of methods and tools has been proposed
ver the last three decades in the field of software product
ine engineering (Apel et al., 2013; Pohl et al., 2005) to sup-
ort the evolution of variant-rich systems—software product lines
SPLs). These methods and tools provide techniques (Alves et al.,
006; Assunção et al., 2017; Krüger et al., 2020; Mahmood et al.,
021; Pfofe et al., 2016; Rattan et al., 2013; Rubin and Chechik,
013; Schlie et al., 2020; Schulze, 2019; She et al., 2014) to
utomatically locate features in source code, to manage and iden-
ify clones, to propagate changes and features, to re-engineer
loned source code into a configurable platform, to manage and
volve feature models, to evolve the configurable platforms, and
any other evolution scenarios. So, in summary, many different
ethods and tools exist that support individual parts of the

ypical evolution lifecycle of variant-rich systems, covering ad
oc clone&own, the migration to a configurable platform, and its
volution.
A core challenge is the evaluation of these techniques (Strüber

t al., 2019). A recent study found that only 3 of 11 common
volution scenarios of variant-rich systems are fully supported
y benchmarks (Strüber et al., 2019). While open-source variant-
ich systems exist (Berger et al., 2013b), the main problem is the
ack of large ground-truth datasets that challenge the techniques
nd provide detailed information about the actual evolution, to
etermine the techniques’ performance (e.g., precision or recall).
hile a few open-source systems annotated with features exist,
o dataset provides the whole evolution history of realistic sys-
ems, together with the necessary information to use them as a
round truth for the evaluation of methods and tools.
Consider for instance a feature-location technique (Rubin and

hechik, 2013). Evaluating it requires a codebase and recorded
eature locations, since the latter are typically not recorded in
oftware systems. The intuition is that developers implement
eatures, being fully aware of what feature they implement (since
eatures are part of the design), but they only write code, without
ecording the feature itself. Feature-location techniques recover
uch feature locations, relying on input such as code, where
hey exploit identifier names and other domain information, or
hey rely on the evolution history. Now, evaluating such tech-
iques requires ground-truth information. Surprisingly, beyond
maller datasets with retroactively added features (Ji et al., 2015;
trüber et al., 2019), no dataset exists that resembles a substan-
ial evolution lifecycle of a variant-rich system. A workaround
or researchers was to study the evolution of optional features
n software platforms with preprocessor-based variation points,
here features are easily identifiable in code (via #ifdef an-
otations). While this strategy helps evaluating preprocessor-
ocused techniques (e.g., variability-aware type-checking of C
ode (Kästner et al., 2012)), it misses mandatory features, which
re not annotated and which differ from optional features (Krüger
t al., 2018); and it misses the early clone&own phases with
edundant feature implementations among the cloned variants.
lso, preprocessor-annotated code is only available for certain
rogramming languages (e.g., C).
Consider as another example a change-propagation or variant-

ynchronization technique (Pfofe et al., 2016; Strüber et al., 2019).
valuating it requires the code of the affected variants before and
fter synchronization, the exact source of the propagation (e.g., a
pecific feature in a variant), the exact target, and information
ow the variants were synchronized (e.g., code was merged or
verwritten). Similarly to the feature-location example above,
f developers would record this information (henceforth called

etadata) when they evolve a system, this metadata with the b

2

codebase and its history could be used as a benchmark to evaluate
respective techniques. Unfortunately, we are not aware of any
such dataset. Adding the necessary information to an existing
system would require clone detection and reverse-engineering of
the exact evolution, which is laborious and error-prone, and has
only be done for smaller systems (Ji et al., 2015).

In addition to these two examples, many more evolution
scenarios and techniques supporting them exist (Strüber et al.,
2019). Evaluating and improving them requires evolution his-
tories with metadata to establish ground-truth datasets. Given
the lack of substantial benchmarks resembling the evolution of
variant-rich systems, researchers often resorted to simple proofs
of concept or hand-crafted small datasets.

We strive to improve the situation and advocate the genera-
tion of evolution histories with metadata. We present the frame-
work vpbench to generate software evolution histories reflecting
common evolution scenarios found in variant-rich systems while
recording the required metadata—exactly the information that
is not recorded by developers in real systems, but that is nec-
essary to evaluate methods and tools for variant-rich systems.
Upon an initial codebase, vpbench simulates the evolution of
a variant-rich system by automatically adding, removing, and
cloning features, mutating implementation assets (e.g., code),
and cloning variants. Feature addition is realized using auto-
mated code transplantation (Barr et al., 2015) from other software
projects. We formulate the claims behind vpbench as require-
ments; intuitively, these express properties of the generator and
the generated benchmarks. We show that automatically evolving
a variant-rich system and recording the necessary metadata is
feasible, where the generated evolution history adheres to the
requirements. We show that this automated evolution can rely
on a small set of feature-oriented evolution operators, all defined
and implemented in an extensible framework.

The key requirements are: The generated evolution histories
should (i) resemble the evolution of a software system, which
should be evolved (ii) in a feature-oriented way and in different
variants. The generated revisions should (iii) try to be realistic.
ince complete realism is infeasible to achieve by a synthetic
eneration process, we defined and addressed three basic levels
owards realism reflecting syntactic and semantic properties of
he generated system. Finally, (iv) the evolution and especially
he high-level intentions behind changes should be documented
s metadata, e.g., whether a feature is added or not and where
xactly. The generator itself should be (v) extensible and (vi)
rogramming-language-independent.
We contribute:

• requirements for our benchmark generation framework;
• the vpbench framework with a set of generators and evo-

lution operations to generate evolution histories, includ-
ing a novel mechanism for feature transplantation, which
transplants callable functionalities from external projects;
• an evaluation demonstrating its generation capabilities with

respect to requirements and properties and the different
levels of realism;
• an online appendix with our code and evaluation data, at

bitbucket.org/VPBench/vpbench.

On a final note, research in software configuration manage-
ent and product line engineering is hindered by a lack of
enchmarks. This was a main outcome of a Dagstuhl seminar
n variability and evolution (Berger et al., 2019). Without proper
enchmarks with ground-truth information, tools cannot be eval-
ated sufficiently. However, such ground truths do not exist –
he baseline for our paper – and recovering them from existing
volution histories is laborious and error-prone and has only

een done for smaller-scale systems and specific aspects (Ji et al.,

https://bitbucket.org/VPBench/vpbench


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

2
c
p

2

E
i
E
r

w
c
2
H
f
t

t
a
a
r
W

C
t
w
e
e
t
d
n

i
a
S
s
c
i

e
e
(

015). We address this problem with vpbench and show its
apability to generate evolution histories enriched with metadata
roviding a ground truth.

. Motivation and background

volution of Variant-Rich Systems. Modern software evolves
n time and space (Ananieva et al., 2020; Berger et al., 2019).
volution ‘in time’ reflects the natural evolution over system
evisions, including adding new and changing existing code. In
contrast, evolution in ‘space’ reflects the creation of system vari-
ants, which co-exist and also evolve themselves. These variants
typically share common features (abstract, end-user-visible func-
tional and non-functional aspects (Berger et al., 2015)) while they
differ in other (variable) features, which are present only in some
variants, and potentially customized towards the variant. Variants
can be realized as clones (clone&own (Dubinsky et al., 2013)) or
through a configurable platform (explained shortly) (Apel et al.,
2013; Berger et al., 2020; Wasowski and Berger, 2023) that inte-
grates all common and variable features in one codebase.

Often, organizations start with clone&own and transition to-
ards a platform when the effort to maintain and evolve the
loned variants explodes (Berger et al., 2013a; Dubinsky et al.,
013; Fogdal et al., 2016; Krüger and Berger, 2020a; Lopez-
errejon et al., 2022). Establishing a platform requires identi-
ying the features that are part of the individual variants, and
hen declaring those in a tree-based representation called feature
model (Berger et al., 2013a; Kang et al., 1990; Nešić et al., 2019).
Feature models help developers keep an overview understand-
ing of the platform and are an input to interactive configurator
tools that allow deriving concrete variants – those that were
migrated or new ones defined by new configurations – in an
automated process. While a platform reduces redundancy and
substantially shortens the development of new variants, evolving
a platform is still challenging, since developers work on many
different variants at the same time, and need to keep the feature
model consistent with the codebase. A good overview over the
challenges of evolving variant-rich systems, with a focus on re-
engineering clone variants into a configurable platform is given
by Lopez-Herrejon et al. (2022).

Virtual Platform. To simulate software evolution in a feature-
oriented way, vpbench relies on the Virtual Platform (VP)
(Mahmood et al., 2021), a framework that offers operations which
developers can execute to manage and evolve variant-rich sys-
tems. vpbench reuses, extends, and automatically executes them
to simulate an evolution. An important advantage of the VP is that
its operations support a stepwise migration of clone&own-based
variants into a configurable platform, reflecting actual evolution
scenarios from practice (Krüger et al., 2020). The VP offers two
kinds of operations: traditional, asset-oriented ones (e.g., add
asset, clone asset) and novel, feature-oriented ones (e.g., map asset
o feature or add feature), which also evolve a feature model and
ssure its consistency with the software assets. Operations are
pplied on the asset tree, an abstract-syntax-tree-like system rep-
esentation inspired by feature structure trees (Apel et al., 2009).
e introduce these concepts in more detail in the remainder.

ode Transplantation. A core part of software development is
he addition of new features. As we strive for full automation,
e build on the ideas of automated code transplantation (Barr
t al., 2015) to clone whole features among variants—a common
volution scenario in variant-rich systems. Code-transplantation
echniques extract some code of interest (the organ) from a
onor system and implant it into a host system. Existing tech-
iques typically require some type of user input to identify the
 I

3

Fig. 1. Running example: initial revision of V1.

organ and insertion point (Barr et al., 2015; Lu et al., 2018;
Sidiroglou-Douskos et al., 2017; Zhang and Kim, 2017).

In our context, existing transplantation techniques are not
sufficient and face the following three problems we address with
vpbench. The first and the third problems arise from the absence
of a user who provides input to the tools, whereas in vpbench we
need to automate those steps.

Problem 1: How to identify transplantable features? Features come
in many forms and with various facets (Berger et al., 2015)
and need to be identified and located manually or automatically
before they can be transplanted. This is trivial if the features are
explicitly documented (e.g., in feature models), but may be hard
if this knowledge is only implicitly contained in the implementa-
tion. While automated feature-location techniques exist (Rubin
and Chechik, 2013), they are difficult to set up, need feature
descriptions as input, and yield too many false positive results
to be useful in practice.

