
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Searching for Optimal Models:
Comparing Two Encoding Approaches

Stefan Johna Alexandru Burduselb Robert Billc

Daniel Strüberd Gabriele Taentzera Steffen Zschalerb
Manuel Wimmere

a. Philipps-Universität Marburg, Marburg, Germany

b. King’s College London, London, United Kingdom

c. TU Wien | Austrian Center for Digital Production, Wien, Austria

d. Chalmers University | University of Gothenburg, Gothenburg, Sweden

e. CDL-MINT, Johannes Kepler University, Linz, Austria

Abstract Search-Based Software Engineering (SBSE) is about solving soft-
ware development problems by formulating them as optimization problems.
In the last years, combining SBSE and Model-Driven Engineering (MDE),
where models and model transformations are treated as key artifacts in the
development of complex systems, has become increasingly popular. While
search-based techniques have often successfully been applied to tackle
MDE problems, a recent line of research investigates how a model-driven
design can make optimization more easily accessible to a wider audience.
In previous model-driven optimization efforts, a major design decision
concerns the way in which solutions are encoded. Two main options have
been explored: a model-based encoding representing candidate solutions
as models, and a rule-based encoding representing them as sequences of
transformation rule applications. While both encodings have been applied
to different use cases, no study has yet compared them systematically. To
close this gap, we evaluate both approaches on a common set of optimiza-
tion problems, investigating their impact on the optimization performance.
Additionally, we discuss their differences, strengths, and weaknesses laying
the foundation for a knowledgeable choice of the right encoding for the
right problem.

Keywords Model-driven Engineering Search-based Software Engineering
Optimization Encoding Comparative evaluation

Stefan John, Alexandru Burdusel, Robert Bill, Daniel Strüber, Gabriele Taentzer, Steffen Zschaler, Manuel
Wimmer. Searching for Optimal Models: Comparing Two Encoding Approaches. Licensed under
Attribution 4.0 International (CC BY 4.0). In Journal of Object Technology, vol. 18, no. 3, 2019,
pages 6:1–22. doi:10.5381/jot.2019.18.3.a6

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2019.18.3.a6
http://dx.doi.org/10.5381/jot.2019.18.3.a6

2 · John et al.

1 Introduction

Many software engineering problems give rise to a tremendous space of possible
solutions that differ in various qualities, such as their performance, resource efficiency,
and understandability. To efficiently find optimal solutions, search-based software
engineering (SBSE) [HJ01] seeks to formulate the problem as an optimization problem
over one or multiple fitness functions capturing the qualities of interest. By using
metaheuristic search techniques, the available solution space can be explored efficiently.
Due to their generality, a technique of particular relevance are genetic algorithms
[HMZ12], which use the evolutionary operators of mutation, crossover, and selection
to perform a guided search over the search space.

Model-driven engineering (MDE) is a paradigm that aims to raise the level of
abstraction in a broad range of application domains by the use of models, which
are continuously refined and transformed. Recently, research combining SBSE and
MDE for a range of purposes has become increasingly popular. The term search-based
model-driven engineering (SBMDE, [BSAN17]) has been proposed as an umbrella
term for these efforts. One particular line of research in SBMDE, which we call
model-driven optimization (MDO), aims to reduce the level of expertise required by
users of SBSE techniques1. In MDO, models are used to specify optimization problems
and transformation rules are used to explore the search space. Thus, rather than
becoming involved in the intricacies of the used optimization technology, users interact
with a domain-specific formulation of their problem. They can rely on the familiar
modeling and model transformation tools to inspect the solutions and specify the
change operations.

Recently, a variety of MDO frameworks has emerged [BFT+17, AVS+14, ZM16,
Str17] and been applied successfully in numerous use-cases, including security-oriented
software refactoring [RKL+18], model generation [SNV18], transformation modular-
ization [FTK+17], and various more examples [BSAN17]. A key distinction in MDO
frameworks concerns the way in which solutions are encoded [ZM16]: The model-based
encoding approach represents solutions as models. In the rule-based encoding approach,
a solution is a sequence of rule calls in the context of a given input model. Both
encoding approaches have distinct advantages: The model-based approach reduces the
overhead of applying transformations before the solution is evaluated. It also removes
the effort for tracking detail information of the rule calls. The rule-based approach,
instead of only incrementally changing the solutions, allows to go back in time easily
and deviate from changes made earlier, which may allow the search to move faster
through the search space.

So far, there has been no systematic assessment of how the choice of encoding
impacts the performance of the search. In existing use-cases, the approach was
chosen in an ad-hoc manner, based on the availability of a specific MDO framework.
Systematic evidence for the suitability of the chosen approach may help developers in
selecting a solution that best fits their use-case and lower the acceptance threshold for
MDO in practice.

In this paper, we aim to compare the two main encoding approaches in MDO
frameworks. We study the implementation of these approaches in two state-of-
the-art MDO frameworks that differ in the encoding approach used, but otherwise
share the same technological basis. This setup allows us to attribute any observed
differences in performance to the used encoding. Specifically, we consider MOMoT

1As opposed to applying SBSE techniques to solve MDE problems.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 3

[BFT+17] and MDEOptimiser [BZS18], which follow the rule-based and the model-
based approach, respectively. Both are built atop of the EMF modeling platform
[SBMP08], the Henshin model transformation language [ABJ+10, SBG+17], and the
MOEA evolutionary search framework [MOE]. Problems are specified by metamodels;
model transformations are performed by Henshin transformation rules.

The main contributions of the paper are as follows:

1. A qualitative comparison between the model-based and the rule-based encoding
in MDO frameworks, based on a systematic study of their features.

2. A quantitative comparison of both encodings with their implementations in
MOMoT and MDEOptimiser, based on their performance (regarding solution
quality and execution time) in a set of three diverse use cases.

3. Insights into the applicability of both encoding approaches; their strengths and
weaknesses. We study whether the differences can be attributed to the different
encoding approaches.

The paper is structured as follows: Section 2 introduces the use-cases considered in
this paper. Section 3 describes MDO. Section 4 and 5 are devoted to the qualitative and
quantitative comparative evaluation, respectively. Section 6 provides interpretations
for the observed results, while Section 7 points out threats to their validity. Section 8
discusses related work. Section 9 concludes the paper.

2 Optimization Problems

For our experimental analysis, we focus on three combinatorial optimization problems.
Such problems can be described by providing [GJ79]: (i) a problem domain; (ii)
problem instances, each with a finite set of candidate solutions; (iii) a function which
maps each candidate solution to a rational number.

Combinatorial optimization problems are often encountered in fields such as engi-
neering, software engineering and finance [CCRS04]. In contrast to other optimization
categories (e.g. Integer Programming, Linear Programming), where sets of equations
need to be solved, requirements of combinatorial problems are usually formulated by
objects and their relationships. This makes them ideal candidates for Model-driven
Optimization.

2.1 Problem Descriptions

In this section, we briefly introduce the case studies we will use for quantitative
evaluation. We provide only a rough description of the key features of each case study;
more detail can be obtained from the websites linked in the footnotes.

