
Science of Computer Programming 214 (2022) 102729
Science of Computer Programming

Author preprint

Sustaining and improving graduated graph consistency:
A static analysis of graph transformations

Jens Kosiol a,∗, Daniel Strüber b, Gabriele Taentzer a, Steffen Zschaler c

a Philipps-Universität Marburg, Marburg, Germany
b Radboud University, Nijmegen, the Netherlands
c King’s College London, London, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2021
Received in revised form 6 September 2021
Accepted 20 September 2021
Available online 1 October 2021

Keywords:
Graph consistency
Graph transformation systems
Graph repair
Evolutionary search

Where graphs are used for modelling and specifying systems, consistency is an important
concern. To be a valid model of a system, the graph structure must satisfy a number
of constraints. To date, consistency has primarily been viewed as a binary property:
a graph either is or is not consistent with respect to a set of graph constraints. This
has enabled the definition of notions such as constraint-preserving and constraint-
guaranteeing graph transformations. Many practical applications—for example model repair
or evolutionary search—implicitly assume a more graduated notion of consistency, but
without an explicit formalisation only limited analysis of these applications is possible.
In this paper, we introduce an explicit notion of consistency as a graduated property,
depending on the number of constraint violations in a graph. We present two new
characterisations of transformations (and transformation rules) enabling reasoning about
the gradual introduction of consistency: while consistency-sustaining transformations do
not decrease the consistency level, consistency-improving transformations strictly reduce
the number of constraint violations. We show how these new definitions refine the existing
concepts of constraint-preserving and constraint-guaranteeing transformations. To support
a static analysis based on our characterisations, we present criteria for deciding which form
of consistency-ensuring transformations is induced by the application of a transformation
rule. We validate our contributions in the context of an application in search-based model
engineering.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Graphs and graph transformations [1,2] are a good means for system modelling and specification. Graph structures nat-
urally relate to the structures typically found in many (computer) systems and graph transformations provide intuitive tools
to specify dynamic changes of those structures. Graph transformations may be applied in model-based software and system
development as well as model-driven engineering. The model transformation language and tool environment Henshin [3,4]
uses graph transformation concepts for the transformation of models formulated with the Eclipse Modeling Framework
(EMF).

* Corresponding author.
E-mail addresses: kosiolje@informatik.uni-marburg.de (J. Kosiol), d.strueber@cs.ru.nl (D. Strüber), taentzer@informatik.uni-marburg.de (G. Taentzer),

szschaler@acm.org (S. Zschaler).
https://doi.org/10.1016/j.scico.2021.102729
0167-6423/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2021.102729
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2021.102729&domain=pdf
mailto:kosiolje@informatik.uni-marburg.de
mailto:d.strueber@cs.ru.nl
mailto:taentzer@informatik.uni-marburg.de
mailto:szschaler@acm.org
https://doi.org/10.1016/j.scico.2021.102729

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
In all of these application scenarios, it is important that the graphs used are consistent; that is, that their structures
satisfy a set of constraints. Some constraints can be captured by typing graphs over so-called type graphs [1]—these allow
capturing basic structural constraints such as which kinds of nodes may be connected to each other. To allow the expression
of further constraints, the theory of nested graph constraints has been introduced [5]. A graph is considered consistent if
it is correctly typed and satisfies all given constraints. Note that this notion of consistency is binary: a graph either is
consistent or it is not consistent. It is impossible to distinguish different degrees of consistency.

In software engineering practice, it is often necessary to live with, and manage, a degree of inconsistency [6]. This
requires tools and techniques for identifying, measuring, and correcting inconsistencies. In the field of graph-based speci-
fications, this has led to many practical applications, where a more fine-grained notion of graph consistency is implicitly
applied. For example, research in model repair has aimed to automatically produce graph-transformation rules that will
gradually improve the consistency of a given graph. Such a rule may not make a graph completely consistent in one trans-
formation step, but performing a sequence of such transformations will eventually produce a consistent graph (e.g., [7–10]).
In the area of search-based model engineering (e.g., [11,12]), rules are required to be applicable to inconsistent graphs and,
at least, not to produce new inconsistencies. In earlier work, we have shown how such rules can be generated at least with
regard to multiplicity constraints [11]. However, in all of these works, the notion of “partial” graph consistency remains
implicit. Without explicitly formalising this notion, it becomes difficult to reason about the validity of the rules generated
or the correctness of the algorithm by which these rules were produced.

In this paper, we introduce a new notion of graph consistency as a graduated property. A graph can be consistent to
a degree, depending on the number of constraint violations that occur in the graph. This conceptualisation allows us to
introduce two new characterisations of graph transformations: a consistency-sustaining transformation does not decrease
the overall consistency level, while a consistency-improving transformation strictly decreases the number of violations in
a graph. We lift these characterisations to the level of graph-transformation rules, allowing rules to be characterised as
consistency-sustaining and consistency-improving, respectively. We show how these definitions fit with the already estab-
lished terminology of constraint-preserving and constraint-guaranteeing transformations/rules. Finally, we introduce formal
criteria that allow checking whether a given graph-transformation rule is consistency-sustaining or consistency-improving
w.r.t. constraints in specific forms.

Thus, the contributions of our paper are:

1. We present the first formalisation of graph consistency as a graduated property of graphs.
2. We present two novel characterisations of graph transformations and graph-transformation rules with regard to this new

definition of graph consistency and show how these refine the existing terminology.
3. We present static analysis techniques for checking whether a graph-transformation rule is consistency-sustaining or

consistency-improving.

This paper is an extended version of a previous conference paper [13]. In this paper, we extend the work in [13] by

• generalising our static analysis techniques to constraints of arbitrary nesting level,
• proposing a first technique to make transformation rules consistency-sustaining by computing suitable negative application

conditions, and
• providing a practical validation (in addition to our running example), in which we study the degree of over- and under-

approximation of our static analysis.

The remainder of this paper is structured as follows: We introduce a running example in Sect. 2 before outlining some
fundamental terminology in Sect. 3. Section 4 introduces our new concepts and Sect. 5 discusses how graph-transformation
rules can be statically analysed for these properties. In Sect. 6, we validate this analysis technique. A discussion of related
work in Sect. 7 concludes the paper. The proofs of all results in this paper can be found in Appendix A.