Problem 2: How to extract a transplantable feature, i.e., the organ
from the donor system? Transplanting a feature requires locating it
in code and then not only transplanting the feature code, but also
its dependencies. This includes the code that sets up an execution
environment for the feature and the code that is called during
feature execution, i.e., forward and backward dependencies (Barr
et al., 2015).

Problem 3: How to integrate the transplanted feature into the host
system? After extracting the organ from the donor system it needs
to be integrated with the host system, so that the functionality
can be called within the host. This includes identifying insertion
points for the organ – which would be provided by the user
with existing transplantation techniques – and finding a variable
mapping to translate between the donor’s and host’s execution
environments, e.g., variable names or types need to be converted
between systems.

3. Running example

To exemplify vpbench’s output and explain concepts through-
out this paper, we introduce a running example. Let us assume a
company developing the software system V1 depicted in Fig. 1.
It initially consists of three files implementing the features F1
and F2. While F2 is implemented solely in A.java, F1’s imple-
mentation is scattered over B.java and C.java. As the software
s continuously evolving in time, the company is approached by
customer, who wants a similar, yet different variant of V1.

pecifically, the customer does not require feature F1, but wants
ome additional functionality in feature F3. Later, the original
ustomer of V1 might hear about feature F3 and request its
nclusion into V1, too.

Fig. 2 shows on a high level how vpbench could simulate such
volution. It applies feature-oriented operations over a set of it-
rations and records the operation’s type and targets as metadata
shown here schematically and explained in detail in Section 5.3).

t also stores feature models, feature locations and clone traces



C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

(
a
e
i
t
w
i

w

4

F

e
e
s

M
g
t
(
c
m
d
v
o

V

Fig. 2. Running example: evolution of V1 and V2.

between implementation assets (e.g., code) and features (the
latter two not depicted for simplicity). Vpbench begins by cloning
the existing variant V1 to create variant V2, initially an exact copy
It. 1). Feature F1 is removed by deleting it from the feature model
nd removing its implementation assets (see Fig. 1), including the
ntire file C.java (It. 2). Feature F3 is added to V2 as shown
n Fig. 3, i.e., by inserting a code snippet into A.java, calling
he feature code in the also newly added file D.java, effectively
eaving the feature into the existing program (It. 3). Finally, F3

s cloned into V1, including its implementation assets (It. 4). Of
4

Fig. 3. Running example: adding F3 during iteration 3.

course, individual evolution in time of the variant might also
occur in-between.

4. Requirements

Our goal is to establish a generation framework for evolution
histories useful for benchmarking. It shall automatically simulate
the evolution of variant-rich software, while recording detailed
metadata about this evolution. We now present the requirements
for this framework, which are inspired by existing evolution
scenarios from Strüber et al. (2019). We reference the relevant
scenarios throughout following the descriptions.

We first present generation requirements, which concern the
generated evolution histories, and then framework requirements,
hich concern the (re-)usability of our framework.

.1. Generation requirements

eature-Orientation. Systems are developed by adding, reusing,
removing, and changing features, similar to our running example.
In fact, developers have features in their mind when writing
code, even if they are typically not made explicit in the code and
the evolution history, beyond commit messages. Consequently,
the generator should evolve systems in a feature-oriented way,
i.e., it should add, remove, change and reuse features across the
typical lifecycle of a variant-rich system, comprising clone&own,
migrating to a configurable platform, and evolving it.

An explicit representation of features and their evolution is
required for several scenarios, such as variant synchronization in
terms of features, feature identification and location, constraint
xtraction, feature model synthesis, analysis of non-functional prop-
rties, visualization and co-evolution of problem space and solution
pace (Strüber et al., 2019).

etadata. The generated evolution history should serve as a
round-truth dataset for evaluating two kinds of tools: (i) tools
hat automatically extract information necessary for the evolution
to assess the precision of a tool), or (ii) tools that automati-
ally evolve code (to assess the tools’ results against the bench-
ark). Both require information that is typically not recorded
uring system evolution: feature locations, clone traces, and de-
eloper intentions. The latter conveys the high-level feature-
riented change the developer has in mind when changing code.
For example, in iteration 4 in Fig. 2, feature F3 is cloned from

2 to V1 by propagating implementation assets such as D.java
from V2 to V1. A normal evolution history would only show the
changes to the code, but not in which context they were made.
This makes it impossible to realize that in fact a feature was
cloned between two variants without carefully examining both
variants’ code.

Recording information on applied operations allows the ex-
traction of concrete evaluation tasks for automatic evolution tools
from an evolution history by identifying the point in time where
a high-level operation took place, i.e., by filtering for specific
high-level intentions (i.e., what operation was done on a feature
level), and providing the respective changes in code as a solution
to the task given by the simulated high-level intention. This is



C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

r
m
t

c
e
b
a
c
s
D
i
n
h

c
t
p
o

4

E
m
c
s
w

L
s
m
p
e

5

s
r
h
u
a
O
d
w
n
r
2

t
s
o
a
a
O
t
c
e

g
e
w
c
c

5

o
c
o
f
a

s
t
i
r
b

t
i
o
T
c

equired for variant synchronization and integration and transfor-
ations, while recorded feature locations and models, and clone
races may additionally support feature location, feature model
synthesis, visualization, and co-evolution of problem and solution
space (Strüber et al., 2019).

Evolution. A development history is a sequence of system snap-
shots, i.e., revisions, which should evolve considerably over time.
We require evolution in both time and space.

This requirement is a necessity to support the benchmark-
ing scenarios (Strüber et al., 2019) variant synchronization and
integration, transformations, test co-evolution and co-evolution of
problem and solution space, where tools automatically propose
evolution steps. All these scenarios require two system revisions,
one containing the problem that tools should solve and one
containing its solution to evaluate tool output against. These may
be extracted from full evolution histories, where a problem is
identified and solved during evolution. System evolution may also
support historical feature location.

Towards Realism. Achieving full realism with a fully automated
generation technique is impossible. Instead, we take first steps
towards realism using three basic levels of syntactic and semantic
properties that are reasonable for a generation technique: (1) The
first level reflects evolution as described above. (2) The second level
requires compilability, a prerequisite to the stronger, but much
more difficult to check executability. While of course, syntax
errors might exist in SPLs (Kästner et al., 2008), independently
developed variants should always adhere to basic compilability,
just as non-variable software systems. (3) The third level requires
allability of new features. Features that are added during system
volution should not be implemented stand-alone as dead code,
ut be integrated with the already existing system. We say that
feature is integrated, if it is called by the system and is thus
allable. In our running example, the feature F3 included a code
nippet that was added to A.java to include the code from
.java into the program flow. F3 was integrated into the exist-
ng system by being called, so F3 is callable. This is a small, but
on-trivial step to improve the realism of our generated evolution
istories.
Future work may build on top of these levels to create in-

reasingly realistic evolution histories, e.g., by controlling the
ype and size of changes using real-world evolution histories or
roviding executable systems and also enhancing the naturalness
f code (Hindle et al., 2016).

.2. Framework requirements

xtensibility. The framework should be extensible with more
echanisms to simulate evolution (e.g., apply other types of
hanges or utilize different algorithms) or advance realism to
upport an increasing set of benchmarking scenarios and tools
ith growing realism.

anguage Independence. The framework should make no as-
umption regarding specific programming languages or imple-
entation technologies. Any language- or technology-dependent
art should be replaceable, allowing to tailor the output to differ-
nt benchmarking tools.

. Vpbench

Vpbench takes as input a configuration, an external system
representing the initial codebase, and multiple external systems
serving as feature donors. The configuration guides the simulation
of the evolution starting with the initial codebase. The feature
donor systems are used to transplant new features into the evolv-
ing codebase. Vpbench iteratively applies changes to the input
5

Fig. 4. Vpbench I/O.

codebase and then serializes its internal system representation
(asset tree, explained shortly) to generate the evolution history.
Input and output of vpbench are illustrated in Fig. 4. We provide
a brief overview of vpbench and follow up with more detailed
explanations of each component.

Overview. The framework provides both core modules and exten-
ible modules, as illustrated in Fig. 5. It represents the generated
evisions (a codebase with folders and files) of the evolution
istory internally as an asset tree (Section 5.1) and modifies it
sing dedicated operations (Section 6), deterministic procedures
utomatically applying asset- or feature-oriented evolution steps.
perations may internally call nested operations and store meta-
ata, detailing the evolution, i.e., which implementation asset or
hich feature was modified, and how. We call operations that call
ested operations higher-order operations. These two concepts are
eused and extended from the underlying VP (Mahmood et al.,
021).
Applying an operation requires identifying system elements

hat can sensibly be evolved, first. This task is handled by a
et of matching generators, each catering to a specific type of
peration, such as adding features or mutating implementation
ssets. Generators scan the entire system to find suitable oper-
tion targets, select one, and instantiate operations accordingly.
perations are not immediately executed, but embedded into
ransactions, which may check for the satisfaction of correctness
riteria (e.g., compilability) before applying the operation on the
volved system.
This entire process is coordinated by the runner. It selects a

enerator to generate an operation, wraps it into a transaction,
xecutes it and – on success – serializes the resulting system,
hich may consist of several variants. Through iteration, this
reates a sequence of revisions, i.e., the version history. The user
an configure the runner and the generators.

.1. Generated system representation

The generation process outputs a version history in the form
f ordered system snapshots , the first one being the input initial
odebase. Each snapshot encompasses the structure and code
f all cloned and individually maintained variants and includes
eature models and feature locations, which are stored in the code
s embedded annotations (Schwarz et al., 2020).
Internally, the variant-rich system is represented through as-

ets, features and feature models, all stored within a tree struc-
ure (asset tree (Mahmood et al., 2021)). In our context, an asset
s anything that gives structure to a software system, from a
epository over folders and files to classes, methods and code
locks.
The asset tree keeps structure only to the extent necessary

o realize operations, but is otherwise almost fully language-
ndependent. Assets can map to features, which are stored inside
f feature models that are associated with elements in the tree.
he system is split into different repositories (which represent
loned system variants), all located beneath a synthetic root node.