Class Responsibility Assignment (CRA) The CRA use case [BBL10] stems
from the domain of software design and, initiated by the Transformation Tool Con-
test 2016 (TTC’16) [FTCW16], has been addressed by several works in the last
years [FSK17, BZ18, Str17]. A software system is defined by a set of features (methods
and attributes) and dependencies. Dependencies can be functional, i.e., one method
calling another one, or data-driven, i.e., an attribute is processed by a method. Classes
can be added to encapsulate features and modularize the system. With the constraint
of assigning all features to classes, the optimization goal is to reach a good modular

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

4 · John et al.

software design. To assess the quality of such a class diagram, the CRA-Index is used,
which aggregates the metrics of cohesion and coupling. To increase the maintainability
and comprehension of a system, combinations of high cohesion and low coupling,
reflected by higher CRA-Index values, are desirable [BDW98]. To facilitate easier
comprehension of the model changes needed to reach a modular design, we define an
extended CRA case (CRA ext.) with the additional objective to minimize the number
of transformations performed by the optimization process.

Next Release Problem (NRP) The NRP is about planning which features to
include in the next release of a software product. Features are requested by customers in
terms of requirements and are implemented as software artifacts. The two optimization
objectives are to minimize the development costs, by developing as few artifacts as
possible, and to maximize customer satisfaction, by fulfilling requirements. Typical
versions of the problem [DZA+11] do not allow nested requirements, partial fulfillment
of requirements, or dependencies between software artifacts. Based on the work of
Burton and Poulding [BP13], our problem specification2 considers these additional
facets.

Refactoring (REF) The REF use case3 has been taken from the TTC’13. Program
refactoring is a common task in agile development typically performed manually.
Developers strive to reduce the complexity and increase the comprehensibility of their
programs without affecting their function. While there is a great variety of refactor
operations possible, we restrict ourselves to attribute location changes to not require
any control flow information about the program. The objective is to minimize the
number of elements (classes and attributes), by moving duplicate attributes to existing
or newly generated superclasses. In an extended version (REF ext.) we want the
refactoring itself to be as simple as possible to ease manual review. Therefore, we
additionally minimize the total number of refactoring operations.

2.2 Coverage of Selected Use Cases

With the selection of the above use cases, we seek to cover a wide range of optimization
characteristics (Table 1) which might influence both encoding approaches differently.
We selected single- as well as multi-objective problems. In particular, problems where
the number of applied transformations needs to be minimized are, hypothetically,
easier to address by a rule-based encoding. NRP includes an objective (maximize
customer satisfaction) which guides the optimization only in a coarse manner, i.e.,
multiple transformations might be needed to change a solution’s fitness with regard
to that objective. The CRA case comprises an additional constraint. With regard
to transformation rules, the use cases differ widely. The CRA case uses atomic rules
which perform only small changes and contain basic rule elements. In the other cases,
more complex rule structures (e.g., control flow elements) can be found. Their rules
also allow larger parts of a problem instance to be restructured in one mutation. In
terms of their structure, optimization problems differ in whether or not instances of
types may be removed and created. While CRA and REF contain such mutable types
(e.g. classes), NRP only allows to select or deselect existing type instances.

2see https://mde-optimiser.github.io/case-studies/nrp/
3see http://martin-fleck.github.io/momot/casestudy/class_restructuring/

Journal of Object Technology, vol. 18, no. 3, 2019

https://mde-optimiser.github.io/case-studies/nrp/
http://martin-fleck.github.io/momot/casestudy/class_restructuring/
http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 5

CRA CRA ext. NRP Ref Ref ext.

objective single multi multi single multi
min. transf. no yes no no yes
coarse obj. no no yes no no
constrained yes yes no no no
mut. changes small small large large large
mut. complexity low low medium high high
mutable types yes yes no yes yes

Table 1 – Optimization characteristics covered by the considered use cases.

Covering these aspects of optimization problems mitigates the risk of introducing a
bias into our comparison. A systematic analysis of the impact of each aspect, however,
is not in the scope of this paper and is left for future work.

Regarding problem size, we considered five models, ranging from 9 features and 14
dependencies (model A) to 160 features and 600 dependencies (model E) for CRA.
For NRP, two models were used. Model A with 5 customers, 25 requirements and 63
software artifacts and model B with 25 customers, 50 requirements and 203 artifacts.
Models A (19 classes, 18 attributes, 15 generalizations) and model B (6 classes, 68
attributes, 4 generalizations) were used for REF.

3 Model-driven Optimization

We now introduce the MDO approach on the example of the CRA problem and
illustrate its concepts in the context of Genetic Algorithms (GAs). We stick to GAs
because they are prominently used in SBMDE literature [BSAN17] and are supported
by both of the compared frameworks.

3.1 Preliminaries

For a basic understanding of the optimization process, we revisit GAs. GAs [Gol89]
work on a population of solutions. Each individual of the population has an assigned
fitness, which represents the quality of a solution with regard to the desired optimization
goals. A search is performed iteratively by evolving existing solutions. Inspired by
nature, evolution commonly comprises mutation and crossover. Mutation induces
changes in a single solution while crossover aims at recombining multiple solutions
in the hope of generating fitter offspring. After an evolution, the population of the
next iteration is selected, favoring fit solutions. This cycle continues until a predefined
termination criterion (e.g. fitness threshold, number of evolutions) is met.

Both encoding implementations considered in this paper use Henshin [ABJ+10,
SBG+17] to specify and perform model transformations. Henshin is a rule-based trans-
formation language based on the paradigm of graph transformation. A transformation
rule is visually represented as a graph in which nodes and edges are annotated with
actions such as delete, preserve, create, and forbid (Fig. 5). Henshin provides an
interpreter engine to apply rules to input models. Roughly, a rule is applied to an
input model by finding a match of its preserve and delete elements, and performing the
changes specified by the delete and create elements. The existence of forbid elements
prevents a rule from being applied.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

6 · John et al.

yes

Evolvers
(Henshin Rules)

Objectives
(OCL/Java Code)

Problem Instance

Problem Description

Termination
condition

met?

Results

Search
Initialize

population

Generate new
candidates

Select
fittest

no Result Models

Result Transformations

Statistics

Objective Values

Constraint ValuesConfiguration

Solution Constraints

Problem Meta-Model

Problem Model

Figure 1 – General architecture overview for MDEOp-
timiser and MOMoT

Apply to one
solution

Select
random

rule

yes

no

Successfully
applied?

no

yes

All models
transformed?

Generate New Candidates Next Generation
Solution Models

Candidate
Solution Models

Evolvers
(Henshin Rules)

Figure 2 – Overview of solution candidates
generation in MDEOptimiser

Crossover:
2 parent

chains produce
2 new chains

Mutation: change
rule parameters in one

location in chain / change
selected rule

yes

no All transformation
chains evolved?

Generate New Candidates Next Generation
Solution

Transformation Chains
Candidate Solution

Transformation Chains

Evolvers
(Henshin Rules)

Evaluate new
solution chains

Figure 3 – Overview of solution candidates
generation in MOMoT

Three easily confused terms related to transformation rules need to be distinguished.
First, a rule specifies how a transformation has to be performed and may contain
formal parameters. Second, a rule call consists of a rule and the actual arguments
used to execute the rule. And third, a rule call executed in the context of a specific
model is called transformation.

3.2 Model-driven optimization

MDO relies on model-driven engineering concepts to specify search problems. In
general, a search problem specification comprises (i) a search space description, defining
all possible solutions to the problem; (ii) a method for encoding individual solutions;
(iii) a set of search operators used to explore the search space; and (iv) a method for
evaluating the fitness of individual solutions based on the optimization goals. In Fig. 1
we include a general overview of the architecture used by tools implementing MDO.
In the following sections, we describe the core specification components.