2. Example

Consider class responsibility assignment (CRA, [14]), a standard problem in object-oriented software analysis. Given a set
of features (methods, fields) with dependencies between them, the goal is to create a set of classes and assign the features
to classes so that a certain fitness function is maximised. The fitness function rewards the assignment of dependent features
to the same class (cohesion), while punishing dependencies that run between classes (coupling) and solutions with too few
classes. Solutions can be expressed as instances of the type graph shown in the left of Fig. 1. For realistic problem instances,
an exhaustive enumeration of all solutions to find the optimal one is not feasible.

Recently, a number of works have addressed the CRA problem via a combination of graph transformation and meta-
heuristic search techniques, specifically evolutionary algorithms [15,16,11]. An evolutionary algorithm uses genetic operators
such as crossover and mutation to find optimal solution candidates in an efficient way. In this paper, we focus on mutation
operators, which have been specified using graph-transformation rules in these works.

Fig. 1 depicts four mutation rules for the CRA problem, taken from the available MDEOptimiser solution [17]. The rules
are specified as graph-transformation rules [1] in the Henshin notation [3,4]: Rule elements are tagged as delete, create,
2

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Fig. 1. Type graph and four mutation rules for the CRA problem.

preserve or forbid, which denotes them as being included in the LHS, the RHS, in both rule sides, or a NAC. Rule assignFeature
assigns a randomly selected as-yet-unassigned Feature to a Class. Rule createClass creates a Class and assigns an as-yet-
unassigned Feature to it. Rule moveFeature moves a Feature between two Classes. Rule deleteEmptyClass deletes a Class to
which no Feature is assigned.

Solutions in an optimisation problem such as the given one usually need to be consistent with regard to the constraints
given by the problem domain. We consider three constraints for the CRA case:

(c1) Every Feature is contained in at most one Class.
(c2) Every Class contains at least one Feature.
(c3) If a Feature f1 has a dependency to another Feature f2,

and f2 is contained in a different class than f1,
then f1 must have a dependency to a Feature f3 in the same class.

Constraints c1 and c2 come from Fleck et al.’s formulation of the CRA problem [15]. Constraint c3 can be considered
a helper constraint (compare helper objectives [18]) that aims to enhance the efficiency of the search by formulating a con-
straint with a positive impact to the fitness function: Assigning dependent Features to the same Class is likely to improve
coherence.

Given an arbitrary solution model (valid or invalid), mutations may introduce new violations. For example, applying
moveFeature can leave behind an empty Class, thus violating c2. While constraint violations can potentially be removed
using repair techniques [9,7,10], these can be computationally expensive and may involve strategies that lead to certain
regions of the search space being preferred, threatening the efficiency of the search. Instead, it would be desirable to design
mutation operators that impact consistency in a positive or at least neutral way. Each application of a mutation rule should
contribute to some particular violations being removed, or at least ensure that the degree of consistency does not decrease.
Currently, there exists no formal framework for identifying such rules. The established notions of constraint-preserving and
constraint-guaranteeing rules [5] assume an already valid model or a transformation that removes all violations at once;
both are infeasible in our scenario.

3. Preliminaries

Our new contributions are based on typed graph transformation systems following the double-pushout approach [1]. In
the following, we recall the notions of typed graph, graph constraint, and graph transformation, in particular c-guaranteeing
and c-preserving transformations. To be able to present criteria for consistency-sustainment and -improvement, we also
recall the notions of conflicts and dependencies between rules.

3.1. Graphs and graph morphisms

We assume that all graphs, also the ones occurring in rules and constraints, are typed over a common type graph TG;
that is, there is a class GraphT G of graphs typed over TG.

Definition 1 (Graph). A graph G = (G V , G E , srcG , tgtG) consists of a set G V of vertices (or nodes), a set G E of edges, and
two maps srcG , tgtG : G E → G V assigning the source and target to each edge, respectively. e : x → y denotes an edge e with
srcG(e) = x and tgtG(e) = y.
3

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Definition 2 (Graph morphism). A graph morphism f : G → H consists of a pair of maps f V : G V → H V , f E : G E → H E pre-
serving the graph structure: For each edge e : x → y in G we have an edge f E (e) : f V (x) → f V (y) in H , i.e., we have
f V ◦ srcG = srcH ◦ f E and f V ◦ tgtG = tgtH ◦ f E . Morphism f is injective (surjective) if f V and f E are injective (surjective).
If f is injective, we denote it with f : G ↪→ H . A pair of morphisms f1 : G1 → H, f2 : G2 → H is jointly surjective, if every
element of H (node or edge) has a preimage under (at least) one of the morphisms.

A typed graph is a graph that is mapped to a given type graph. A mapping between two typed graphs over one and the
same type graph has to be type-conformant.

Definition 3 (Type graph, typed graph and typed morphism). A type graph is a distinguished graph T G = (T G V ,T G E ,srcT G ,tgtT G).
A typed graph G = (G ′, tG : G ′ → T G) which is typed by T G is a graph G ′ together with a graph morphism tG from G ′ to
T G . A typed graph G is also called instance graph of graph T G and the morphism tG is called typing morphism.

Given a type graph T G , a typed graph morphism f : G → H between typed graphs G = (G ′, tG) and H = (H ′, tH) is a
graph morphism f ′ : G ′ → H ′ such that tG = tH ◦ f ′ .

In the following, unless stated otherwise, we assume that a fixed type graph T G is given and all graphs and graph
morphisms are typed over T G . If we do not emphasise the typing of typed graphs and graph morphisms, we just call them
graphs and graph morphisms.

3.2. Graph conditions and constraints

Nested graph constraints can be introduced as trees of injective graph morphisms; they offer a logic that is expressively
equivalent to the classic first-order logic on graphs [5]. The more general notion of nested graph conditions allows for a re-
cursive definition (and inductive proofs); conditions express properties of graph morphisms (instead of graphs). In our work,
we address a relevant part of this logic, namely graph conditions in so-called alternating quantifier normal form (ANF) [10].
As the name implies, these are conditions where existential and universal quantifiers alternate. Every linear condition, i.e.,
every condition without a conjunction or disjunction, can be transformed into an equivalent condition in ANF [10, Fact 2].
As linear conditions are the only kind of conditions we address, we directly define conditions in ANF.

Definition 4 (Graph conditions and constraints (in ANF)). Given a graph C0, existential and universal graph conditions in alternating
quantifier normal form (ANF) over C0 are defined recursively as follows:

1. true is a universal graph condition over C0 and false is an existential one.
2. Let a1 : C0 ↪→ C1 be an injective morphism, which is not an isomorphism.