C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

5

T
g
o
T
a
o
c
o
m
m
t
c
q
t
i

5

l
o
f
d
v
t
c
t
t
e
p
t
g
c
c
S
(
I

Fig. 5. Vpbench overview.
w
w
O
i
m

s

f
p
m
t
t
e
t
c

5

g
e
o
t
m
s

.2. Coordinating the evolution

he runner coordinates the simulation process, iteratively dele-
ating change generation to generators, embedding the resulting
perations in transactions, and responding to their execution.
he generator selection is guided by a probability distribution,
ssigning a selection probability to each generator. The resulting
peration is wrapped and executed in a transaction, checking for
ompilability of the evolved system and persisting changes only
n success. On failure, the runner retries (up to a configurable
aximum) the same generator to create another operation. This
echanism is in place, since the generators are typically stochas-

ic, so they might sometimes fail to produce valid changes. In
ase no valid operation was generated in all attempts, e.g., when
uerying a feature-deletion generator on an empty feature model,
he runner proceeds to query the next generator. These steps are
terated for a user-specified number of iterations.

.3. Recording metadata

To provide valuable ground truths for different types of prob-
ems, our framework provides four types of metadata as part
f the generated evolution histories. It records features in a
eature model and the feature locations in the asset tree, up-
ating them as operations get executed. An important part of
ariant-rich system evolution is cloning. Vpbench stores clone
races in a trace database, when elements of the asset tree are
loned as part of operations. Additionally, it stores metadata of
he simulated evolution to document the evolution steps and
o allow for full replayability. More specifically, we store for
ach evolution step which operation was executed with what
arametrization and which nested operations. Table 1 illustrates
he format we use for storing the evolution metadata. We store
eneral metadata about the simulation and code-generation pro-
ess (GenerationMetadata), comprising the list of donor proje-
ts used for feature transplantation (projects; explained in
ection 6.3) and metadata about every single evolution step
history, recorded as a list of IterationMetadata). Every
terationMetadata details one applied evolution step, storing
6

hen it was applied (iterationNumber) and which operation
as executed within (stored as OperationMetadata). For the
perationMetadata, which stores operations’ parameters, the
nvolved elements (implementation assets, feature model, feature
appings) need to be uniquely referenced:
Implementation assets are uniquely identifiable via their po-

ition in the asset tree, stored as filesystem path and index.
Feature models are referenced using their associated asset, and

eatures via their encompassing feature model and their least-
artially-qualified path (Schwarz et al., 2020). Precisely what
etadata is stored for each operation type is discussed in Sec-

ion 6. Since operations are deterministic by definition, storing
heir parametrizations allows full replayability of the system’s
volution. vpbench also stores all nested operations called during
he execution of an operation, also to document which low-level
hanges belong to which high-level change.

.4. Configuration options

Vpbench allows configuring the coordinating runner and every
enerator. The runner can be configured using six input param-
ters: The number of iterations defines the maximum number of
perations that may be applied on the evolved system. Genera-
ion may end earlier if an optional user-specified exit condition is
et after any iteration. The user can also define which generators
hould be used for the evolution process, and can pass a proba-
bility distribution, which defines a selection probability for each
generator in any iteration (without this parameter, a uniform
distribution is assumed). As the selection of generators and the
generators themselves are stochastic, they may fail to generate
a operation that maintains the compilability of the system on
the first attempt. The user can, therefore, define a maximum
number of retries, i.e., how often a generator may retry to gen-
erate an operation that maintains the compilability. Finally, the
user can define a compilation mechanism, e.g., a build tool, to
check whether an operation compiles. We discuss the generator’s
configuration options in Section 6.



C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

o
i
S
f
t
w
i

t
t
s
v
b
i
m
a
t
b
i
i

n
c
t
c
o
t
t
g
T
m
r
j
g
a
r

6

O
d
t
m

Table 1
Evolution metadata.
GenerationMetadata := {projects: List[DonorProject], history: List[IterationMetadata]}

IterationMetadata := {iterationNumber: Int, operation: OperationMetadata}
OperationMetadata := {operationType: String, parametrization: OperationParametrization, nestedOperations: List[OperationMetadata] }
Table 2
Operation overview.
Operation Parameters Metadata

RemoveFeature featureToRemove: Feature featureToRemove

MutateAsset
AddLine changedAsset: Asset, lineNumber: Int, newLine: String changedAsset, lineNumber, newLine
ReplaceLine changedAsset: Asset, lineNumber: Int, newLine: String changedAsset, lineNumber, newLine
DeleteLine changedAsset: Asset, lineNumber: Int changedAsset, lineNumber

TransplantFeature insertionPoint: Tuple[Asset, Int], donor: DonorProject, insertionPoint, donor, testCase, parentFeature
testCase: TestCase, parentFeature: Feature, randomSeed: Int randomSeed, clonedAssets: Map[String, Asset]

CloneVariant clonedRepo: Asset, cloneName: String clonedRepo, cloneName

CloneFeature clonedFeature: Feature, newParentFeature: Feature clonedFeature, newParentFeature
a
t
(
b
(

G
t
t
v
I
O
F

6. Generators and operations

System evolution is encoded in operations—evolution patterns
f variant-rich systems, e.g., cloning variants or adding, remov-
ng, mutating, and cloning features in our running example (see
ection 3). Their execution requires parametrization, e.g., which
eature should be cloned where. Determining this is the main
ask of a generator. It filters the asset tree down to elements on
hich an operation may sensibly be invoked, selects one, and

nstantiates the operation.
Every generator specializes in creating a specific operation

ype, so the set of generators determines the types of changes
hat may be applied to the evolving system. We provide a base
et of five operation types, covering major evolution patterns of
ariant-rich systems, identified in a simulation study of a clone-
ased product line (Ji et al., 2015), that can be further extended
n the future. Crucial for benchmarking, each operation records
etadata, encompassing mostly the operation’s parametrization
s provided by the generator, but also some additional informa-
ion on its execution in some cases. We give an overview of this
ase set of operations, including parametrization and metadata,
n Table 2 and explain them with their corresponding generators
n-depth in the following.

We use a set of helper functions for our generator expla-
ations: getAllAssets(asset, assetType) returns all re-
ursive children of asset of type assetType. getAllFea-
ures(asset, condition) returns all features that meet a
ondition contained in feature models associated with asset
r any of its recursive children. The helper function getCon-
ainingFeatureModel(asset) returns the feature model (po-
entially recursively) containing asset, while featureModel.
etRootFeature() returns the root feature of featureModel.
he function pickRnd(set) returns a randomly selected ele-
ent within set. Furthermore, getContainingFolder(asset)

eturns the folder asset containing asset, testCase.getPro-
ect() returns the project containing the testCase, and
etTestCases(donors) returns all test cases implemented in
ny project within the set donors. Finally, getRandomSeed()
eturns a random seed for a pseudo-random number generator.

.1. Removing features

peration. Existing features might be removed from a variant for
ifferent reasons, e.g., due to updated requirements. We model
his behavior using an existing operation from VP, called Re-
oveFeature. It removes a selected feature (featureToRemove)
7

nd its subfeatures from the feature model, also deleting all assets
hat are solely mapped to the removed features in the process
stored as nested operations), e.g., the entire file C.java and
oth mapped code blocks within B.java in our running example
compare Section 3).

enerator. Our generator selects a random non-root feature from
he set of all included features over all repositories to invoke
he operation. In our running example, any feature within both
ariants, V1 and V2, could have been selected.
nput: An asset tree at
utput: A parametrized RemoveFeature operation
unction generate():

rmFeats← getAllFeatures(at , !isRootFeature);
featureToRemove← pickRnd(rmFeats);
return RemoveFeature(featureToRemove);

Algorithm 1: RemoveFeature Generation

6.2. Mutating implementation assets

Operation. Implementation assets often evolve without affecting
the feature model, e.g., when fixing bugs or refactoring. Generally,
all code changes can be described as a sequence of changes to
single lines of code, where a single line can be added, deleted or
edited (i.e., replaced). We cover such changes by extending the
operation ChangeAsset from VP with three concrete subopera-
tions, each catering to one specific change type. AddLine inserts
a newLine at a specified lineNumber, ReplaceLine replaces
the current lineNumberwith newLine, and DeleteLine simply
deletes the current lineNumber.

Generators. We define three separate generators to mutate as-
sets, each catering to a specific suboperation. Common to all,
the generators needs to select a mutable asset and define how
to change it. The former is done similarly to the selection of
featureToRemove: we randomly choose an asset representing
a block of code. The latter depends on the concrete operation to
generate. In all three cases, we select an edit point, a random
lineNumber within the selected asset to insert a new line or
replace or delete an old one. For adding or replacing, we select
a newLine of code from any file within the same folder as the
selected implementation asset to be edited. This strategy (both
operations and generators) is inspired by the program transfor-
mations add-Random, replace-Random, and delete, as proposed
by Baudry et al. (2014). Compared to the original implementation,
our generators work on the line level, rather than the statement
level. This makes our generators language-independent.



C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

I
O
F

F

F

r
d
A
e

i
w
‘
t
u
f
W
p
(

nput: An asset tree at
utput: A parametrized MutateAsset operation
unction generate():

mutAs← getAllAssets(at, codeBlockType);
changedAsset ← pickRnd(mutAs);
changeAsset(changedAsset);
return;

Function AddLineGen.changeAsset(a):
lineCount ← a . content . size();
lineNumber ← pickRnd(lineCount);
potLines← getPotentialLines(a);
newLine← pickRnd(potLines);
return AddLineToAsset(a, lineNumber, newLine);

unction ReplaceLineGen.changeAsset(a):
lineCount ← a . content . size();
lineNumber ← pickRnd(lineCount);
potLines← getPotentialLines(a);
newLine← pickRnd(potLines);
return ReplaceLineInAsset(a, lineNumber, newLine);

unction DeleteLineGen.changeAsset(a):
lineCount ← a . content . size();
lineNumber ← pickRnd(lineCount);
return DeleteLineFromAsset(a, lineNumber);

Function getPotentialLines(a):
resultList ← new List();
folder ← getContainingFolder(a);
cBlocks← getAllAssets(folder, codeBlockType);
foreach block in cBlocks do

resultList += block . content;
end
return resultList;

Algorithm 2: MutateAsset Generation

Since this strategy is fully random, it may create semantically
ineffective and syntactically invalid changes. We added sensibil-
ity checks to discard some otherwise common, yet ineffective
changes, e.g., addition of an empty line, with a parametrized
probability (configuration option). Syntactically invalid changes
are caught by vpbench’s transaction mechanism checking for
compilability and are not applied on the evolved system.