3.2.1 Search space

In MDO, a metamodel specifies the abstract structure of a family of optimization
problems; a valid model instance describes a concrete problem of that family. In
addition, to describe the available search space, knowledge about immutable model
parts, representing constraints of the problem at hand, is needed. Fig. 4 shows the
meta-model for the CRA case. White solid elements are immutable, while colored
dashed elements may be created or removed.

3.2.2 Encoding Approaches

The model-based encoding aims to reduce the computational time spent for translating
solutions between the geno- and the phenotype by using the problem model itself for
both. Thus, fitness can be calculated directly on newly found solutions. Fig. 2 shows
an overview of the model-based approach. The rule-based approach uses a sequence of

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 7

Figure 4 – Metamodel of the CRA case.

Figure 5 – Henshin transformation rules of the CRA use case.

rule calls as genotype. To evaluate the quality of a solution, its whole sequence needs
to be applied to the input model before its fitness can be determined. Fig. 3 shows an
overview of the rule-based approach.

3.2.3 Search Operators

In the model-based encoding, mutation is implemented in terms of applying one or
multiple transformation rules to a solution model. To our knowledge, how to perform
crossover to effectively recombine parts of several models remains an open research
problem. For that reason, the model-based approach usually relies on mutation to
explore the search space. Mutation in the rule-based approach alters the sequence of
a solution. Rule calls are added, removed or changed. The approach also facilitates
the use of traditional crossover operators specified for sequential encodings.

To perform model changes, in the CRA case we rely on four Henshin rules (Fig. 5),
proposed by Burdusel and Zschaler [BZ16]. Unassigned features can be assigned
to newly created classes by createClass and to existing classes by assignFeature.
moveFeature relocates a feature; deleteEmptyClass decreases the number of available
classes.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

8 · John et al.

3.2.4 Fitness Functions

The quality of solution models is evaluated using fitness functions implemented in Java
or OCL. Both encoding approaches allow to formulate objectives on the metamodel.
In the rule-based approach, additionally, objectives on the sequence of rule calls are
possible. Along with objectives, additional constraints (not covered by the metamodel)
might be needed to distiguish between valid problem instances and valid solutions. It
is up to the optimization algorithm used how violating solutions are treated. In the
CRA case, Java classes implement the calculation of the CRA-Index, the retrieval of
the number of applied rules, and the constraint of assigning all features to classes.

3.3 Implementing Tools

MOMoT as well as MDEOptimiser rely on EMF, Henshin, and the MOEA framework
as their technological basis. Both offer a mature DSL to facilitate an easy configuration
of optimization runs.

Both allow the user to specify the transformation rules used as mutation operators.
The responsibility for generating consistent models is left to the user, who must ensure
that the provided rules do not generate invalid model instances when they are applied.
As MOMoT relies on the rule-based approach, rules are additionally required to match
uniquely when their parameters are set. Otherwise, applying a solution sequence may
lead to non-deterministic results.

As an implementation detail, MOMoT works with a fixed solution length, which
needs to be specified as an additional parameter. By default, each solution of the
starting population is initialized by randomly assigning rule calls to each slot of its
sequence. In MDEOptimiser, following the model-based approach, solutions of the
initial population are generated by applying a single random mutation to the input
model provided by the user. To achieve a fair comparison, we adapted MOMoT to
randomly assign a rule call to just one slot of initial solutions.

4 Qualitative Comparison

In MDO the search space is defined by (meta)models independently of the chosen
encoding. The representation of solutions, however, influences most other parts of the
optimization process (Table 2). In the following, we consider the main ingredients of
MDO and discuss them for our two encodings.

Regarding the choice of search operators, the rule-based approach is more flexible
than the model-based approach. Representing solutions as sequences allows the use
of traditional crossover operators. Crossover is generally expected to accelerate the
optimization process by recombining (potentially good) parts of already fit solutions.
Additionally, the rule-based approach brings more flexibility in the choice of mutation.
First, decisions of the past can be reconsidered by changing existing rule calls or
entirely deleting them from a solution. Second, problems like CRA and NRP, in
contrast to REF, are monotonic in the sense that their whole search space can be
explored by only adding elements to (or removing them from) the initial model.
For the rule-based approach, purely constructive (or purely destructive) rules are
sufficient in these cases. In case of the CRA, createClass and assignFeature are such
constructive rules (Fig. 5). In the model-based encoding, in contrast, additional rules
are needed (e.g., deleteEmptyClass and moveFeature in CRA). As a result, evolution

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 9

Model-based Rule-based

problem description initial model initial model
solution representation model rule call sequence
mutation operator rule call (sequence) alteration of sequence slots
crossover operator adhoc implementations traditional variants for se-

quential encodings
transformation rules both constructive and de-

structive rules needed
depending on use case: con-
structive and/or destruc-
tive rules needed

solution quality fitness of solution model fitness of transformation se-
quence and fitness of result-
ing model

runtime time of applying mutation time of applying search op-
erators and repair plus ap-
plying sequence to initial
model

consistency metamodel conformance metamodel conformance
completeness depends on search rules depends on search rules

(and solution length)

Table 2 – Summary of similarities and differences of both encoding approaches.

steps are potentially spent on reverting prior transformations, slowing down the search.
Additionally, more effort has to be put in rule creation.

The rule-based flexibility, however, comes at the cost of making additional repair
steps necessary. Rule calls might be dependent on each other, e.g., a rule call in the
CRA case creates a class to which a later rule call assigns a feature. As such, changing
a single slot in a sequence of rule calls may invalidate subsequent rule calls, which
needs to be addressed and may lead to a loss of evolutionary information. Compared
to the model-based approach, repair steps as well as the necessity to apply a sequence
to the input model to determine the fitness of the resulting model, cause a runtime
overhead in each evolution step. Its magnitude depends on the size of the solution
sequences, which is capped by the chosen solution length in MOMoT. This additional
parameter also makes finding a good optimization configuration a bit harder. Note,
however, that using sequences of a specific length is not a strict requirement of the
rule-based approach but merely an implementation detail of MOMoT.

The rule-based encoding allows insight into how a solution has been found. It also
allows more variety in formulating objectives as it facilitates to not only reason about
the quality of a model but also of the rule call sequence generating it. We exploited that
functionality in the extended CRA and REF cases, where the number of rule calls has
to be minimized. In MDEOptimiser, as its encoding does not naturally support such
objectives, we had to implement an additional rule call counter, effectively extending
the information stored by the encoding.

Sequences of the rule-based approach do not, per se, fulfill specific consistency
constraints. However, applying a sequence produces a solution model consistent with
the problem metamodel. This sort of consistency is naturally given for the model-based
approach. Completeness, i.e., whether or not the entire search space can be explored,
in both approaches depends on the transformation rules provided by the user. In the
rule-based approach, additional care has to be taken to choose a sufficiently large

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

10 · John et al.

solution length when fixed size solutions are used, as solution length caps the number
of changes which can be applied to an input model.

5 Quantitative Comparison

For the quantitative comparison, we are first interested in how both encoding ap-
proaches compare with regard to their optimization performance (runtime and solution
quality) when the implementing tools are configured similarily. The qualitative com-
parison, however, shows that the rule-based approach offers configuration options for
the search operators which are not present in the model-based approach. To ana-
lyze their influence on optimization performance, we also compare multiple MOMoT
configurations.

We aim at answering the following research questions:

Q1: How do MDEOptimiser and MOMoT compare, in terms of optimization perfor-
mance, when their behavior is aligned as much as possible?