(a) If d is a universal graph condition over C1, ∃ (a1 : C0 ↪→ C1, d) is an existential graph condition over C0.
(b) If d is an existential graph condition over C1, ∀ (a1 : C0 ↪→ C1, d) is a universal graph condition over C0.

3. The set of all graph conditions in ANF over C0 is the union of existential and universal ones over C0.

For a subcondition Q (ai : Ci−1 ↪→ Ci, d), where i ≥ 1, in such a condition, we say that the graph Ci is bound by a universal
resp. existential quantifier dependent on the kind of quantifier Q is. An existential or universal graph constraint is an existential
or universal graph condition over the empty graph ∅.

The nesting level nl of a graph condition in ANF c is recursively defined by setting

nl(true) = nl(false) := 0,

nl (Q (a1 : C0 ↪→ C1,d)) := nl(d) + 1,

where Q ∈ {∃, ∀}.
Given a graph condition c in ANF over C0, an injective morphism p0 : C0 ↪→ G satisfies c, written p0 |= c, if the following

applies:

1. Every injective morphism satisfies true and none satisfies false.
2. Morphism p0 satisfies an existential graph condition in ANF c = ∃ (a1 : C0 ↪→ C1, d) if there exists an injective morphism

p1 : C1 ↪→ G such that p0 = p1 ◦a1 and p1 satisfies d. It satisfies a universal graph condition in ANF c = ∀ (a1 : C0 ↪→ C1, d)

if for every injective morphism p1 : C1 ↪→ G such that p0 = p1 ◦ a1, it holds that p1 satisfies d.

Given two conditions c1 and c2 in ANF over graph C0, condition c1 implies condition c2, denoted as c1 ⇒ c2, if p0 |= c1 =⇒
p0 |= c2 for all injective graph morphisms p0 : C0 ↪→ G . Two conditions c1 and c2 are equivalent, denoted as c1 ≡ c2, if
c1 ⇒ c2 and c2 ⇒ c1. A graph G satisfies a graph constraint in ANF c, denoted as G |= c, if the empty morphism ∅ ↪→ G |= c.
Implication and equivalence of constraints are likewise reduced to the case of conditions.
4

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
p : L le

m|=acL

K ri R

n|=acR(P O 1) (P O 2)

G
g

trt

D h H

Fig. 2. Transformation step G ⇒r,m H .

As graph conditions in ANF are the only ones discussed in this paper, we simply refer to them as (graph) conditions.
Thus, unless stated otherwise, in the remainder of this paper, a (graph) condition is in alternating quantifier normal form.
In the notation of graph conditions, we drop the domains of the involved morphisms and occurrences of true whenever
they can unambiguously be inferred. For example, we write ∀ (C1, ∃ C2) instead of ∀ (a1 : ∅ ↪→ C1, ∃ (a2 : C1 ↪→ C2, true)).
When denoting a quantifier in an abstractly given condition, we will use Q and Q̄ to denote a quantifier and its dual. Thus,
every condition c (with nl(c) ≥ 2) is of the form Q (a1 : C0 ↪→ C1, Q̄ (a2 : C1 ↪→ C2, . . .) . . .), where Q ∈ {∃, ∀}, ∃̄ = ∀ and
∀̄ = ∃.

Note that, by definition, the above introduced semantics for graph conditions in ANF coincides with the one these
conditions have when they are defined as general nested graph conditions. In particular, we implicitly allow for negation as
classically: ∀ (C1, d) is an abbreviation for the graph condition ¬∃ (C1, ¬d); for example, ∀ (C1, false) ≡ ¬∃ C1.

The following new lemma states that the sets of existential and universal conditions over a graph C0 are semantically
disjoint. This means that, in the following, we can meaningfully differentiate between these two subsets.

Lemma 1 (Non-equivalence of existential and universal conditions). Let c be an existential condition over a graph C0 and c′ be a
universal one. Then c ≡ c′ .

The identity morphism idC0 is a suitable morphism to show this lemma as it satisfies c′ but not c.

Remark 1. The alternating recursive definition of conditions in ANF allows us to use a special kind of induction to prove
statements about them: The base case is to prove some property S∀ for true and some property S∃ for false. For the
induction step, we assume that S∃ holds for some existential condition d over a graph C1 and show that the property
S∀ holds for every universal condition of the form ∀ (a1 : C0 ↪→ C1, d). Analogously, we assume that S∀ holds for some
universal condition d over a graph C1 and show that the property S∃ holds for every existential condition of the form
∃ (a1 : C0 ↪→ C1, d). In this way, we have proved that every existential condition satisfies S∃ and every universal one satisfies
S∀ . We will heavily use this kind of induction in our proofs. Sometimes, we will start such an induction with the conditions
of nesting level 1, i.e., with conditions of the forms ∀ (C, false) and ∃ (C, true).

3.3. Graph transformation

Graph transformation is the rule-based modification of graphs. The following definition recalls graph transformation as a
double-pushout [1]. A rule mainly consists of two graphs: L is the left-hand side (LHS) of the rule representing a pattern
that has to be found to apply the rule. After the rule application, a pattern equal to R , the right-hand side (RHS), has been
created. Their intersection K , which is presupposed to constitute a graph, is the graph part that is not changed.

A graph transformation step between two instance graphs G and H along rule r is defined by first finding a match m
of the left-hand side L of rule r in the current instance graph G such that m is structure-preserving and type-compatible,
and second by constructing H in two steps (see Fig. 2): (1) building D := G \ m(L \ K), i.e., erasing all the graph items that
are to be deleted, and (2) constructing H := D ∪ n(R \ K), i.e., adding a new copy n(R \ K) of all the graph items that are
to be created. Note that m has to fulfil the dangling condition, i.e., all adjacent graph edges of a graph node to be deleted
have to be deleted by the rule as well, such that D becomes a graph. Additionally, a rule might be equipped with left and
right application conditions that further restrict their application; these are allowed to be general (nested) graph conditions,
also in this work. The described operational behaviour can be characterised (based on the notion of pushout coming from
category theory) as follows:

Definition 5 (Rule and transformation). A plain rule r is defined by p = (L ←↩ K ↪→ R) with L, K , and R being graphs related
by two injective graph morphisms. An application condition ac = (acL, acR) for p is a pair of nested graph conditions; acL

is defined over L and acR is defined over R . A rule r = (p, ac) consists of a plain rule p and an application condition ac. If
acR is equal to true, we shortly write r = (p, acL) and call acL just application condition. A transformation (step) t : G ⇒r,m H
(also called rule application) which applies rule r at m to a graph G consists of the pushouts (P O 1) and (P O 2) as depicted
in Fig. 2. Rule r is applicable at the injective morphism m : L ↪→ G , then called match, if m |= acL , there exists a graph D
such that the left square in Fig. 2 is a pushout, and if n |= acR ; morphism n is then called co-match. Morphisms g and h are
5

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
L

cL

K rele R

cR(P O 2) (P O 1)

C ′ D C

Fig. 3. Shifting a negative application condition over a rule.

called transformation morphisms and D the context object of the transformation. The track morphism [19] of a transformation
step t : G ⇒r,m H is the partial morphism trt : G ��� H defined by trt(x) = h(g−1(x)) for x ∈ g(D) and undefined otherwise.
A transformation sequence G0 ⇒r1,m1 G1 . . . ⇒rn,mn Gn is shortly denoted as (Gi−1 ⇒ri ,mi Gi)1≤i≤n .

Obviously, transformations interact with the validity of graph constraints. Two well-studied notions are constraint-
guaranteeing and -preserving transformations [5].

Definition 6 (c-guaranteeing and c-preserving transformation). Given a constraint c, a transformation G ⇒r,m H is c-
guaranteeing if H |= c. Such a transformation is c-preserving if G |= c =⇒ H |= c. A rule r is c-guaranteeing (c-preserving) if
every transformation via r is.

There is a well-known technique that, given a rule and a constraint, computes an application condition for the rule such
that it becomes guaranteeing (or preserving) w.r.t. the constraint. This technique has been developed for general nested
constraints in the context of M-adhesive categories [5]. In the following, we recall a small part of this technique, namely
how an (unnested) negative application condition is shifted over a rule. This suffices for the construction of consistency-
sustaining application conditions that we develop in Sect. 5.1.

Definition 7 (Shifting negative application conditions over rules). Let a plain rule p = (L ←↩ K ↪→ R) and a right application
condition acR = ¬∃ (cR : R ↪→ C, true) ≡ ∀ (cR : R ↪→ C, false) be given. Construction Left(acR , p) shifts the application
condition acR from R to L by applying rule p−1 = (R ←↩ K ↪→ L) (i.e., the inverse rule of p) to C at match cR if applicable
(as depicted in Fig. 3). The result is a left application condition acL = ¬∃ (cL : L ↪→ C ′, true), called negative application
condition or shortly NAC, where cL is the co-match of the transformation. If p−1 is not applicable at cR , the resulting
application condition is false.

This construction preserves the semantics of the application condition, i.e., the so computed negative application condi-
tion acL is characterised by the following property.

Fact 1 ([5, Theorem 6]). Given a rule r = (p, acR) with (unnested negative) right application condition acR = ¬∃ (cR : R ↪→ C, true),
for any transformation G ⇒p,m H with co-match n via the plain rule p, we have

m |= acL ⇐⇒ n |= acR ,

where acL := Left(acR , p).

As also arbitrary right application conditions can be shifted (in a semantics-preserving manner; cf. [5, Theorem 6]) to
the left-hand side of a rule, we assume all rules to be only equipped with left application conditions in the following.

3.4. Conflicts and dependencies

As we will present criteria for consistency-sustainment and consistency-improvement based on conflicts and dependen-
cies of rules, we recall these notions here following [20,21]. Intuitively, a transformation step causes a conflict on another
one if it blocks the execution of the second one. A transformation step t2 is dependent on another one t1 if t2 can only take
place after t1 has been performed.

Definition 8 (Conflict). Let a pair of transformations (t1, t2) : (G ⇒m1,r1 H1, G ⇒m2,r2 H2) be given that apply rules ri = (Li ←↩

Ki ↪→ Ri, aci), where i = 1, 2, such that ti yields transformation morphisms G
gi← Di

hi→ Hi . Transformation t1 causes a conflict
on t2 if there does not exist a morphism x : L2 → D1 such that g1 ◦ x = m2 and h1 ◦ x |= ac2. Rule r1 causes a conflict on r2 if
there exists a transformation pair (t1, t2) : (G ⇒m1,r1 H1, G ⇒m2,r2 H2) such that t1 causes a conflict on t2. If rule r1 does
not cause a conflict on r2 and vice versa, rule pair (r1, r2) is called parallel independent.
6

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
R1

n1

K1
l1r1 L1

m1

L2

x
m2

K2
l2 r2 R2

n2

H1 D1 g1h1
G D2g2 h2

H2

A weak critical pair is a pair (t1, t2) : (X ⇒m1,r1 H1, X ⇒m2,r2 H2) of transformations such that t1 causes a conflict on t2,
m1 and m2 are jointly surjective, and mi is not required to satisfy aci (i = 1, 2).

Definition 9 (Dependency). Let a sequence (t1; t2) : G ⇒m1,r1 H1 ⇒m2,r2 H2 of transformations be given that apply rules

ri = (Li ←↩ Ki ↪→ Ri, aci), where i = 1, 2, such that t1 yields transformation morphisms G
g1← D1

h1→ H1. Transformation t2 is
dependent on t1 if there does not exist a morphism x : L2 → D1 such that h1 ◦ x = m2 and g1 ◦ x |= ac2. Rule r2 is dependent
on rule r1 if there exists a transformation sequence t1; t2 : G ⇒m1,r1 H1 ⇒m2,r2 H2 such that t2 is dependent on t1. If r1 is
not dependent on r2 and r2 is not dependent on r1, rule pair (r1, r2) is called sequentially independent.

L1

m1

K1
l1r1 R1

n1

L2

x
m2

K2
l2 r2 R2

n2

G D1 h1g1
H1 D2g2 h2

H2

A weak critical sequence is a sequence (t1; t2) : G ⇒m1,r1 X ⇒m2,r2 H2 of transformations such that t2 depends on t1, n1
and m2 are jointly surjective (where n1 is the co-match of t1), and mi is not required to satisfy aci (i = 1, 2).

Note that a weak critical pair for a pair of transformations (t1, t2) applying rules ri = (pi, aci) for i = 1, 2 is a critical
pair [1] where the plain rules pi are applied. (There is an analogous relation between weak critical sequences and critical
sequences.)