6.3. Adding features

Operation. Adding features is one of the most natural ways to
evolve software, but poses a complicated problem for automation.
While work exists that automatically creates new functional-
ity (Harman et al., 2014), it requires defining test cases and
ideally further guidance information. Instead of generating new
features, our framework facilitates feature transplantation (Barr
et al., 2015; Lu et al., 2018; Sidiroglou-Douskos et al., 2017;
Zhang and Kim, 2017) from existing projects. We implement an
operation TransplantFeature that automatically extracts and
integrates a feature from a donor system into the evolved system.
As input it requires an insertionPoint specified via a location
in the asset tree and a parentFeature , a randomSeed to
guarantee that certain parts of the operation remain deterministic
as well as some information on the feature itself.

Identifying features. We approximate features using test cases.
Similar to Li et al. (2017), we assume test cases to call features to
test their functionality. So, a feature for transplantation is iden-
tified by a testCase in a donor system with the actual feature
being the unit under test (solving Problem 1 from Section 2). This
only allows identifying features that are actually tested by the

donor system, but that are consequently of reasonable quality.

8

Fig. 6. Transplantation example: achieving callability using test cases (test case
from github.com/structurizr/java).

Extracting features. Given a feature to be transplanted, we
ecursively slice the donor project down to the test case’s depen-
encies to extract the feature, the test case, and dependencies.
s test cases build an execution environment (arrange) before
xecuting their unit under test (act), this provides us with all

required code to set up and execute the tested functionality
(solving Problem 2 as specified in Section 2). However, this also
means that untested parts of the feature under transplantation
are not included in the organ. Slicing is conducted on the level
of implementation files to limit the difficulty of the integration
step, which would otherwise skyrocket. One notable characteris-
tic of our technique is that required implementation assets, which
were already transplanted into a different repository before, may
be cloned from there (configurable on the generator level). This
maintains a sense of continuity and imitates clone&own. This
selection is semi-random if the asset exists in multiple variants
at the same time, so knowledge of the used random seed keeps
this step deterministic.

Integrating features. This slice of the test case’s dependencies
s added into a separate folder in the target variant and integrated
ith past transplants from the same donor. While this technically

‘adds’’ the feature to the host, it does not integrate it. We ensure
hat the feature is also called by the host system. This requires
s to set up a suitable execution environment and execute the
eature within. We reuse the test case’s implementation for both.
e apply some preprocessing and add it at the specified insertion
oint, not as a test case, but as ‘‘ordinary’’ code calling a feature
solving Problem 3 as specified in Section 2). An example for this
is given in Fig. 6, showing the insertion of the test case’s code
for testing plaintext encryption using AES inside the evolving
codebase. Note that we do not only extract and implant the test
case, but also further dependent code, e.g., the test class’ import
statements or attributes. Extracting only the source code is not
sufficient. We also need to manage its external libraries to achieve
compilability. To this end, we transplant not only source code,
but relevant build scripts and project structure, too. Build files
may introduce a lot of complexity, a lot of which is not needed
to achieve basic compilability. So, we slice not only the required
code, but also the required build structure down to the basic
configuration detailing code dependencies on external libraries.
This step needs to be performed once for every donor project,
from which we transplant functionality.

All resulting changes are encoded in nested operations, e.g.,
adding new assets to the asset tree or mapping them to newly
introduced features. This is crucial as it allows executing opera-
tions on these added features in the future. In contrast to other
operations, this operation stores an additional point of metadata,
clonedAssets, which records which dependency assets were
reused from which variants. This provides a quick lookup to users

https://github.com/structurizr/java


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

w
u

F

F

F

F

t
c
c

6

O
c
d

ho want to understand the changes without re-creating them
sing the stored randomSeed.

Generator. The generator is initialized with a set of donor proje-
cts, from which we identify annotated test cases using an existing
technique (Mukelabai et al., 2021), to randomly select features for
transplantation. An insertion point is sampled randomly from the
set of functions defined in the original project in a random repos-
itory. We do not add features into transplanted code from other
feature donor projects to avoid dependency circles. Similarly, we
avoid strong feature tangling for now by defaulting the parent
features within the selected variant. Test cases are blocklisted on
selection, so that transplantation of a test case is only attempted
once during a single generation process.
Input: An asset tree at , a list of donor projects donors, a list

of already transplanted test cases blocklist , a list of
assets filterInsertion beneath which the feature may be
inserted

Output: A parametrized TransplantFeature operation
unction generate():

insertionPoint ← selectInsPnt(at, filterInsertion);
testCase← selectTestCase();
donor ← testCase . getProject();
parentFeature← selectParent(insertionPoint . getAsset());
randomSeed← getRandomSeed();
return TransplantFeature(insertionPoint, donor, testCase,
parentFeature, randomSeed);

unction selectInsPnt(at, filterInsertion):
if filterInsertion ̸= null then

potAssets← getAllAssets(filterInsertion,methodType)
end
else

potAssets← getAllAssets(at,methodType)
end
selAsset ← pickRnd(potAssets);
potInsIndex← selAsset . children . count();
insIndex← pickRnd(potInsIndex);
return (selAsset, insIndex);

unction selectTestCase():
potTestCases← new List();
foreach testCase tc of getTestCases(donors) do

if !blocklist. contains(tc) then
potTestCases += tc

end
end
testCase← pickRnd(potTestCases);
blocklist += testCase;
return testCase;

unction selectParent(a):
fm← getContainingFeatureModel(a);
parentFeature← fm . rootFeature;
return parentFeature;

Algorithm 3: TransplantFeature Generation

While our generator integrates features into the evolved sys-
em by default, i.e., makes them callable, the user may also
onfigure the generator to only guarantee compilability and not
allability.

.4. Clone variant

peration. Typical variant-rich system evolution begins with
lone&own. Existing variants are cloned and developed indepen-
ently. Given a variant to be cloned (clonedRepo) and a name
9

for the new clone (cloneName), the VP operation CloneAsset
creates an exact clone of the source and records a clone trace.

Generation. The corresponding generator randomly selects a
variant to clone and generates a name by appending the selected
variant’s name with a unique id.
Input: An asset tree at , a variant counter id
Output: A parametrized CloneVariant operation
Function generate():

cloneableRepos← getAllAssets(at, repositoryType);
clonedRepo← pickRnd(cloneableRepos);
cloneName← clonedRepo .name . append(id);
id += 1;
return CloneVariant(clonedRepo, cloneName);

Algorithm 4: CloneVariant Generation

6.5. Clone feature

Operation. While variant-rich systems developed using clone&
own are typically evolved largely independently, specific func-
tionality might be propagated between variants. Cloning a feature
clonedFeature and adding it beneath a newParentFeature
in a different variant requires cloning and integrating assets that
implement the feature with the assets already present in the tar-
get variant. Depending on whether an asset is already contained
in the target or not, we have to solve two different problems:
(1.) The asset is already contained in the target, but potentially in
a different version. (2.) The asset is not contained in the target,
but needs to be integrated (Lillack et al., 2019) with its siblings in
the target, that might not exist beneath its parent in the source.
This is especially difficult, yet crucial for code level assets. We
extend the VP operator CloneFeature, which relies on user
interaction for integration. For the former problem, we simply
keep the version in the target, keeping variant-specific evolution.
For the latter, we rely on the recorded clone traces to maintain
the partial ordering of common assets between source and target.
Cloning a feature from a donor system also requires setting up its
build structure as well, similar to our transplantation operator.
We perform the same steps if required.

Generator. A generator suggests a clonable feature and a parent
feature in a different variant, beneath which the feature should
be propagated. As our operation requires clone traces to relate
previously cloned elements to each other, this constrains the
applicability of this operation to repositories, that originated from
each other. Our generator randomly chooses a feature (from
a source variant), and defaults a parent feature (from a cloned
& owned variant, which does not contain the selected feature).
The user can define a maximum feature size (measured via the
number of assets mapping to it) that the generator may clone.

7. Implementation

We implemented vpbench in Scala, building it upon the
system representation (asset tree) and the evolution operation
concept from the VP framework (Mahmood et al., 2021). The
implementation effort for vpbench was substantial, especially the
integration with Gradle due to its high flexibility and customiz-
ability. Overall, it took the main author over six months in full
time (still excluding the evaluation).

We especially needed to extend all reused operations from VP
so that they record the necessary metadata before operation invo-
cation. They also need to be serialized afterwards, which we im-
plemented using the library lift-json (github.com/lift/framework/
tree/master/core/json). Our framework implementation includes
the runner, extended or newly created operations and generators,

https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json
https://github.com/lift/framework/tree/master/core/json


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

I
O
F

a
i
i
a
p
e
t
o
i
m
o
c
c
b
t
c
J
m
c

8

d

R
d

R
o
p
i
r
p

R
w
W
o
f

d
c
i

M
e
c
o
a
a
a
w
r

E
t
s
p
a
e
t

T
O
a
s
o
r
b
f
c
a

E
t
t
c
b
c
o
c
c
i
o
f
a
i
a
t

r
S
c
m
s

L
p

nput: An asset tree at
utput: A parametrized CloneFeature operation
unction generate():

candidates← new List();
foreach CloneVariant-trace repoTrc in TraceDatabase do

src ← repoTrc. source;
tgt ← repoTrc. target;
foreach feature f in getAllFeatures(src, !isRootFeature)
do

if f was not cloned between src and tgt then
candidates += (src, tgt, f );

end
end

end
selection← pickRnd(candidates);
clonedFeature← selection . getFeature();
targetRepo← selection . getTarget();
targetFM ← targetRepo . featureModel;
newParentFeature← targetFM . getRootFeature();
return CloneFeature(clonedFeature, newParentFeature);

Algorithm 5: CloneFeature Generation

ll of which contain either a language-independent interface or
mplementation, and a transaction mechanism. In fact, only our
mplementation for adding and cloning features is not language-
nd build-tool-independent. Both change and simplify the donor
roject’s build files to automate dependency management. To this
nd and as a compilation mechanism, we incorporate the build
ool Gradle. We believe this does not constrain the applicability
f our tool due to Gradle’s widespread use in practice provid-
ng us with a large set of projects from which functionalities
ight be transplanted. Our implementation further specializes
n Java code, using the dependency analyzer jdeps (docs.oracle.
om/javase/9/tools/jdeps.htm) as a base for code slicing. We in-
orporated the implementation by Mukelabai et al. (2021), which
uilds on srcML (Maletic et al., 2002), as a mechanism to iden-
ify test cases and extended it to extract a selected test case’s
ode dependencies including functions by searching for specific
Unit annotations, e.g., @Before. To implement the transaction
echanism, we also extended a small cloning library (github.
om/kostaskougios/cloning).