Q2: Can the optimization performance of the rule-based approach profit from the
ability to apply a traditional crossover operator?

Q3: Can the optimization performance of the rule-based approach profit from exclud-
ing destructive transformation rules?

In the following, we present the experimental setup, the results we obtained and
discuss threats to the validity of our study.

5.1 Experimental Setup

For each problem instance of the use cases presented above, we performed 30 opti-
mization runs using NSGA-II [DPAM02] a prominent representative of genetic algo-
rithms [BSAN17] supported by both frameworks. With a population of 100 solutions
each optimization instance was executed on Amazon Web Services relying on c4.2xlarge
Spot instances running openjdk 1.8.0_191 and Amazon Linux release 2. Apart from
these common settings, both encoding approaches differed in their parameters, runtime,
and even the supported search operators.

5.1.1 Termination Condition

As a termination criterion for our experiments, we chose specific timelimits for each
problem instance (Table 3). We systematically determined sensible limits by performing
10 runs with MDEOptimiser for each problem instance of each use case. The runs
were stopped when no improvement took place for 100 evolutions to guarantee that a
good level of convergence can be reached within the limit. The average runtime of
these runs was chosen as the termination criterion for both approaches in the final
experiments.

5.1.2 Operators

For both approaches, we let mutation perform exactly one change per evolution step for
each solution (100% mutation rate). This is done by either executing a transformation
rule (model-based) or changing the content of one sequence slot (rule-based). To
answer the above research questions, we conducted experiments with different MOMoT

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 11

configurations. For the direct comparison of both approaches (Q1), we configured
MOMoT to use mutation only (MO). To get insights into how crossover influences the
performance of the rule-based approach (Q2), another variant combining mutation
with one-point crossover (MC) was used. Crossover was also applied once for each
solution and step (100% crossover rate). For both approaches, we used the same
set of transformation rules for each use case. To answer the last research question
(Q3), in the CRA and NRP cases, we analyzed additional MOMoT configurations
refraining from the use of destructive rules (e.g., deleteEmptyClass and moveFeature
in the CRA case; see Fig. 5), flagging them as non-destructive (ND). In total, we
tested four configurations of MOMoT as can be seen in Table 4.

Table 3 – Timeouts in seconds used as termina-
tion condition for each problem instance. A
through E refer to the different instances
of a problem. For NRP and REF, only two
instances were used.

CRA CRA NRP REF REF
(ext.) (ext.)

A 5s 5s 120s 60s 800s
B 15s 15s 500s 800s 800s
C 30s 30s - - -
D 300s 120s - - -
E 2500s 1200s - - -

To repair solutions in the rule-
based approach, invalid rule calls
were removed from a solution se-
quence.

5.1.3 Solution Length

As briefly discussed in Section 3.3,
for MOMoT a fixed solution length
determining the maximum number of
possible rule calls of a solution needs
to be chosen. For the CRA case, to
allow exploration of the whole search
space, one has to guarantee that each
feature can be assigned to a separate
class. To achieve that, the solution
length must match at least twice the number of features in the specific problem instance.
As the transformation rules included in NRP allow multiple software artifacts to be
selected in one step, the situation changes in favor of a smaller solution length. Based
on these considerations, we conducted preliminary experiments with solution lengths
of 1x, 2x, 4x and 8x the number of key elements of the specific use case. Interestingly,
both use cases behaved similar, with best values for 4x and 8x variants. We chose 8x for
the final experiments as it was slightly dominant. Regarding the REF case, we did not
have any expectations on the length of solutions, as the number of possible refactorings
can hardly be guessed from the number of elements. Therefore, we experimented with
a solution length of 10, 20, 40, 80 and 160. All lengths lead to a very similar solution
quality, 160 being slighty benefitial.

5.2 Quality Criteria

We compare the encoding approaches on two criteria: their solution quality and their
associated runtime. In single-objective scenarios the fitness of solutions can directly be
used as a quality metric. In multi-objective optimization, this approach is generally not
applicable. When objectives are conflicting, tradeoffs need to be considered, captured
by the concept of Pareto optimality. A solution is said to be Pareto optimal if one of
its objectives cannot be improved without degrading another objective. As a result,
sets of mutually incomparable solutions, called Pareto front approximations, need to
be considered. Additionally, a solution dominates another solution, if it is better in
at least one objective and not worse in any of the others. Capacity, convergence and
diversity are the main dimensions along which the quality of such sets is commonly

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

12 · John et al.

assessed [JOZF14]. In our work we rely on two metrics measuring these dimensions
for Pareto front approximations.

5.2.1 Ratio Of Best Solutions Found

To quantify the capacity of a solution set S we measure the Best Solution Ratio based
on the cardinal C1 metric presented by [HJ98]

BSR =
|S ∩ PFpseudo|
|PFpseudo|

(1)

PFpseudo denotes the set of non-dominated solutions in the union of all solutions found
for a particular problem instance. In other words, the best solutions found for that
problem by any configuration used in the experiments.

5.2.2 Hypervolume

The Hypervolume indicator (HV) [ZBT07] is one of the most popular metrics used in
multi-objective optimization [RLB15]. It measures the size of the area enclosed by a
solution set with respect to a given reference point. In our experiments, for the latter
we have chosen a point slighty worse than the nadir point given by all solutions found
for a particular problem. This nadir point combines the worst objective values found
so far in one vector. We use PFpseudo to normalize HV. As such HV increases towards
1 as solution sets converge towards PFpseudo. The distribution of solutions among
the search space also influences the HV. Thereby, HV incorporates convergence and
diversity in one measure.

5.3 Results

In the following we discuss the results of our experiments in terms of the research
questions we seek to answer. Table 4 summarizes the outcome of the experiments with
regard to the median quality and standard deviation reached by each configuration
for each problem instance. The complete data set discussed in this section can be
downloaded from [JBB+].

Comparing Approaches (Q1) Both tools have been configured to have equal
runtime across similar configurations. Despite this limit, due to the differences in the
solution encodings and search operators, the number of algorithm steps performed by
each implementation differs ([JBB+]). Across most cases, MDEOptimiser is able to
run more than twice the number of steps than MOMoT. In a few cases, however, most
notably model E of the multi-objective CRA case, MOMoT outperforms MDEOptimiser
with regard to evolution speed.

Despite this difference in the number of steps, for small models MOMoT is on par
with or even better than MDEOptimiser in terms of solution quality (Table 4). In
the CRA case, MOMoT finds a slightly higher objective median for input models A
and B in the single-objective as well as in the multi-objective variants. The same
can be observed for model A of the multi-objective REF case. However, as the size
of the evaluated models increases, the quality of the solutions found by MOMoT
decreases compared to solutions generated by MDEOptimiser. Most notably this can
be seen for models C, D, and E of the CRA case and model B of the NRP case. In the
single-objective variants this effect is also accompanied by a higher standard deviation.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 13

MDEO MOMoT
MO MO, ND MC MC, ND

MED SD MED SD MED SD MED SD MED SD

CRA-A 2.33 0.45 3.00 0.47 2.67 0.67 3.00 0.49 3.00 0.72
CRA-B 1.82 0.53 2.16 0.50 1.83 0.46 2.72 0.61 1.50 0.64
CRA-C 2.22 0.54 -0.10 1.36 -1.52 1.74 -2.90 2.54 -5.71 3.49
CRA-D 5.44 0.88 -4.34 3.45 -5.82 3.12 -6.41 3.31 -15.45 5.29
CRA-E 11.30 0.95 -8.42 3.14 -10.04 3.97 -9.98 2.96 -20.13 4.83