As rule r2 in a rule pair (r1, r2) will always be plain in this paper, a transformation step with r1 can cause a conflict on
another one applying r2 if and only if it deletes an element that the second transformation step matches (see, for example,
[1, Sect. 3.3] for a discussion). Thus, we can say that a transformation t1 : G ⇒r1,m1 H1 causes a conflict for transformation
t2 : G ⇒r2,m2 H2 if and only if

m1(L1 \ K1) ∩ m2(L2) = ∅,

where L1 \ K1 denotes the set-theoretic difference on graphs that is defined componentwise on node and edge sets. (In
particular, L1 \ K1 does not need to constitute a graph.)

Similarly, a transformation step can depend on another one if and only if the first step creates an element that the
second one uses or the first one deletes an edge that is adjacent to a node the second one deletes. As in our application
scenario, the second rule will be always non-deleting, this second case cannot happen. Thus, for our application scenario,
the dependency of a transformation t2 : H1 ⇒r2,m2 H2 on a transformation t1 : G ⇒r1,m1 H1 is equivalently expressed by
saying that

n1(R1 \ K1) ∩ m2(L2) = ∅
holds, where n1 is the co-match of transformation t1.

Example 1. In this work, we will only be concerned with conflicts or dependencies in which the second rule is a trivial rule;
it does not create or delete any elements but just checks for the existence of a certain graph. This will be graphs that stem
from a constraint.

Fig. 4 shows a weak critical sequence for an application of the rule createClass, followed by an “application” of a rule
that just checks for the existence of a Class. This means that it checks for the existence of the graph Pc2 that is the first
graph of the constraint c2 of our running example when formalising it as a graph constraint in ANF (cf. Example 2 and
Fig. 6). Names starting with ‘r’ denote elements stemming from the rule createClass, names starting with ‘c’ denote elements
stemming from the constraint, the morphisms are indicated by the names, and ‘=’ denotes identifications of elements. The
morphisms n and p′

1 are jointly surjective, and no morphism x : Pc2 → D exists (as D does not contain a Class). Therefore,
the sequence is a weak critical one. Alternatively, it can be noted that the intersection of n(RcC \ KcC) with p′

1(Pc2) (in H)
is not empty; it contains the rc = cc:Class. The application of createClass first creates the Class that the second rule matches.

Fig. 5 shows a pair of transformations that is not critical; the notation is identical to the one used for Fig. 4. The first
transformation shows an application of (the plain version of) createClass again. The morphisms m and p′

2 are again jointly
surjective, however, the pair is not critical because the transformations are not conflicting. A morphism x : P ′

c2
→ D exists

such that g ◦ x = p′
2 holds. Alternatively, it can be noted that the intersection of m(LcC \ KcC) with p′

2(P ′
c2

) (in G) is empty
(because LcC \ KcC is empty). The application of createClass does not delete any element that the second rule matches.
7

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Fig. 4. A (weak) critical sequence for the rule createClass.

Fig. 5. A pair of transformations that is not critical.

4. Consistency-sustaining and consistency-improving rules and transformations

In this section, we introduce our new key concepts. We do so in three stages, first introducing foundational definitions for
partial consistency, followed by a generic definition of consistency-sustainment and -improvement. Finally, we give stronger
definitions for consistency sustaining and improving transformations which we will use to provide a static analysis in Sect. 5.

4.1. Partial consistency

To support the discussion and analysis of rules and transformations that improve graph consistency but do not produce
a fully consistent graph in one step, we introduce the notion of partial consistency. We base this notion on relating the
number of constraint violations to the total number of relevant occurrences of a constraint. Remember that, in this paper,
a constraint is always linear and in alternating normal form with nesting level ≥ 1. Requiring nesting level ≥ 1 is no
real restriction as constraints with nesting level 0 are Boolean combinations of true which means they are equivalent to
true or false, anyhow. In contrast, restricting to linear constraints actually excludes some interesting cases. We believe
that the extension of our definitions and results to also include the non-linear case will be doable. At the very least, the
case in which every nesting level is either a conjunction or disjunction (and not a combination of both) seems tractable.
Restricting to the linear case first, however, makes the statements much more accessible and succinct. For the satisfaction
of an existential constraint, a single valid occurrence is enough. In contrast, universal constraints require the satisfaction
of some sub-constraint for every occurrence in the graph. Hence, the resulting notion is binary in the existential case, but
graduated in the universal one. To ensure that the occurrences can be enumerated and counted in finite time, we assume
that all graphs are actually finite.

Definition 10 (Occurrences and violations). Let c = Q (∅ → C, d) with Q ∈ {∃, ∀} be a constraint. An occurrence of c in a graph
G is an injective morphism p : C ↪→ G , and occ(G, c) denotes the number of such occurrences.

If c is universal, its number of relevant occurrences in a graph G , denoted as ro(G, c), is defined as ro(G, c) := occ(G, c)
and its number of constraint violations, denoted as ncv(G, c), is the number of occurrences p for which p |= d.

If c is existential, ro(G, c) := 1, and ncv(G, c) := 0 if there exists an occurrence p : C ↪→ G such that p |= d but ncv(G, c) :=
1 otherwise.
8

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Fig. 6. Example graph and constraints.

Definition 11 (Partial consistency). Given a graph G and a constraint c, G is consistent w.r.t. c if G |= c. The consistency index
of G w.r.t. c is defined as

ci(G, c) := 1 − ncv(G, c)

ro(G, c)

where we set 0
0 := 0. We say that G is partially consistent w.r.t. c if ci(G, c) > 0.

The next proposition makes precise that the consistency index runs between 0 and 1 and indicates the degree of consis-
tency a graph G has w.r.t. a constraint c. It follows directly from the definitions.

Proposition 1 (Consistency index). Given a graph G and a constraint c, then 0 ≤ ci(G, c) ≤ 1 and G |= c if and only if ci(G, c) = 1.
Consistency implies partial consistency. Moreover, ci(G, c) ∈ {0, 1} for an existential constraint.

Example 2 (Consistency index). Based on Fig. 6, we can express the three informal constraints from Sect. 2 as graph con-
straints. They are all in ANF with nesting level ≥ 1. Constraint c1 can be expressed as ∀ (Pc1 , false) (≡ ¬∃ Pc1), it has
nesting level 1. Constraint c2 becomes ∀ (Pc2 , ∃ P ′

c2
), and constraint c3 becomes ∀ (Pc3 , ∃ P ′

c3
); both have nesting level 2.