. Evaluation

We evaluate vpbench qualitatively and experimentally, ad-
ressing the following three questions.

Q1. How does vpbench address its requirements? We provide
etailed qualitative arguments based on our design decisions.

Q2. Can vpbench generate version histories of evolving, feature-
riented, and variant-rich systems? We evaluate with real-world
rojects. We generate seven different version histories from three
nitial codebases, transplanting features from four open-source
epositories we use as donor systems, to investigate vpbench’s
otential for simulating evolution.

Q3. What levels of realism can vpbench achieve? We examine how
ell vpbench achieves the three levels of realism (cf. Section 4).
e mainly focus on feature transplantation as the most complex
peration and the only one having to fulfill callability of new

eatures.

10
8.1. RQ1: Requirements addressed

Recall that the first four requirements are about properties of
the generated version histories, and that the other two are about
the generator framework itself.

Feature-Orientation. Vpbench includes a base set of five opera-
tion types reflecting evolution patterns identified in a simulation
study of a real-world SPL (Ji et al., 2015). We cover the most
frequent feature evolution patterns affecting problem and solu-
tion space, i.e., adding or extending a feature (P1), removing or
isabling a feature (P2) and propagating a feature (P8; we call this
loning features) and two vital patterns for simulating clone&own,
.e., cloning a project (P7) and evolving annotated assets (P9).

etadata. Vpbench records four types of metadata: feature mod-
ls, feature locations, clone traces, and the simulated developer’s
hange intentions. Change intentions are stored via the applied
perations, i.e., we record the operation type, its parametrization
nd the suboperations, invoked during execution. Operation type
nd parametrization allow understanding the change conceptu-
lly, while the suboperations detail how the high-level intentions
ere realized on a low level, e.g., removing assets as part of
emoving a feature.

volution. Vpbench evolves an initial codebase by incremen-
ally applying operations to it. These affect problem and solution
pace, adding, cloning and removing features including their im-
lementing code, and also provide mechanisms to mutate code
ssets on their own (on a line-based level). These mechanisms
volve systems in both size and variability. We further evaluate
his experimentally in RQ2 (see Section 8.2).

owards Realism. As already discussed for Evolution and Feature-
rientation, vpbench evolves a given codebase by adding features
nd changing existing code (first level). Building up on that, the
econd level (compilability) is ensured by design. Through usage
f a dedicated transaction type, we enforce that only changes
esulting in a compiling system are applied. The third level (calla-
ility of new features) is achieved by transplanting not only the
eature, but also inserting feature-executing code into the initial
odebase. We examine this level further in RQ3 (see Section 8.3)
nd discuss avenues for extending realism in the next paragraph.

xtensibility. Vpbench is published as a framework, providing
wo main avenues for extension: operation & generator pairs, and
ransactions to improve on vpbench’s generation capabilities and
orrectness criteria, i.e., different forms of realism. Operations can
e reused from the available set of VP’s operators, covering both
onventional development activities and variability-specific ones,
r implemented from scratch by extending the abstract operation
lass. The latter can also be helpful for realizing more complex
hanges, such as our approach to feature addition, which we
mplemented as a new operation encompassing multiple other
perations. An important property of operations is determinism
or a given parametrization to allow for their complete trace-
bility through recorded metadata. Existing generators may be
mproved or new ones added by extending a Scala trait, giving
ccess to the asset tree and requiring only an implementation of
he generate-function to return an operation when called.

Transactions constrain applicable operations to achieve cor-
ectness criteria, e.g., compilability of the generated system.
tronger constraints such as executability, satisfaction of clean
ode properties or even accordance to a behavior specification
ay be implemented by extending the provided transaction class,
upervising the operations’ execution.

anguage Independence. Vpbench includes concepts and im-
lementations for five operations and corresponding generators.

https://docs.oracle.com/javase/9/tools/jdeps.htm
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://docs.oracle.com/javase/9/tools/jdeps.htm
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

W
b
w
i
m
i

e
a
w
s

S
s
T
6
J
b
t
p

d
s

t
d
l

hile two implementations cater to a specific language and
uild tool, the general concepts do not. To further alleviate this,
e provide language-independent implementation skeletons and

nterfaces, as well as a checklist summarizing where our imple-
entation is language- or build-tool-dependent and thus where

t needs to be changed:

• VP parser: While the asset tree itself is language-indepen-
dent it needs to be converted into this format. To this end,
a parser needs to be created that parses a file in a given
programming language into an implementation asset.
• Compilation Mechanism: We use Gradle to validate whet-

her a system compiles. To support a different build tool, the
compilation mechanism needs to be adjusted.
• Feature Transplantation: Supporting feature transplanta-

tion for a different language requires (i) a different slicing
technique (we use an existing dependency analyzer for Java
and srcML (Maletic et al., 2002) to extract the test case’s
implementation) and potentially (ii) some preprocessing for
code integration (e.g., in Java we need to add an additional
import statement to the test case’s package so that the
code can compile). Gradle is mainly required to (iii) copy,
adapt, and simplify the donor’s required build files and alter
the initial system’s build structure to achieve a compiling
system. We also rely on Gradle during slicing to (iv) map
identified dependencies to their implementation location in
the donor system. All four points need to be adjusted to
support different programming languages and build tools.
• Cloning Features: Cloning features is similar to transplant-

ing them as you do not need to just deal with code, but with
build files, too. We do not map excerpts of build files to fea-
tures, so we cannot clone them in the same language- and
build-tool-independent way that we clone code. Instead,
we manually (i) identify which parts of the donor sys-
tems (i.e., Gradle (sub-)projects) need to be initialized and
(ii) alter the initial system’s build files, similar to our strat-
egy during feature transplantation. Both need to be revised
to support different build tools.

8.2. RQ2: Simulating evolution

We assess whether we can actually generate versions that
volve in time and space. While changes to existing code are
ssured by respective operators, we quantitatively investigate
hether the number of variants or the variability (evolution in
pace), as well as the system size increase over time.

etup. We generate version histories for three different initial
ystems over 500 iterations using different parameterizations.
he selected initial systems are a small calculator example with
2 LoC, an open-source json-parser for Java (github.com/stleary/
SON-java) with 11,837 lines of code (LoC) and a library for event-
ased programming in Java (github.com/ReactiveX/RxJava). For
he latter two we cloned the repository and applied some small
reprocessing steps, detailed in our replication package.
We simulate the evolution of these initial systems using three

ifferent probability distributions. In all three cases we set a
election probability of p = 0.01 to both cloning generators due
to scalability issues in memory consumption and runtime. The
remaining probability is split up in the following ways: a uniform
distribution (Uniform) over the operations TransplantFeature, Re-
moveFeature and MutateAsset (splitting up the probability on all
three generators), a distribution prioritizing mutation over other
operations (Preferring Mutation), i.e., giving all mutation genera-
ors the same probability as feature addition and removal, and a
istribution prioritizing system growth (Preferring Growth). The
atter selects each asset mutation generator with a probability
11
Fig. 7. Evolution of variability over first 500 iterations.

of p = 0.2, adds a new feature with p = 0.29, and removes a
feature with p = 0.09. We evolve the first two systems using all
three probability distributions and the third one using only the
last distribution.

A selected generator has 50 attempts to generate a compiling
change before the runner proceeds to the next generator. Mu-
tation generators discard ineffective changes with a probability
of p = 0.5. We use four different feature donor systems from
GitHub for transplantation: the Structurizr client library (github.
com/structurizr/java), the HPC inter-thread messaging library
LMAX Disruptor (github.com/LMAX-Exchange/disruptor), an edu-
cational library of algorithm- and datastructure-implementations
(github.com/williamfiset/Algorithms) and the dex to java decom-
piler jadx (github.com/skylot/jadx).

We screen all four donors for callable features (cf. Section 8.3
for details) and use this subset as input for transplantation. This
preselection is done for performance reasons only, as it reduces
the retries required to find a transplantable feature. It does not
improve the generation output in any way.

Evolution in Space. Fig. 7 shows the evolution of the amount of
features as a measurement of variability inside the generated sys-
tems over time. We display both the number of distinct features

https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
https://github.com/ReactiveX/RxJava
https://github.com/structurizr/java
https://github.com/structurizr/java
https://github.com/structurizr/java
https://github.com/LMAX-Exchange/disruptor
https://github.com/williamfiset/Algorithms
https://github.com/skylot/jadx


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

a
d
t
a
q
v
t
d
r
g
r
m
a
c
s
v
P
t
a
u
t
t
p
f
r
a
i

E
v
l
t
i
i
o
t
c
s
c
o
a
w
n
e

d
t
c
a

F
i
t
r
f
s

r
d
s
n
i
t

nd the number of non-distinct features, i.e., features existing in
ifferent variants and thus potentially versions. The probabili-
ies for adding and removing features are the same for Uniform
nd Preferring Mutation. As such, features that are added might
uickly be removed again, resulting in a constantly evolving low-
ariability system. While this behavior can be well observed in
he early phases of the two former examples, the amount of
istinct features starts growing fairly steady at some point. The
eason for this is that variants and their included features are
etting cloned at some point, requiring all feature clones to be
emoved to delete the entire feature, making the complete re-
oval of features from the entire variant space less likely than the
ddition of new ones. Constant addition and removal of features
an instead be seen in the number of non-distinct features, which
tays typically similar, apart from larger differences, when a new
ariant is cloned (comp. Fig. 7(b) from iteration 200). Finally,
referring Growth adds features more frequently than it removes
hem, building up a solid feature base quickly and resulting in
higher variability after 500 iterations in both cases were we
sed all three probability distributions. It is noticable that while
he first 250 iterations of the RxJava evolution bear similarity to
he other two systems, no additional features get added from this
oint. This is due to the fact that a large portion of transplantable
eatures for the other two initial systems stem from the Algo-
ithms donor system. For RxJava the same transplantations were
ttempted, but none of these compiled, indicating compatibility
ssues between the two systems.