CRA-EXT-A 0.89 0.04 0.97 0.05 0.90 0.07 0.97 0.06 0.97 0.06
CRA-EXT-B 0.89 0.02 0.91 0.02 0.89 0.03 0.90 0.03 0.88 0.03
CRA-EXT-C 0.97 0.02 0.94 0.04 0.93 0.03 0.86 0.06 0.87 0.06
CRA-EXT-D 0.93 0.03 0.81 0.05 0.87 0.04 0.71 0.06 0.76 0.05
CRA-EXT-E 0.90 0.04 0.82 0.05 0.91 0.03 0.71 0.08 0.81 0.04

NRP-A 0.79 0.00 0.76 0.02 0.77 0.02 0.75 0.03 0.75 0.02
NRP-B 0.71 0.01 0.48 0.04 0.49 0.04 0.42 0.05 0.38 0.06

REF-A 28.00 0.00 28.00 0.00 - - 28.00 0.00 - -
REF-B 51.60 0.00 51.60 0.00 - - 51.60 0.00 - -

REF-EXT-A 0.46 0.00 0.53 0.00 - - 0.53 0.00 - -
REF-EXT-B 0.50 0.00 0.50 0.00 - - 0.50 0.00 - -

Table 4 – Median results (MED) and standard deviations (SD) over 30 runs. The median
objective value is shown for the single-objective, the median Hypervolume for the dual-
objective variants. Generally, higher values are better. Only for single-objective REF,
lower values are better. ND variants are not available for the REF case.

Configurations PFS PFC BSR Configurations PFS PFC BSR
MOMoT MC CRA A 1 1 1 MOMoT MO CRA E 54 0 0
MOMoT MO CRA A 1 1 1 MOMoT MC ND CRA E 54 0 0
MOMoT MC ND CRA A 1 1 1 MOMoT MO ND CRA E 54 1 0.019
MOMoT MO ND CRA A 1 1 1 MDEO CRA E 54 53 0.981
MDEO CRA A 1 0 0 MOMoT MC NRP A 32 24 0.75
MOMoT MC CRA B 4 0 0 MOMoT MO NRP A 32 28 0.875
MOMoT MO CRA B 4 0 0 MOMoT MC ND NRP A 32 25 0.781
MOMoT MC ND CRA B 4 0 0 MOMoT MO ND NRP A 32 30 0.938
MOMoT MO ND CRA B 4 1 0.25 MDEO NRP A 32 31 0.969
MDEO CRA B 4 3 0.75 MOMoT MC NRP B 245 29 0.118
MOMoT MC CRA C 10 0 0 MOMoT MO NRP B 245 19 0.078
MOMoT MO CRA C 10 0 0 MOMoT MC ND NRP B 245 28 0.114
MOMoT MC ND CRA C 10 0 0 MOMoT MO ND NRP B 245 30 0.122
MOMoT MO ND CRA C 10 1 0.1 MDEO NRP B 245 245 1
MDEO CRA C 10 9 0.9 MOMoT MC Ref A 7 7 1
MOMoT MC CRA D 44 0 0 MOMoT MO Ref A 7 7 1
MOMoT MO CRA D 44 0 0 MDEO Ref A 7 5 0.714
MOMoT MC ND CRA D 44 0 0 MOMoT MC Ref B 24 24 1
MOMoT MO ND CRA D 44 1 0.023 MOMoT MO Ref B 24 24 1
MDEO CRA D 44 43 0.977 MDEO Ref B 24 22 0.917
MOMoT MC CRA E 54 0 0

Table 5 – Summary of the PFpseudo Size (PFS), number of PFpseudo Contributions (PFC)
and Ratios of Best Solutions found (BSR) for MDEO and MOMoT in all configura-
tions.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

14 · John et al.

0 200 400 600

0.2

0.4

0.6

Evolutions

H
y
p
e
r
v
o
lu

m
e MOMoT MC

MOMoT MO

MOMoT MC ND

MOMoT MO ND

MDEO

(a) Median HV growth

−20 −10 0

0

1,000

2,000

3,000

Maximise Customer Satisfaction

M
in

im
is
e

C
o
s
t

MOMoT MC

MOMoT MO

MOMoT MC ND

MOMoT MO ND

MDEO

(b) Pareto front approximations after
timeouts were reached for each evalu-
ated configuration

Figure 6 – Summary of the median HV increase over the number of evolution steps and
Pareto front approximations for all evaluated configurations for model B of the NRP.

The quality of the solutions is confirmed by the reference set contributions observed
for the multi-objective configurations included in Table 5. The table shows the total
size of the PFpseudo found for each problem instance, and the BSR rate, indicating
the percentage of the PFpseudo solutions found by each configuration.

Impact of Rule-based Crossover (Q2) While applying crossover affects the
runtime, it does not do so in a consistent way ([JBB+]). In the CRA case, fewer steps
could be performed when crossover was used. This effect is stronger for smaller models
where mutation-only allows up to 50% more steps to be executed. For the largest
models a difference of 15-20% can still be observed and the effect is a bit stronger for
multi-objective variants than for single-objective ones. In contrast, applying crossover
allows for up to 50% more steps in the NRP case. In the Refactoring case, there is no
clear trend.

As shown in Table 4, in terms of solution quality, crossover is not beneficial for
any but a single configuration (model B of the single-objective CRA case). Even in
the NRP case, when more steps are executed with crossover, the results are worse.

Impact of Destructive Rules (Q3) The rejection of destructive rules has con-
trasting effects. Although the optimization is faster in the single-objective CRA case,
solution quality decreases considerably. For the larger models of the multi-objective
CRA version, however, we find the opposite to be true. In the NRP case, the rule
execution speed decreases but the quality is barely affected (Table 4 and [JBB+]).

General Findings In general, the convergence rate differs between MDEOptimiser
and MOMoT. MDEOptimiser needs fewer evolution steps to develop good solutions in
all cases studied. Regarding the BSR, MDEOptimiser outperforms MOMoT clearly for
the multi-objective CRA cases and model B of the NRP (Table 5). Additionally, the
solutions of found Pareto front approximations spread wider across the search space,
a condition usually considered favorable in multi-objective optimization [ČLM13].
Figure 6 shows the convergence behavior and the spread of the Pareto front approxi-
mations on the example of model B of the NRP case. For the other cases we refer the
reader to the online archive [JBB+].

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 15

6 Discussion

As the rule-based approach allows more options (crossover, reconsidering past decisions,
specialized rule sets) in supporting a search, one might expect it to dominate the
model-based approach in at least one of the tested configurations. However, the
evaluation results paint a different picture. In the following, we will discuss possible
reasons for these observations along the associated research questions.

Preface As discussed in the qualitative comparison, in the rule-based approach rule
calls may become invalid when changes are applied to their containing sequence. We
find this to be a central aspect for the explanation of observations regarding runtime
and solution quality. Due to the repair strategy used in the experiments, as rule calls
become invalid in an evolution step the number of rule calls in a solution decreases.
This positively affects runtime as fewer rules need to be applied when evaluating the
fitness of that solution. We refer to this as Invalidation Runtime Effect (IRE) in the
following. On the other hand, important evolutionary information might get lost and
quality might degrade. We call this the Invalidation Quality Effect (IQE).