Graph G (in the left top corner of Fig. 6) satisfies c1 and c2. It does not satisfy c3 since we cannot find an occurrence of P ′
c3

for the occurrence of Pc3 in G where f1 and f2 are mapped to f1 and f3, respectively. A second occurrence of Pc3 in G maps
Features f1 and f2 to f3 and f1, respectively. This mapping can be extended to an occurrence of P ′

c3
in G . Thus, graph G has

the consistency index 0.5 with regard to c3 since one violation exists and two non-violating occurrences are required.

4.2. Consistency-sustainment and -improvement

In the remainder of this section, our goal is to introduce the notions of consistency-sustaining and consistency-improving
rule applications, which refine the established notions of preserving and guaranteeing rule applications [5].

Definition 12 (Consistency-sustainment and -improvement). Given a graph constraint c and a rule r, a transformation t : G ⇒r,m
H is consistency-sustaining w.r.t. c if ncv(G, c) ≥ ncv(H, c). It is consistency-improving if ncv(G, c) > ncv(H, c).

A rule r is consistency-sustaining if all of its applications are. It is consistency-improving if it is consistency-sustaining and
there exists a graph G ∈ GraphT G with ncv(G, c) > 0 and a consistency-improving transformation G ⇒r,m H . A consistency-
improving rule is strongly consistency-improving if all of its applications to graphs G with ncv(G, c) > 0 are consistency-
improving transformations.

In the above definition, we use the number of constraint violations and not the consistency index to avoid undesirable
side-effects1: The consistency index is susceptible to manipulation through the creation or deletion of valid occurrences.

1 In the conference version of this paper [13], we actually defined consistency-sustainment using the consistency index. However, then the statement
that consistency-sustainment implies consistency-preservation (see Theorem 1) is only true under additional preconditions. We are indebted to Lei Xu who
constructed a plethora of example rules, which ultimately led to the discovery of that error.
9

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
G
g

trt

D h H

C
p p′pD

Fig. 7. Rule application with morphisms from a graph C , occurring in some constraint.

For example, defining improvement via a growing consistency index would lead to consistency-improving transformations
(w.r.t. a universal constraint) that do not repair existing violations but only create new valid occurrences of the constraint.
Hence, there would exist infinitely long transformation sequences where every step increases the consistency index but
validity is never restored. The following proposition states which forms of repairing transformation sequences are finite
ones. Consistency-improving transformations require that the number of constraint violations strictly decreases in each step.
Therefore, using only such kind of transformations, we cannot construct infinite transformation sequences. Similarly, we
cannot construct infinite transformation sequences where each step is an application of a strongly consistency-improving
rule to an inconsistent graph as each step has to strictly decrease the number of constraint violations.

Proposition 2 (Repairing sequences).

1. There do not exist infinitely long sequences (Gi−1 ⇒ Gi)i≥1 of consistency-improving transformations.
2. There do not exist infinitely long sequences (Gi−1 ⇒ri ,mi Gi)i≥1 of applications of rules ri that are strongly consistency-improving

w.r.t. a constraint c such that ncv(Gi, c) > 0 for all i ≥ 0.

Rules that are consistency-improving but not strongly so are allowed to be applicable to invalid graphs without actu-
ally reducing the number of violations (as long as this number is not increased). There just needs to exist an improving
transformation via the rule. In contrast, strongly consistency-improving rules are always required to reduce the amount of
inconsistency if there is any. On valid graphs, both variants just have to be consistency-sustaining, i.e., they are not allowed
to introduce violations. Any consistency-improving rule can be turned into a strongly consistency-improving rule if suitable
pre-conditions can be added that restrict the applicability of the rule to only those cases where it can actually repair a
constraint violation.

This links the two forms of consistency-improving rules to their practical applications: in model repair [8,10] we want to
use rules that only make changes to graphs when there are violations to be repaired—strongly consistency-improving rules.
However, in evolutionary search [11], we want to allow rules to be able to make changes even when there is no need for
repair, but to fix violations when they occur; consistency-improving rules are well-suited here as they can be applied for
optimisation purposes.

4.3. Direct consistency-sustainment and -improvement

While constraint violation and partial consistency are easy to define and to understand, it turns out that they are inher-
ently difficult to investigate. Comparing numbers of (relevant) occurrences and violations allows for very disparate behaviour
of consistency-sustaining (-improving) transformations: For example, a transformation is allowed to destroy as many valid
occurrences as it repairs violations and is still considered to be consistency-sustaining w.r.t. a universal constraint. (In our
running example, rule moveFeature moves a Feature from one Class to another and can thereby remove a violation but also
introduce another one.)

Therefore, we introduce refined notions of consistency-sustainment and -improvement which we call direct. The idea
behind these refinements is to retain the validity of occurrences of a universal constraint: valid occurrences that are pre-
served by a transformation are to remain valid. In this way, sustainment and improvement become more direct as it is no
longer possible to compensate for introduced violations by introducing additional valid occurrences. The notions of (direct)
sustainment and improvement are related to one another and also to the already known ones that preserve and guaran-
tee constraints (Definition 6). In Sect. 5 we will show how these stricter definitions allow for static analysis techniques to
identify (directly) consistency-sustaining and -improving rules.

The following definitions assume a transformation step t : G ⇒ H to be given; they relate occurrences of a constraint c
in graphs G and H as depicted in Fig. 7. When a transformation step is not allowed to destroy an occurrence of c, there has
to be a morphism pD : C ↪→ D since graph D comprises the part of G that is preserved during the transformation.

The existence of a morphism pD : C ↪→ D such that the left triangle commutes (and p′ is defined as h ◦ pD) is equivalent
to the track morphism trt : G ��� H being a total morphism when restricted to p(C). We formulate this equivalence in the
following technical lemma, which we are going to use in the proofs of our results in the following sections.

Lemma 2 (Preservation of constraint occurrence). Let a transformation step t : G ⇒ H with transformation morphisms g : D ↪→ G
and h : D ↪→ H and an occurrence p : C ↪→ G of a constraint c in G be given (Fig. 7).
10

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
constraint-preserving rule
[5]

Thm. 1

constraint-guaranteeing rule

Thm. 1

consistency-sustaining rule directly consistency-sustaining rule
Thm. 1

Fig. 8. Overview of sustainment relations.

Table 1
Properties of example rules.