volution in Size. The evolution of the size of the generated
ersions can be seen in Fig. 8. We visualize the evolution in
ines of code (LoC) of the initial repository, that was read in as
he initial codebase. All evolution histories contain large changes
n LoC. The reason for this is that our coarse slicing approach
dentifies a large number of dependencies for a significant portion
f the transplanted features, which are added along with the
est case, if they are currently not present in the system. This
an result in code additions of multiple thousands of LoC for a
ingle feature. We observed this behavior especially within test
ases transplanted from the structurizr donor project. Of course,
nce the dependencies of a feature and respective test case are
dded, they will be reused by other features from the same donor
ith similar dependencies. Consequently, less dependency code
eeds to be added by the following transplantations, easing the
volution.
However, removing the only feature mapping to a large set of

ependencies deletes not only the feature, but all dependencies,
oo. This results in a sharp cutback in code. This happens espe-
ially frequently for Uniform and Preferring Mutation, as these add
nd remove features with equal probability.
While this can also happen for Preferring Growth (compare

ig. 8(c)), it achieves a smooth evolution more consistently as
t adds more features with similar dependencies faster and can
hus more reliably safeguard large dependency chunks from being
emoved again. Similar to above, the evolution of RxJava differs
rom the other two, as no new features could be added to the
ystem starting from evolution step 241.
Our results show that vpbench is capable of evolving a variant-

ich system in both variability and size over time. As expected,
epending on the used probability distributions over generators,
ystems are evolved in very different ways. It is also important to
ote that enough donor systems should be compatible with the
nitial system to ensure the addition of new features throughout
he entire evolution.
12
Fig. 8. Evolution of system size over first 500 iterations.

8.3. RQ3. Levels of realism

The first level is achieved for the generated version histories,
as shown in our experimental results presented in Section 8.2.
Also, all generation results compile without exception.

Callability of new features can sensibly only be handled by our
operation-generator-pair for feature addition. Thus, we focus on
this mechanism and examine how often our approach succeeds in
achieving transplantation fulfilling different realistic properties:
from pure transplantation without compilability and callability to
both.

Setup. We use the same GitHub repositories as in Section 8.2,
preprocess and build them, and extract all features using our
proposed approach. For preprocessing, we delete all multi-line
comments within the projects’ test classes due to a bug in our
used test case identification tool and remove one task from the
Structurizr projects’ main build file, which caused compilation to
fail otherwise.

All features are then inserted into the same predefined lo-
cation in a basic dependency-free system. The experiment is
split up in three phases, testing the different properties: We
check for which test cases (1.) the transplantation terminates
without throwing an exception, (2.) the transplantation results in



C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

W
o
(
c
t
i
m
c
a
o

O
f
s
i
b
t
t
a
i
s
d
f
p
c

t
s
m
o
o
I
d
p

L
e
o
i
t
W
v
r
i
a
p
t
g

Table 3
Transplantable features.
Donor #Total #Compiled #Callable

Class Case Class Case Class Case

Structurizr 71 799 50 498 17 122
Disruptor 27 97 27 97 4 8
Algorithms 70 521 70 521 46 250
Jadx 446 623 440 595 3 7

a compiling system, (3.) the transplantation additionally succeeds
in making the feature callable inside the evolving system. Each
consecutive step in the pipeline takes as input all test cases that
passed the previous step. The first two steps select only one test
case per test class, as our implementation prototype shows no
test case- but only test class-specific behavior for transplantation
without callability.

Assessing Applicability. Table 3 shows the experiment’s results.
e omitted the results of the first evaluation step (passing with-
ut an exception) from the table, as not a single case failed here
i.e., the results being the same as #Total). The majority of test
ases can be transplanted to produce compiling systems, showing
he general usability of the technique. Raising the targeted real-
sm degree to transplanting callable functionality poses a much
ore difficult problem. While we received good results in two
ases (Structurizr and Algorithms), only a small percentage of
vailable test cases was convertible into callable features in the
ther two projects.

pen Problems. We manually examined a small set of test cases
ailing to insert both compiling and callable features, to under-
tand which problems our approach can currently not solve. We
dentified two issues for compilability and three issues for calla-
ility: For compilability, our implementation does not support
he entire flexibility of Gradle build scripts, e.g., we support only
wo out of three main dependency types, and our dependency
nalysis failed to identify dependencies that were only defined
n annotations. For callability, our implementation fails to extract
ome types of code from the test classes, e.g., attributes initialized
uring declaration, non-annotated methods and in general code
rom other test classes. A more conceptual problem is package-
rivate members being accessed by test cases, as the test case’s
ode is moved to a different package.
While our prototype does not solve all problems, most iden-

ified ones (apart from accessing package-private members) are
olely implementation-related and can be solved to support even
ore test cases. Even so, it transplants compiling features from
ver 80% and callable features from almost 20% of all test cases
f all four donors, showing the technique’s general feasibility.
n fact, these numbers may be higher in practice, as at least
ependency adding would become a non-issue if the missing de-
endencies had already been added in an earlier transplantation.

imitations for Feature Transplantation. The constraints that
xist for our proposed form of feature transplantation differ based
n the level of abstraction. Most exist on the level of our concrete
mplementation, which is limited to transplanting features via
est cases between Java systems using Gradle as a build tool.
e discussed some further implementation issues in the pre-

ious subsection. However, on a conceptual level we pose less
equirements. The generator algorithm introduced in Section 6.3
s not constrained to specific programming languages of host
nd donor systems and might even support multilingual trans-
lantation (Marginean, 2021) in the future. The sole constraint
hat remains on the level of the presented TransplantFeature
enerator is the existence of test cases for features. On the level
13
of vpbench as a whole, this constraint might be less impor-
tant, since we may implement new generators using alternative
forms of feature transplantation (not utilizing test cases). Thus,
on a framework level we only require the existence of donor
projects (as input) for system evolution. We allow and welcome
improvements and extensions on all abstraction levels.

8.4. Threats to validity

External validity. Our evaluation considers only one program-
ming language and build tool and evolves only three initial
systems, restricting external validity. While experimentally ex-
ploring a broader selection of programming languages and build
tools would be desirable, vpbench is by no means specific to
Java and Gradle. In fact, our framework has been designed to be
conceptually language-independent and only two modular gen-
erators need to be reimplemented to support different languages
or build tools. We showed that all our generators can generate
valid changes on both a toy example and two different-sized real-
world systems. This includes transplanting functionality from
four donor systems, stemming from different domains.

Internal validity. Our technique relies on a number of param-
eters. In our evaluation, we observed that the configuration (as
explained in Section 5.4) and specifically the used probability dis-
tribution strongly affects the plausibility of the generated version
histories. While we found a configuration that leads to plausible
outcomes, these parameters have to be tuned every time a new
generator is available. Guiding this tuning process systematically
is a desirable direction for future work.

Construct validity. Our operationalization of realism relies on a
set of common activities during the evolution of variant-rich sys-
tems (Ji et al., 2015) and qualitative understanding of basic code
quality measures (towards realism). Future work might extend
the implemented levels of realism as discussed in Section 8.1 or
assess vpbench’s output against real version histories by guiding
the parametrization of our technique using a comparable activity
distribution found in real projects. Second, our evaluation of
vpbench’s usefulness is solely based on a set of requirements,
derived from an existing set of benchmark scenarios. An actual
application of our generated systems to different benchmarking
scenarios and tools is out of scope of this work, but subject to
future work.

9. Related work

Benchmark Generation. A plethora of work on system gen-
eration for benchmarking purposes exists. Techniques typically
follow one of three strategies: (i) generating a system from
scratch (Jasper et al., 2019; Mendonca et al., 2009; Segura et al.,
2012; Steffen et al., 2014a,b; Wägemann et al., 2017), (ii) mod-
ifying a given initial system (Bui et al., 2007; Kashyap et al.,
2019; Nassar et al., 2020; Szárnyas et al., 2018; Varró et al.,
2018; Weiss et al., 2013; Wu, 2018; Zhu et al., 2007), and (iii)
reproducing a given system in a different way (Jasper et al.,
2019; Martinez et al., 2018; Richards et al., 2011; Van Ertvelde
and Eeckhout, 2010; Wang and Provan, 2010). Vpbench fits the
second category. While covering a wide set of domains including
variability-related ones, none of the identified techniques include
historical information.

We identified only two approaches actively incorporating ver-
sion histories. Michelon et al. (2021) extract feature revisions
from version histories of C preprocessor SPLs to be identified
in preprocessed variants. And, closest to our work, Schultheiß
et al. (2022) propose VEVOS, a tool deriving version histories



C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

o
T
t
i
c
f
c
p
t
m
e
t
d
(
2
i
b

C
r
2
µ
a
s
p
c
(
o
w
b
t
a
b
2
t
t
F
t
d
p
t

p
2
s
Z
f
n
t

1

v
m
l
r
u
(
o
v
m
g
b
i

p

f clone&own based systems from real SPLs’ version histories.
heir benchmarks include source code, feature models, configura-
ions, locations and clone tracing. Both approaches are extractive,
.e., they draw benchmarks from existing version histories, in this
ase of SPLs. The system’s variants’ evolution is directly mapped
rom the evolution of the entire SPL. While this accesses realistic
ode bases, it sacrifices the validity of the evolution, i.e., the inde-
endence of clone&own based systems (Schultheiß et al., 2020),
he focus of VEVOS (Schultheiß et al., 2022). Vpbench focuses on
ore variety in evolution, allowing for variant drift (Schultheiß
t al., 2020) and the addition of new features through transplan-
ation, and takes first steps to towards achieving realism. Finally,
ue to their focus on the task of feature location, Michelon et al.
2021) only provide such as metadata. VEVOS (Schultheiß et al.,
022) aims at larger benchmark applicability, but crucially misses
nformation detailing the evolution itself, i.e., the changes applied
y the developer.

ode Transplantation. Automated code transplantation is a rather
ecently established branch of research. It was first proposed in
013 (Harman et al., 2013) and realized in 2015 with the tool
Scalpel (Barr et al., 2015). µScalpel extracts an annotated organ
nd its execution environment for it, i.e., the vein, using program
licing, and adapts and implants it at a user-specified insertion
oint using genetic programming. It validates the operation’s suc-
ess through user-defined test cases. Similarly, CodeCarbonCopy
Sidiroglou-Douskos et al., 2017) requires the user to provide the
rgan and insertion point. It limits its applicability to programs
orking on the same input type to convert data representations
etween host and donor code. It extracts the specified func-
ionality using a compile-time dependency graph and inserts it
t the given insertion point. Lu et al. (2018) propose a search-
ased way of adding new functionality. Grafter (Zhang and Kim,
017) enables test reuse between code clones through transplan-
ation. It replaces a tested piece of code with its clone using five
ransplantation rules guaranteeing compilability on termination.
inally, PatchWeave (Shariffdeen et al., 2020) tackles the patch
ransplantation problem on two similar programs. It utilizes the
onor’s version history to extract a bugfix and find an insertion
oint by identifying change locations in the donor and relating
hem to the erroneous host.