With an increasing size of sequences invalidations become more likely. As such,
both effects become stronger for larger models where longer solution sequences are
needed.

Comparing Approaches (Q1) The rule-based approach suffers from a slower
evolution compared to that of the model-based approach. This is mainly caused by
the overhead in applying all rule calls stored in a solution before the solution’s fitness
can be calculated. The overhead becomes more prominent for larger models where
longer solution sequences are needed. This behavior reflects in the solution quality.
MOMoT outperforms MDEOptimiser for most of the smaller models because it seems
to have enough time to properly converge. As models get larger, aggravated by a
stronger IQE, MOMoT is not able to converge equally well. A relatively high standard
deviation in these cases underpins this theory.

Impact of Rule-based Crossover (Q2) In most of the cases, crossover was
detrimental to the solution quality obtained by the rule-based approach. We attribute
this effect to the destructive nature of the traditional crossover. By possibly invalidating
many rule calls at once when mixing up sequences of rule calls, a high IQE kicks in. In
the multi-objective REF case and the NRP case, applying crossover allowed to perform
a higher number of evolution steps. Two possible reasons come to mind. Because
the rules of these cases are potentially changing a large number of model elements at
once, the invalidation of a single rule call might cause a snowball effect. Accordingly,
the IRE might be more visible here than in the other use cases. Additionally, the
IQE might degrade the quality of solutions so frequently that only a very small set of
Pareto optimal solutions needs to be maintained. A faster selection process might be
the result.

Impact of Destructive Rules (Q3) In the CRA and NRP cases, any optimal
solution would certainly not need destructive rules. However, without them, solutions
might have to be degraded first (e.g. by substituting a feature assignment with a class
creation in the CRA case) before a better solution can be reached. Here, destructive
rules might help in overcoming local optima. Unfortunately, this does not explain

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

16 · John et al.

why the absence of such rules is beneficial for some of the use cases. More research is
needed to discover the causalities of the observed behavior.

General Findings Generally, the rule-based approach converges slower than the
model-based approach, i.e., more evolution steps are needed to reach a comparable
solution quality. We attribute this to the IQE which may introduce steps of quality
regression into the optimization process. As discussed for Q2, crossover adds to that
problem in most cases.

7 Threats To Validity

Regarding research question Q1, the validity of our results depends highly on whether
the observed differences in performance can be attributed to the differences in encoding.
To mitigate the risk of side effects caused by the implementation of both encoding
approaches we have chosen frameworks which are built on a similar basis. Both are
implemented in Java, rely on EMF and Henshin for the modelling part, and use the
same NSGA-II implementation for running the optimization. For common parameters,
we used the same values and the same transformation rules were used to explore
the search space. Where necessary, we also aligned the implementation of the tools:
both starting from the same initial population in our study and performing mutations
of equal size. However, although we checked key parts of both implementations,
differences influencing the runtime cannot be ruled out completely.

The generalizability of our findings is limited as both approaches may expose differ-
ent optimization behavior when other configurations, search operators and problems
are selected. We are confident, though, that the characteristics of our use cases cover
a wide range of problems of practical importance.

8 Related Work

Our work is related to various approaches to encode search problems, including
conventional ones such as binary and integer representations. We discuss relevant
work below.

8.1 Conventional encodings

Several types of encodings have been proposed for finding optimal genotype represen-
tations in evolutionary computation [ES15]. Binary representation uses a bit-string in
which values of bits are interchanged and switched by the search operators to change
the control variables. Integer representation and real-valued representation are similar
to the previous category, however, represent the control variables as integers and
real values, respectively. Tree representation uses a tree to represent the genotype.
This encoding is common to represent syntax trees of programs, when using genetic
algorithms to improve programs. Graph representations use a graph to represent both
the genotype and the phenotype.

In many cases, there is an additional genotype-phenotype translation step required
to convert an encoding to the solution candidate, such that it can be evaluated by the
fitness functions. Usually, an additional repair step is needed after the application of
search operators, in order to repair syntactically correct solutions which are semantically
invalid.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 17

8.2 Encodings in Model-Driven Optimization

Model-based encodings have been introduced by Burton et. al [BPR+12], who used
models and transformations to encode and evolve solution candidates for the NRP
problem. The Crepé Complete framework is a more general approach that employs
models to represent solutions for any given search problem [EWZ14]. However, this
approach converts the models to an integer representation. FitnessStudio [Str17] uses
the model-based encoding to generate efficient mutation operators. It evolves the
mutation operators on a given training model using higher-order transformations.

8.3 Ruled-based encoding

The rule-based encoding has been introduced by Kessentini et. al [KLW13], who
propose formulating search problems as a search of optimal transformation chains
resulting from rule call sequences. Abdeen et al. [AVS+14] follow this idea in their
VIATRA-DSE framework, calling their approach rule-based design space exploration.
Whereas VIATRA-DSE employs the VIATRAmodel transformation language to specify
transformations, our comparison focuses on the MOMoT [BFT+17] and MDEOptimiser
[BZS18] tools, since they both use Henshin as the underlying transformation language.

8.4 Comparisons between encodings

Previous efforts to compare different encodings have focused on conventional encodings.
Janikov et al. [JM91] experimentally compare a binary and a floating point encoding
of a dynamic control problem. They find that some benefits of the binary encoding can
be countered with refined problem-specific operators for the floating point encoding.
Wu and Lindsay [WL96] compare two different flavors of linear representation, one
with fixed and one with floating locations for the building blocks for individuals. They
find that the floating representation enables the algorithm to better maintain diversity
of individuals, and suggest to use both encodings in combination. Kantschik and
Banzhaf [KB01] compare a text-based, a linear, and a hybrid representation and show
that the hybrid outperforms the former two in most cases. To our knowledge, no work
has compared different encodings for SBMDE problems, yet.

9 Conclusion

In this paper, we performed a qualitative and quantitative comparison of the two
main encoding approaches in model-driven optimization, the model-based and the
rule-based one. The quantitative comparison showed that the model-based approach
tends to be more effective, except for the smallest considered models. While the ability
of the rule-based approach to reconsider past decisions may be beneficial on the long
run, it is quite likely the cause of a slower convergence compared to the model-based
approach.

Interestingly, the main distinguishing features of the rule-based encoding, do not
help very much. While the rejection of destructive rules caused a slight improvement
in some problem cases, it is not a game changing factor in general. For traditional
crossover, the result is even worse as it had a detrimental effect on solution quality most
of the time. Typically, crossover can help if there are good parts in solutions which
can be recombined. This can be problematic in the case of model transformations,
as the dependency of rule calls need to be considered when multiple rule calls are

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.5381/jot.2019.18.3.a6

18 · John et al.

exchanged during recombination. A crossover operator more tailored to the needs of
MDO is needed here.

Finally, our analysis raised a couple of questions left for future work. How do
the specific characteristics of a use case influence the performance of each encoding
approach? How can the traditional crossover be improved to be more effective in
the rule-based approach? And can crossover be done effectively in the model-based
approach?

References

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. Henshin: Advanced concepts and tools for in-
place EMF model transformations. In Int. Conference on Model Driven
Engineering Languages and Systems, pages 121–135, 2010. doi:10.1007/
978-3-642-16145-2_9.

[AVS+14] Hani Abdeen, Dániel Varró, Houari Sahraoui, András Szabolcs Nagy,
Csaba Debreceni, Ábel Hegedüs, and Ákos Horváth. Multi-objective
optimization in rule-based design space exploration. In Int. Conference
on Automated Software Engineering, pages 289–300, 2014. doi:10.1145/
2642937.2643005.