Rule Consistency sustaining Consistency improving

c1 c2 c3 c1 c2 c3

assignFeature + + - - + -
createClass + + - - - -
moveFeature (+) - - - - -
deleteEmptyClass + + + - +* -

Legend: + denotes directly, (+) denotes non-directly, * denotes strongly.

1. The track morphism trt : G ��� H of t is total when restricted to p(C) (i.e., trt ◦ p is a total morphism) if and only if there exists an
injective morphism pD : C ↪→ D such that p = g ◦ pD .

2. Analogously, given an injective morphism p′ : C ↪→ H, p′(C) is contained in trt(G) if and only if there exists an injective morphism
pD : C ↪→ D such that p′ = h ◦ pD .

Now, we are ready to define direct consistency-sustainment: For existential constraints, a transformation just has to be
c-preserving. For universal constraints, two requirements are checked: (1) Occurrences of the constraint that were already
valid in G are still valid in H , unless they have been removed; that is, the transformation must not make existing valid
occurrences invalid. (2) Every “new” occurrence of the constraint in H satisfies the constraint; that is, the transformation
must not introduce fresh violations.

Definition 13 (Direct consistency-sustainment). Given a graph constraint c, a transformation t : G ⇒m,r H via rule r at match
m with track morphism trt is directly consistency-sustaining w.r.t. c if either c is existential and the transformation is c-
preserving or c = ∀ (C, d) is universal and

∀p : C ↪→ G
(
(p |= d ∧ trt ◦ p is total) =⇒ trt ◦ p |= d

)∧
∀p′ : C ↪→ H

(¬∃p : C ↪→ G
(

p′ = trt ◦ p
) =⇒ p′ |= d

)
.

A rule r is directly consistency-sustaining w.r.t. c if all its applications are.

Note that in the first case, we do not require the subcondition d to be satisfied at p′ := trt ◦ p in H in the same way as
it was at p in G . It is enough if there is still a way to satisfy d at occurrence p′ .

The following theorem relates the new notions of (direct) consistency-sustainment to preservation and guarantee of
constraints.

Theorem 1 (Sustainment relations). Given a graph constraint c, every c-guaranteeing transformation is directly consistency-
sustaining, every directly consistency-sustaining transformation is consistency-sustaining, and every consistency-sustaining transfor-
mation is c-preserving. The analogous implications hold on the rule level (as summarised in Fig. 8).

The following example illustrates these notions and shows that (direct) sustainment is different from constraint guarantee
or preservation, i.e., that all implications of the theorem are proper.

Example 3 (Sustainment relations). Table 1 denotes for each rule of the running example whether it is consistency-sustaining
w.r.t. each of the given constraints. Rule createClass is directly consistency-sustaining w.r.t. c1 (no double assignments) and
c2 (no empty classes), since it cannot assign an already assigned Feature or remove existing assignments. However, it is
not consistency-guaranteeing, since it cannot remove any violation either. Rule moveFeature is consistency-sustaining w.r.t.
c1 but not directly so, since it can introduce new violations but only while removing another violation at the same time,
leading to a neutral outcome.

Furthermore, a constraint-preserving rule is not necessarily consistency-sustaining as the following example shows: Start-
ing with the plain version of rule createClass and computing a preserving application condition for constraint c1 according to
the construction provided by Habel and Pennemann [5] results in the application condition depicted in Fig. 9. By construc-
tion, equipping the plain version of createClass with that application condition results in a consistency-preserving rule. The
11

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Fig. 9. Generated preserving application condition for createClass w.r.t. constraint c1. The Feature named rf stems from the LHS of createClass.

consistency-sustaining rule

Thm. 2

c-guaranteeing ruleThm. 1

Thm. 2

consistency-improving rule
Thm. 2

directly consistency-improving rule

Fig. 10. Overview of improvement relations.

premise of the implication depicted checks whether rule createClass is applied only to graphs that fulfil c1. Whenever ap-
plied to an invalid graph, this premise evaluates to false and, hence, the whole application condition to true. Therefore,
createClass with this application condition can introduce further violations of c1 and is not consistency-sustaining.

Similarly, the direct notion of consistency-improvement fixes the validity of an already existing occurrence or deletes an
invalid occurrence in the case of universal constraints and degenerates to the known concept of constraint-guarantee in the
existential case.

Definition 14 (Direct consistency-improvement). Given a graph constraint c, a transformation t : G ⇒m,r H via rule r at
match m : L ↪→ G with track morphism trt is directly consistency-improving w.r.t. c if G � c, the transformation is directly
consistency-sustaining, and either c is existential and the transformation is c-guaranteeing or c = ∀(C, d) is universal and

∃p : C ↪→ G
(

p � d ∧ p′ := trt ◦ p is total ∧ p′ |= d
)∨

∃p : C ↪→ G
(

p � d ∧ p′ := trt ◦ p is not total
)
.

We lift the notion of directly consistency-improving transformations to the level of rules in the same way as in Defini-
tion 12. This leads to directly consistency-improving rules and a strong form of directly consistency-improving rules.

Note that direct consistency-improvement is orthogonal to strong consistency-improvement. (Direct) consistency-
improvement is related to, but different from, constraint guarantee and consistency-sustainment as made explicit in the
next theorem.

Theorem 2 (Improvement relations). Given a graph constraint c, every directly consistency-improving transformation is a consistency-
improving transformation and every consistency-improving transformation is consistency-sustaining w.r.t. c. Moreover, every c-
guaranteeing transformation starting from a graph G with G |= c is a directly consistency-improving transformation. The analogous
implications hold on the rule level (as summarised in Fig. 10), provided that there exists a match for the respective rule r in a graph G
with G |= c.

As for consistency-sustainment, we illustrate the different notions of consistency-improvement showing that all implica-
tions in Theorem 2 are proper.

Example 4 (Improvement relations). Table 1 denotes for each rule of the running example whether it is consistency-improving
w.r.t. each of the given constraints. The rule deleteEmptyClass, for example, is directly strongly consistency-improving but not
-guaranteeing w.r.t. c2 (no empty classes), since it always removes a violation (i.e., an empty Class) but generally not all
violations in one step. Rule assignFeature is directly consistency-improving w.r.t. c2 but not strongly so: It can turn empty
Classes into non-empty ones but does not do so in every possible application. Rule createClass is consistency-sustaining but
not -improving w.r.t. c2, as it cannot reduce the number of empty classes.