Other approaches to feature transplantation rely on user in-
ut (Barr et al., 2015; Lu et al., 2018; Sidiroglou-Douskos et al.,
017; Zhang and Kim, 2017) or similarity of host and donor
ystems (Shariffdeen et al., 2020; Sidiroglou-Douskos et al., 2017;
hang and Kim, 2017). Our novel approach does neither, apart
rom requiring donor and host to use the same build tool. We
ote however, that this degree of automation is only possible in
he context of simulating software evolution as proposed.

0. Conclusion

We presented vpbench, a framework for the generation of
ersion histories. It aims to lift the maturity of current and future
ethods and tools for evolving variant-rich systems. It simu-

ates the evolution of a variant-rich system while proactively
ecording metadata. It uses an extensible set of generators, em-
lating the execution of evolution tasks, including simple ones
e.g., changing assets, deleting features) and much more advanced
nes (e.g., adding features through transplantation). We discussed
pbench’s design with regards to requirements useful for bench-
arking purposes, and evaluated its generation capabilities by
enerating seven evolution histories evolving three initial code-
ases. Vpbench contributes an important step towards a consol-
dated benchmarking infrastructure.

Valuable future work is to extend vpbench’s generation ca-
abilities to further improve its realism. Specifically, we plan
14
to leverage more modern code-generation techniques, such as
those based on novel language models. Using such models to
generate even more consistent more comprehensible code with
a better domain-orientation of the feature model, can go a long
way. Especially the feature model together with its features and
their organization in a hierarchy is highly domain-specific. Having
long been the sole responsibility of a domain expert, we believe
that such modern language models can substantially enhance the
generation.

CRediT authorship contribution statement

Christoph Derks: Conceptualization, Software, Validation,
Investigation, Data curation, Writing – original draft, Writing
– review & editing, Visualization. Daniel Strüber: Con-
ceptualization, Methodology, Resources, Writing – original
draft, Writing – review & editing, Supervision. Thorsten
Berger: Conceptualization, Methodology, Resources, Writing –
original draft, Writing – review & editing, Supervision, Project
administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Data availability

A replication package including code and evaluation data is
available and linked in the paper

References

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C., 2006.
Refactoring product lines. In: GPCE.

Ananieva, S., Greiner, S., Kühn, T., Krüger, J., Linsbauer, L., Grüner, S., Kehrer, T.,
Klare, H., Koziolek, A., Lönn, H., Krieter, S., Seidl, C., Ramesh, S., Reussner, R.,
Westfechtel, B., 2020. A conceptual model for unifying variability in space
and time. In: SPLC.

Apel, S., Batory, D., Kästner, C., Saake, G., 2013. Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer Science & Business
Media.

Apel, S., Kästner, C., Lengauer, C., 2009. FEATUREHOUSE: Language-independent,
automated software composition. In: ICSE.

Assunção, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio, S.R., Egyed, A.,
2017. Reengineering legacy applications into software product lines: A
systematic mapping. 22, (6), pp. 2972–3016,

Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J., 2015. Automated software
transplantation. In: ISSTA.

Baudry, B., Allier, S., Monperrus, M., 2014. Tailored source code transformations
to synthesize computationally diverse program variants. In: ISSTA.

Berger, T., Chechik, M., Kehrer, T., Wimmer, M., 2019. Software evolution in
time and space: Unifying version and variability management (dagstuhl
seminar 19191). In: Dagstuhl Reports. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik.

Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik, M.,
Czarnecki, K., 2015. What is a feature? A qualitative study of features in
industrial software product lines. In: SPLC.

Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wąsowski, A.,
2013a. A survey of variability modeling in industrial practice. In: VaMoS.

Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K., 2013b. A study of
variability models and languages in the systems software domain. IEEE Trans.
Softw. Eng. 39 (12), 1611–1640.

Berger, T., Steghöfer, J.-P., Ziadi, T., Robin, J., Martinez, J., 2020. The state
of adoption and the challenges of systematic variability management in
industry. Empir. Softw. Eng. 25, 1755–1797.

Bui, N.B., Zhu, L., Gorton, I., Liu, Y., 2007. Benchmark generation using domain
specific modeling. In: ASWEC.

Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K., 2013. An
exploratory study of cloning in industrial software product lines. In: CSMR.

Fogdal, T., Scherrebeck, H., Kuusela, J., Becker, M., Zhang, B., 2016. Ten years
of product line engineering at danfoss: Lessons learned and way ahead. In:
SPLC.

http://refhub.elsevier.com/S0164-1212(23)00131-0/sb1
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb1
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb1
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb2
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb2
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb2
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb2
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb2
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb2
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb2
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb3
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb3
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb3
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb3
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb3
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb4
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb4
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb4
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb5
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb5
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb5
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb5
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb5
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb6
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb6
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb6
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb7
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb7
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb7
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb8
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb8
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb8
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb8
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb8
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb8
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb8
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb9
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb9
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb9
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb9
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb9
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb10
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb10
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb10
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb11
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb11
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb11
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb11
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb11
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb12
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb12
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb12
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb12
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb12
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb13
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb13
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb13
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb14
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb14
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb14
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb15
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb15
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb15
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb15
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb15


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736

H

H

H

J

J

J

J

K

K

K

K

K

K

K

K

K

L

L

L

L
M

M

M

M

M

M

M

N

N

P

P

R

R

R

arman, M., Jia, Y., Langdon, W.B., 2014. Babel pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In: SSBSE.

arman, M., Langdon, W.B., Weimer, W., 2013. Genetic programming for reverse
engineering. In: WCRE.

indle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P., 2016. On the naturalness of
software. Commun. ACM 59 (5), 122–131.

asper, M., Mues, M., Murtovi, A., Schlüter, M., Howar, F., Steffen, B., Schordan, M.,
Hendriks, D., Schiffelers, R., Kuppens, H., Vaandrager, F.W., 2019. RERS 2019:
Combining synthesis with real-world models. In: TACAS.

epsen, H.P., Beuche, D., 2009. Running a software product line: standing still is
going backwards. In: SPLC.

epsen, H.P., Dall, J.G., Beuche, D., 2007. Minimally invasive migration to software
product lines. In: SPLC.

i, W., Berger, T., Antkiewicz, M., Czarnecki, K., 2015. Maintaining feature
traceability with embedded annotations. In: SPLC.

ang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S., 1990. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21.

ashyap, V., Ruchti, J., Kot, L., Turetsky, E., Swords, R., Pan, S.A., Henry, J., Mel-
ski, D., Schulte, E., 2019. Automated customized bug-benchmark generation.
In: SCAM.

ästner, C., Apel, S., Thüm, T., Saake, G., 2012. Type checking annotation-based
product lines. ACM Trans. Softw. Eng. Methodol. (TOSEM) 21 (3), 1–39.

ästner, C., Apel, S., Trujillo, S., Kuhlemann, M., Batory, D., 2008. Language-
independent safe decomposition of legacy applications into features. Tech.
Rep. 2, School of Computer Science, University of Magdeburg, Germany.

rüger, J., Berger, T., 2020a. Activities and costs of re-engineering cloned variants
into an integrated platform. In: VaMoS.

rüger, J., Berger, T., 2020b. An empirical analysis of the costs of clone- and
platform-oriented software reuse. In: FSE.

rüger, J., Gu, W., Shen, H., Mukelabai, M., Hebig, R., Berger, T., 2018. Towards
a better understanding of software features and their characteristics: A case
study of marlin. In: VaMoS.

rüger, J., Mahmood, W., Berger, T., 2020. Promote-pl: A round-trip engineering
process model for adopting and evolving product lines. In: SPLC.

uiter, E., Krüger, J., Krieter, S., Leich, T., Saake, G., 2018. Getting rid of clone-
and-own: Moving to a software product line for temperature monitoring. In:
SPLC.

i, Y., Zhu, C., Rubin, J., Chechik, M., 2017. FHistorian: Locating features in version
histories. In: SPLC.

illack, M., Stanciulescu, S., Hedman, W., Berger, T., Wąsowski, A., 2019.
Intention-based integration of software variants. In: ICSE.

opez-Herrejon, R.E., Martinez, J., Assunção, W.K.G., Ziadi, T., Acher, M.,
Vergilio, S., 2022. Handbook of Re-Engineering Software Intensive Systems
into Software Product Lines. Springer Nature.

u, Y., Chaudhuri, S., Jermaine, C., Melski, D., 2018. Program splicing. In: ICSE.
ahmood, W., Strüber, D., Berger, T., Lämmel, R., Mukelabai, M., 2021. Seamless
variability management with the virtual platform. In: ICSE.

aletic, J.I., Collard, M.L., Marcus, A., 2002. Source code files as structured
documents. In: IWPC.

arginean, A., 2021. Automated Software Transplantation (Ph.D. thesis). UCL
(University College London).

artinez, J., Ziadi, T., Papadakis, M., Bissyandé, T.F., Klein, J., le Traon, Y., 2018.
Feature location benchmark for extractive software product line adoption
research using realistic and synthetic eclipse variants. Inf. Softw. Technol.
104, 46–59.

endonca, M., Wąsowski, A., Czarnecki, K., 2009. SAT-based analysis of feature
models is easy. In: SPLC.

ichelon, G.K., Obermann, D., Assunção, W.K.G., Linsbauer, L., Grünbacher, P.,
Egyed, A., 2021. Managing systems evolving in space and time: Four
challenges for maintenance, evolution and composition of variants. In: SPLC.

ukelabai, M., Berger, T., Borba, P., 2021. Semi-automated test-case propagation
in fork ecosystems. In: ICSE-NIER.

assar, N., Kosiol, J., Kehrer, T., Taentzer, G., 2020. Generating large EMF models
efficiently. In: FASE.

ešić, D., Krüger, J., Stănciulescu, S., Berger, T., 2019. Principles of feature
modeling. In: FSE.

fofe, T., Thüm, T., Schulze, S., Fenske, W., Schaefer, I., 2016. Synchronizing
software variants with variantsync. In: SPLC.

ohl, K., Böckle, G., Van Der Linden, F., 2005. Software Product Line Engineering,
vol. 10. Springer.

attan, D., Bhatia, R., Singh, M., 2013. Software clone detection: A systematic
review. Inf. Softw. Technol. 55 (7), 1165–1199.

ichards, G., Gal, A., Eich, B., Vitek, J., 2011. Automated construction of JavaScript
benchmarks. In: OOPSLA.

ubin, J., Chechik, M., 2013. A survey of feature location techniques. In:
Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (Eds.), Domain
Engineering: Product Lines, Languages, and Conceptual Models. Springer

Berlin Heidelberg, Berlin, Heidelberg, ISBN: 978-3-642-36654-3, pp. 29–58.