[BBL10] M. Bowman, L. C. Briand, and Y. Labiche. Solving the Class Respon-
sibility Assignment problem in object-oriented analysis with multi-
objective genetic algorithms. IEEE Transactions on Software Engi-
neering, 36(6):817–837, 2010. doi:10.1109/TSE.2010.70.

[BDW98] Lionel C. Briand, John W. Daly, and Jürgen Wüst. A unified framework
for cohesion measurement in object-oriented systems. Empirical Software
Engineering, 3(1):65–117, 1998. doi:10.1023/A:1009783721306.

[BFT+17] Robert Bill, Martin Fleck, Javier Troya, Tanja Mayerhofer, and Manuel
Wimmer. A local and global tour on MOMoT. Software & Systems
Modeling, pages 1–30, 2017. doi:10.1007/s10270-017-0644-3.

[BP13] Frank R Burton and Simon Poulding. Complementing metaheuristic
search with higher abstraction techniques. In Int. Workshop on Com-
bining Modelling and Search-Based Software Engineering, pages 45–48,
2013.

[BPR+12] Frank R Burton, Richard F Paige, Louis M Rose, Dimitrios S Kolovos,
Simon Poulding, and Simon Smith. Solving acquisition problems us-
ing model-driven engineering. In European Conference on Modelling
Foundations and Applications, pages 428–443, 2012. doi:10.1007/
978-3-642-31491-9_32.

[BSAN17] Ilhem Boussaïd, Patrick Siarry, and Mohamed Ahmed-Nacer. A sur-
vey on search-based model-driven engineering. Automated Software
Engineering, 24(2):233–294, 2017. doi:10.1007/s10515-017-0215-4.

[BZ16] Alexandru Burdusel and Steffen Zschaler. Model optimisation for feature
class allocation using MDEOptimiser: A TTC 2016 submission. In
Transformation Tool Contest, pages 33–38, 2016.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1145/2642937.2643005
http://dx.doi.org/10.1145/2642937.2643005
http://dx.doi.org/10.1109/TSE.2010.70
http://dx.doi.org/10.1023/A:1009783721306
http://dx.doi.org/10.1007/s10270-017-0644-3
http://dx.doi.org/10.1007/978-3-642-31491-9_32
http://dx.doi.org/10.1007/978-3-642-31491-9_32
http://dx.doi.org/10.1007/s10515-017-0215-4
http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 19

[BZ18] Alexandru Burdusel and Steffen Zschaler. Towards automatic gen-
eration of evolution rules for model-driven optimisation. In Int.
Workshop on Graph Computation Models, pages 60–75, 2018. doi:
10.1007/978-3-319-74730-9_6.

[BZS18] Alexandru Burdusel, Steffen Zschaler, and Daniel Strüber. MDEOpti-
miser: A search based model engineering tool. In Int. Conference on
Model Driven Engineering Languages and Systems, pages 12–16, 2018.
doi:10.1145/3270112.3270130.

[CCRS04] Carlos A. Coello Coello and Margarita Reyes Sierra. A study of the
parallelization of a coevolutionary multi-objective evolutionary algo-
rithm. In Advances in Artificial Intelligence, pages 688–697, 2004.
doi:10.1007/978-3-540-24694-7_71.

[ČLM13] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. Exploration and
exploitation in evolutionary algorithms: A survey. ACM Comput. Surv.,
45(3):35:1–35:33, 2013. doi:10.1145/2480741.2480752.

[DPAM02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002. doi:10.1109/4235.
996017.

[DZA+11] Juan J Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and
Antonio J Nebro. A study of the bi-objective next release problem.
Empirical Software Engineering, 16(1):29–60, 2011. doi:10.1007/
s10664-010-9147-3.

[ES15] AE Eiben and JE Smith. Introduction to evolutionary computing.
Springer, 2015.

[EWZ14] Dionysios Efstathiou, James R. Williams, and Steffen Zschaler. Crepe
complete: Multi-objective optimisation for your models. In Int. Workshop
on Combining Modelling with Search- and Example-Based Approaches,
2014.

[FSK17] S. Faridmoayer, M. Sharbaf, and S. Kolahdouz-Rahimi. Optimization of
model transformation output using genetic algorithm. In Int. Conference
on Knowledge-Based Engineering and Innovation, pages 0203–0209,
2017. doi:10.1109/KBEI.2017.8324973.

[FTCW16] Martin Fleck, Javier Troya Castilla, and Manuel Wimmer. The class
responsibility assignment case. Transformation Tool Contest, pages 1–8,
2016.

[FTK+17] M. Fleck, J. Troya, M. Kessentini, M. Wimmer, and B. Alkhazi. Model
transformation modularization as a many-objective optimization prob-
lem. IEEE Transactions on Software Engineering, 43(11):1009–1032,
2017. doi:10.1109/TSE.2017.2654255.

[GJ79] Michael R Garey and David S Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[Gol89] David E. Goldberg. Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley, 1989.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.1007/978-3-319-74730-9_6
http://dx.doi.org/10.1007/978-3-319-74730-9_6
http://dx.doi.org/10.1145/3270112.3270130
http://dx.doi.org/10.1007/978-3-540-24694-7_71
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/s10664-010-9147-3
http://dx.doi.org/10.1007/s10664-010-9147-3
http://dx.doi.org/10.1109/KBEI.2017.8324973
http://dx.doi.org/10.1109/TSE.2017.2654255
http://dx.doi.org/10.5381/jot.2019.18.3.a6

20 · John et al.

[HJ98] Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the
quality of approximations to the non-dominated set. Technical report,
1998.

[HJ01] Mark Harman and Bryan F Jones. Search-based software engineering.
Information and Software Technology, 43(14):833–839, 2001.

[HMZ12] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based
software engineering: Trends, techniques and applications. ACM Comput.
Surv., 45(1):11:1–11:61, 2012. doi:10.1145/2379776.2379787.

[JBB+] Stefan John, Alexandru Burdusel, Robert Bill, Daniel Strüber, Gabriele
Taentzer, Steffen Zschaler, and Manuel Wimmer. Searching for optimal
models: Comparing two encoding approaches - accompanying data. http:
//dx.doi.org/10.6084/m9.figshare.8236505. doi:10.6084/m9.figshare.
8236505.

[JM91] Cezary Z Janikow and Zbigniew Michalewicz. An experimental compari-
son of binary and floating point representations in genetic algorithms. In
Int. Conference on Genetic Algorithms, pages 31–36, 1991.

[JOZF14] S. Jiang, Y. Ong, J. Zhang, and L. Feng. Consistencies and con-
tradictions of performance metrics in multiobjective optimization.
IEEE Transactions on Cybernetics, 44(12):2391–2404, 2014. doi:
10.1109/TCYB.2014.2307319.

[KB01] Wolfgang Kantschik and Wolfgang Banzhaf. Linear-tree GP and its com-
parison with other GP structures. In European Conference on Genetic
Programming, pages 302–312, 2001. doi:10.1007/3-540-45355-5_24.

[KLW13] Marouane Kessentini, Philip Langer, and Manuel Wimmer. Searching
models, modeling search: On the synergies of SBSE and MDE. In Int.
Workshop on Combining Modelling and Search-Based Software Engineer-
ing, pages 51–54, 2013. doi:10.1109/CMSBSE.2013.6604438.

[MOE] MOEA framework. moeaframework.org/ (Accessed June 10, 2019).
[RKL+18] Sebastian Ruland, Géza Kulcsár, Erhan Leblebici, Sven Peldszus, and

Malte Lochau. Controlling the attack surface of object-oriented refac-
torings. In Int. Conference on Fundamental Approaches to Software
Engineering, pages 38–55, 2018. doi:10.1007/978-3-319-89363-1_3.

[RLB15] N. Riquelme, C. Von Lücken, and B. Baran. Performance metrics in
multi-objective optimization. In Latin American Computing Conference,
pages 1–11, 2015. doi:10.1109/CLEI.2015.7360024.

[SBG+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner,
Timo Kehrer, Manuel Ohrndorf, and Matthias Tichy. Henshin: A
usability-focused framework for EMF model transformation develop-
ment. In Int. Conference on Graph Transformation, pages 196–208, 2017.
doi:10.1007/978-3-319-61470-0_12.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Addison-Wesley, 2008.

[SNV18] Oszkár Semeráth, András Szabolcs Nagy, and Dániel Varró. A graph
solver for the automated generation of consistent domain-specific mod-
els. In Int. Conference on Software Engineering, pages 969–980, 2018.
doi:10.1145/3180155.3180186.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.1145/2379776.2379787
http://dx.doi.org/10.6084/m9.figshare.8236505
http://dx.doi.org/10.6084/m9.figshare.8236505
http://dx.doi.org/10.6084/m9.figshare.8236505
http://dx.doi.org/10.6084/m9.figshare.8236505
http://dx.doi.org/10.1109/TCYB.2014.2307319
http://dx.doi.org/10.1109/TCYB.2014.2307319
http://dx.doi.org/10.1007/3-540-45355-5_24
http://dx.doi.org/10.1109/CMSBSE.2013.6604438
http://dx.doi.org/10.1007/978-3-319-89363-1_3
http://dx.doi.org/10.1109/CLEI.2015.7360024
http://dx.doi.org/10.1007/978-3-319-61470-0_12
http://dx.doi.org/10.1145/3180155.3180186
http://dx.doi.org/10.5381/jot.2019.18.3.a6

Searching for Optimal Models: Comparing Two Encoding Approaches · 21

[Str17] Daniel Strüber. Generating efficient mutation operators for search-
based model-driven engineering. In Int. Conference on Theory and
Practice of Model Transformations, pages 121–137, 2017. doi:10.1007/
978-3-319-61473-1_9.

[WL96] Annie S Wu and Robert K Lindsay. A comparison of the fixed and float-
ing building block representation in the genetic algorithm. Evolutionary
Computation, 4(2):169–193, 1996. doi:10.1162/evco.1996.4.2.169.

[ZBT07] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The hypervolume
indicator revisited: On the design of Pareto-compliant indicators via
weighted integration. In Evolutionary multi-criterion optimization, pages
862–876, 2007. doi:10.1007/978-3-540-70928-2_64.

[ZM16] Steffen Zschaler and Lawrence Mandow. Towards model-based optimi-
sation: Using domain knowledge explicitly. In Workshop on Model-
Driven Engineering, Logic and Optimization, pages 317–329, 2016.
doi:10.1007/978-3-319-50230-4_24.

About the authors

Stefan John is a PhD student at the Phillips-Universität Marburg. His current
research interests are in model-driven engineering and optimization heuristics. Contact
him at stefan.john@uni-marburg.de.

Alexandru Burdusel is a PhD student at King’s College London. His research
interests are in optimisation methods and model-driven engineering. Contact him at
alexandru.burdusel@kcl.ac.uk

Robert Bill is a PhD student at TU Wien currently working as researcher for the
Austrian Center of Digital Production. His research interest is in the broad field
of model-driven engineering with a special focus on language engineering, model
integration, and (model) optimization. Contact him at bill@big.tuwien.ac.at

Daniel Strüber is a post-doc at the software engineering division at Chalmers
University at Technology and University of Gothenburg. His research interests are
in model-driven engineering, search-based software engineering and software security.
Contact him at danstru@chalmers.se, or visit http://www.danielstrueber.de/.

Gabriele Taentzer is professor in software engineering at the Philipps-Universität
Marburg. Her research interests include formal foundations and applications of model-
driven software engineering, graph transformation, and software quality assurance.
Contact her at taentzer@informatik.uni-marburg.de, or visit http://www.uni-marburg.
de/fb12/swt.

Steffen Zschaler is a senior lecturer in software engineering at King’s College London.
His research interests are in model-driven engineering, where he works on formal
foundations, tooling (especially for search-based approaches to MDE and for reuse and
composition of MDE artefacts), and applications. Contact him at szschaler@acm.org
or http://www.steffen-zschaler.de.

Journal of Object Technology, vol. 18, no. 3, 2019

http://dx.doi.org/10.1007/978-3-319-61473-1_9
http://dx.doi.org/10.1007/978-3-319-61473-1_9
http://dx.doi.org/10.1162/evco.1996.4.2.169
http://dx.doi.org/10.1007/978-3-540-70928-2_64
http://dx.doi.org/10.1007/978-3-319-50230-4_24
mailto:stefan.john@uni-marburg.de
mailto:alexandru.burdusel@kcl.ac.uk
mailto:bill@big.tuwien.ac.at
mailto:danstru@chalmers.se
http://www.danielstrueber.de/
mailto:taentzer@informatik.uni-marburg.de
http://www.uni-marburg.de/fb12/swt
http://www.uni-marburg.de/fb12/swt
mailto:szschaler@acm.org
http://www.steffen-zschaler.de
http://dx.doi.org/10.5381/jot.2019.18.3.a6

22 · John et al.

Manuel Wimmer is a full professor leading the Institute of Business Informatics -
Software Engineering at the Johannes Kepler University Linz. His current research
interests are focused on the foundations and applications of model-driven engineering
technologies. Contact him at manuel.wimmer@jku.at, or visit https://www.se.jku.at/
manuel-wimmer.

Acknowledgments This work has been partially supported and funded by the
Austrian Research Promotion Agency (FFG) via the Austrian Competence Center for
Digital Production (CDP) under the contract number 854187, by the Austrian Federal
Ministry for Digital and Economic Affairs, the National Foundation for Research,
Technology and Development, by the FWF under the grant numbers P28519-N31
and P30525-N31, and by the Engineering and Physical Sciences Research Council
(EPSRC) under grant number 1805606.

Journal of Object Technology, vol. 18, no. 3, 2019

mailto:manuel.wimmer@jku.at
https://www.se.jku.at/manuel-wimmer
https://www.se.jku.at/manuel-wimmer
http://dx.doi.org/10.5381/jot.2019.18.3.a6

	Introduction
	Optimization Problems
	Problem Descriptions
	Coverage of Selected Use Cases

	Model-driven Optimization
	Preliminaries
	Model-driven optimization
	Search space
	Encoding Approaches
	Search Operators
	Fitness Functions

	Implementing Tools

	Qualitative Comparison
	Quantitative Comparison
	Experimental Setup
	Termination Condition
	Operators
	Solution Length

	Quality Criteria
	Ratio Of Best Solutions Found
	Hypervolume

	Results

	Discussion
	Threats To Validity
	Related Work
	Conventional encodings
	Encodings in Model-Driven Optimization
	Ruled-based encoding
	Comparisons between encodings

	Conclusion
	Bibliography
	About the authors