15
Schlie, A., Schulze, S., Schaefer, I., 2020. Recovering variability information from
source code of clone-and-own software systems. In: VaMoS.

Schultheiß, A., Bittner, P.M., El-Sharkawy, S., Thüm, T., Kehrer, T., 2022.
Simulating the evolution of clone-and-own projects with VEVOS. In: EASE.

Schultheiß, A., Bittner, P.M., Kehrer, T., Thüm, T., 2020. On the use of product-line
variants as experimental subjects for clone-and-own research: a case study.
In: SPLC.

Schulze, S., 2019. Analysis techniques to support the evolution of variant-
rich software systems (Ph.D. thesis). Habilitationsschrift, Magdeburg,
Otto-von-Guericke-Universität Magdeburg, 2019.

Schwarz, T., Mahmood, W., Berger, T., 2020. A common notation and tool support
for embedded feature annotations. In: SPLC.

Segura, S., Galindo, J.A., Benavides, D., Parejo, J.A., Ruiz-Cortés, A., 2012. Betty:
Benchmarking and testing on the automated analysis of feature models. In:
VaMoS.

Shariffdeen, R.S., Tan, S.H., Gao, M., Roychoudhury, A., 2020. Automated
patch transplantation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 30 (1),
1–36.

She, S., Ryssel, U., Andersen, N., Wa̧sowski, A., Czarnecki, K., 2014. Efficient
synthesis of feature models. Inf. Softw. Technol. 56 (9), 1122–1143, Special
Sections from ‘‘Asia-Pacific Software Engineering Conference (APSEC), 2012’’
and ‘‘ Software Product Line conference (SPLC), 2012’’.

Sidiroglou-Douskos, S., Lahtinen, E., Eden, A., Long, F., Rinard, M., 2017.
CodeCarbonCopy. In: FSE.

Steffen, B., Howar, F., Isberner, M., Naujokat, S., Margaria, T., 2014a. Tailored
generation of concurrent benchmarks. Int. J. Softw. Tools Technol. Transfer
16 (5), 543–558.

Steffen, B., Isberner, M., Naujokat, S., Margaria, T., Geske, M., 2014b. Property-
driven benchmark generation: synthesizing programs of realistic structure.
Int. J. Softw. Tools Technol. Transfer 16 (5), 465–479.

Strüber, D., Mukelabai, M., Krüger, J., Fischer, S., Linsbauer, L., Martinez, J.,
Berger, T., 2019. Facing the truth: Benchmarking the techniques for the
evolution of variant-rich systems. In: SPLC.

Szárnyas, G., Izsó, B., Ráth, I., Varró, D., 2018. The train benchmark: cross-
technology performance evaluation of continuous model queries. Softw. Syst.
Model. 17 (4), 1365–1393.

Van Ertvelde, L., Eeckhout, L., 2010. Benchmark synthesis for architecture and
compiler exploration. In: IISWC.

Van Gurp, J., Bosch, J., Svahnberg, M., 2001. On the notion of variability in
software product lines. In: Proceedings Working IEEE/IFIP Conference on
Software Architecture. IEEE, pp. 45–54.

Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á., 2018. Towards the automated
generation of consistent, diverse, scalable and realistic graph models. In:
Heckel, R., Taentzer, G. (Eds.), Graph Transformation, Specifications, and Nets:
In Memory of Hartmut Ehrig. Springer International Publishing, Cham, ISBN:
978-3-319-75396-6, pp. 285–312.

Vogel-Heuser, B., Fay, A., Schaefer, I., Tichy, M., 2015. Evolution of software in
automated production systems: Challenges and research directions. J. Syst.
Softw. 110, 54–84.

Wägemann, P., Distler, T., Eichler, C., Schröder-Preikschat, W., 2017. Benchmark
generation for timing analysis. In: RTAS.

Wang, J., Provan, G., 2010. A benchmark diagnostic model generation system.
IEEE Trans. Syst. Man Cybern. A Syst. Hum. (ISSN: 1558-2426) 40 (5),
959–981.

Wasowski, A., Berger, T., 2023. Domain-Specific Languages: Effective Modeling,
Automation, and Reuse. Springer, URL http://dsl.design.

Weiss, C., Westermann, D., Heger, C., Moser, M., 2013. Systematic performance
evaluation based on tailored benchmark applications. In: ICPE.

Wu, H., 2018. Step 0: An idea for automatic OCL benchmark generation. In: STAF.
Zhang, T., Kim, M., 2017. Automated transplantation and differential testing for

clones. In: ICSE.
Zhu, L., Bui, N.B., Liu, Y., Gorton, I., 2007. MDABench: Customized benchmark

generation using MDA. J. Syst. Softw. 80 (2), 265–282.

Christoph Derks is a Ph.D. student at Ruhr Univer-
sity Bochum. His research interests are in software
transplantation, variant-rich systems and software
evolution.

http://refhub.elsevier.com/S0164-1212(23)00131-0/sb16
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb16
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb16
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb17
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb17
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb17
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb18
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb18
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb18
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb19
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb19
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb19
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb19
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb19
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb20
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb20
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb20
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb21
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb21
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb21
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb22
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb22
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb22
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb23
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb23
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb23
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb23
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb23
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb24
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb24
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb24
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb24
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb24
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb25
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb25
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb25
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb26
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb26
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb26
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb26
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb26
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb27
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb27
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb27
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb28
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb28
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb28
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb29
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb29
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb29
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb29
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb29
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb30
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb30
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb30
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb31
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb31
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb31
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb31
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb31
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb32
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb32
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb32
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb33
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb33
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb33
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb34
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb34
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb34
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb34
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb34
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb35
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb36
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb36
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb36
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb37
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb37
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb37
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb38
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb38
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb38
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb39
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb39
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb39
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb39
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb39
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb39
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb39
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb40
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb40
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb40
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb41
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb41
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb41
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb41
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb41
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb42
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb42
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb42
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb43
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb43
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb43
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb44
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb44
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb44
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb45
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb45
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb45
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb46
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb46
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb46
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb47
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb47
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb47
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb48
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb48
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb48
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb49
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb49
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb49
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb49
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb49
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb49
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb49
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb50
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb50
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb50
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb51
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb51
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb51
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb52
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb52
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb52
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb52
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb52
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb53
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb53
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb53
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb53
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb53
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb54
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb54
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb54
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb55
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb55
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb55
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb55
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb55
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb56
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb56
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb56
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb56
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb56
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb57
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb57
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb57
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb57
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb57
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb57
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb57
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb58
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb58
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb58
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb59
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb59
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb59
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb59
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb59
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb60
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb60
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb60
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb60
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb60
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb61
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb61
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb61
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb61
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb61
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb62
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb62
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb62
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb62
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb62
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb63
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb63
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb63
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb64
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb64
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb64
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb64
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb64
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb65
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb66
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb66
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb66
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb66
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb66
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb67
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb67
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb67
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb68
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb68
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb68
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb68
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb68
http://dsl.design
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb70
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb70
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb70
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb71
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb72
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb72
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb72
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb73
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb73
http://refhub.elsevier.com/S0164-1212(23)00131-0/sb73


C. Derks, D. Strüber and T. Berger The Journal of Systems & Software 203 (2023) 111736
Daniel Strüber is a senior lecturer at Chalmers |
University at Gothenburg, Sweden, and an assistant
professor at Radboud University in Nijmegen, the
Netherlands. His research interests are in model-
driven engineering, AI engineering, and variant-rich
systems. He was awarded his doctoral degree from
Philipps University Marburg, Germany, and worked as
a post-doctoral researcher at University of Koblenz and
Landau, Germany, and Gothenburg University, Sweden.
He is a co-author of over 80 papers with six Best Paper
Awards. He has been a Program Committee member

of several leading conferences, including ASE, FASE, MODELS. He is the lead
developer of Henshin, a model transformation language used in more than 15
countries.
16
Thorsten Berger is a Professor in Computer Science at
Ruhr University Bochum in Germany. After receiving
the Ph.D. degree from the University of Leipzig in
Germany in 2013, he was a Postdoctoral Fellow at the
University of Waterloo in Canada and the IT University
of Copenhagen in Denmark, and then an Associate
Professor jointly at Chalmers University of Technology
and the University of Gothenburg in Sweden. He re-
ceived competitive grants from the Swedish Research
Council, the Wallenberg Autonomous Systems Program,
Vinnova Sweden (EU ITEA), and the European Union.

He is a fellow of the Wallenberg Academy—one of the highest recognitions for
researchers in Sweden. He received two best-paper and two most-influential-
paper awards. His service was recognized with distinguished reviewer awards
at the tier-one conferences ASE 2018 and ICSE 2020. His research focuses on
model-driven software engineering, program analysis, and empirical software
engineering.


	A benchmark generator framework for evolving variant-rich software
	Introduction
	Motivation and Background
	Running Example
	Requirements
	Generation Requirements
	Framework Requirements

	Vpbench
	Generated System Representation
	Coordinating the Evolution
	Recording Metadata
	Configuration Options

	Generators and Operations
	Removing Features
	Mutating Implementation Assets
	Adding Features
	Clone Variant
	Clone Feature

	Implementation
	Evaluation
	RQ1: Requirements Addressed
	RQ2: Simulating Evolution
	RQ3. Levels of Realism
	Threats to Validity

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