Our running example does not include a rule which is consistency-improving but not directly so. An example can be
given by a variant of the rule moveFeature, where a single Feature is removed from two Classes in which it is contained
and moved to a third Class, in which it was not contained yet. Every application of this rule decrements the number of
Classes in which the moved Feature is contained by one. With regard to constraint c1 (no double assignments) this means
that the number of occurrences of the forbidden pattern Pc1 (see Fig. 6), which coincides with the number of constraint
violations in this case, is reduced (from

(k
2

)
to

(k−1
2

)
, where k is the number of Classes the Feature is contained in). For

the special case of a constraint of the form c = ¬∃ C ≡ ∀ (C, false), we have ncv(G, c) = ro(G, c), since no occurrence
can satisfy false. When applying that rule as long as possible, this means that the consistency index ci(G, c) remains 0
constantly until the very last violation is removed. At that point the consistency index switches to 1. Summarising, this
12

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
rule is consistency-improving and even strongly so. However, the rule is not directly consistency-sustaining and, hence, not
directly consistency-improving: Whenever a Feature is contained in more than two Classes, applying that rule reduces the
overall number of violations at the cost of introducing new ones. This behaviour is excluded by the definition of direct
consistency-sustainment.

5. Static analysis for direct consistency-sustainment and -improvement

In this section, we present a static analysis technique for direct consistency-sustainment and -improvement. This tech-
nique comprises two criteria for deciding whether a rule is directly consistency-sustaining or directly consistency-improving
w.r.t. given constraints. The criterion for direct consistency-sustainment is a sufficient but not necessary one; hence, it can
recognise directly consistency-sustaining rules but not all of them. So if the criterion does not hold for a rule, the rule has
to be checked manually. Conversely, the criterion for direct consistency-improvement is a necessary but not sufficient one.
Hence, it can be used to decide that a given rule is not directly consistency-improving. When the criterion does not hold
for a rule, the rule has to be checked manually.

The general idea behind our static analysis technique is to check for the validity of a constraint by applying a trivial
(non-modifying) rule that just checks for the existence of a graph occurring in the constraint. This idea is in line with the
representation of constraints in GROOVE as presented in [22]. For a graph C occurring in a given constraint, we consider

the interaction of a rule r = (L ←↩ K ↪→ R, ac) with the (plain) rule checkC := (C
idC←−↩ C

idC
↪−→ C). This allows us to present our

analysis technique in the terminology of conflicts and dependencies, which has been developed to characterise the possible
interactions between rule applications [19,1]. As a bonus, we obtain tool support for an automated analysis based on Hen-
shin since the efficient detection of such conflicts and dependencies has been the focus of recent theoretical and practical
research [21,23]. The intuition behind the following results is that sequential independence of the (non-modifying) rule
checkC from r means that r cannot create a new occurrence of C . Similarly, parallel independence of checkC from r means
that r cannot destroy an occurrence of C .

5.1. Consistency-sustaining interaction

We start by stating a criterion for direct consistency-sustainment: Intuitively it says the following: A rule is directly
consistency-sustaining if it cannot destroy an occurrence of a constraint graph that is bound by an existential quantifier and cannot
cause a new occurrence of a constraint graph that is bound by a universal quantifier. We start with defining this kind of interaction
and give an example thereafter. To be able to reason about interactions by structural induction in our proofs, we define
them in terms of conditions instead of constraints.

Definition 15 (Consistency-sustaining interaction). Let a condition c = Q (a1 : C0 ↪→ C1, Q̄ (a2 : C1 ↪→ C2, . . .) . . .) with nl(c) ≥ 1
and a rule r = (L ←↩ K ↪→ R, ac) be given. We say that r interacts with c in a consistency-sustaining manner if the two following
properties are met.

1. Unproblematic deletions in conflicts: For all graphs Ci of c with i ≥ 1 that are bound by an existential quantifier and for
all weak critical pairs (t1, t2) : (G ⇒r,m H, G ⇒checkCi ,pi G), transformation t1 causes a conflict on t′

2 : G ⇒checkCi−1 ,pi◦ai G

(with ai : Ci−1 ↪→ Ci).
2. Unproblematic additions in dependencies: For all graphs Ci of c with i ≥ 1 that are bound by a universal quantifier and

for all weak critical sequences (t1; t2) : (G ⇒r,m H ⇒checkCi ,p′
i

H), transformation t′
2 : H ⇒checkCi−1 ,p′

i◦ai
H is dependent on

transformation t1 (with ai : Ci−1 ↪→ Ci).

We call deletions and creations problematic, if they are not unproblematic.

Remark 2. Rule r causes a conflict on checkCi when we have m(L \ K) ∩ pi(Ci) = ∅. Criterion 1 stated above checks if this
conflict is concerned with the subgraph ai(Ci−1) of Ci already. That is, every such conflict satisfies

m(L \ K) ∩ pi(ai(Ci−1)) = ∅. (1)

In that case, the deletions by rule r are unproblematic as the occurrence of Ci−1 is also removed. Intuitively, together with
the required existential occurrence, such conflicts remove the reason for which the occurrence had been required. Similarly,
a dependency of checkCi on r is unproblematic when we have

n(R \ K) ∩ pi(ai(Ci−1)) = ∅, (2)

where n : R ↪→ H is the co-match of the first transformation. That is, Criterion 2 above checks if this dependency is con-
cerned with the subgraph ai(Ci−1) of Ci already. In that case, the newly introduced occurrence of Ci is not relevant for the
degree to which c is valid, because the preceding occurrence of Ci−1 is also newly added by the same transformation.
13

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Theorem 3 (Criterion for direct consistency-sustainment). Let a constraint c and a rule r be given. If r interacts with c in a consistency-
sustaining manner, then r is directly consistency-sustaining w.r.t. c.

Example 5. We stated in Example 3 that rule createClass is directly consistency-sustaining with respect to constraint c1
(no double assignment of Features). The above theorem can be used to recognise this. There is no dependency of checkPc1
on createClass, as the only two possibilities for such a dependency (createClass creating one of the Classes of Pc1) are ex-
cluded by its NAC. Hence, createClass interacts consistency-sustainingly with c1. As rule createClass does not delete anything,
Criterion 1 of Definition 15 is automatically fulfilled.

To illustrate Criterion 1 of Definition 15, consider the rule deleteClass (not be confused with deleteEmptyClass of our
running example) that is basically inverse to createClass, namely a rule that deletes a Class as well as a contains-edge
that connects the deleted Class to a preserved Feature. This rule causes a conflict for the existentially bound graph P ′

c2
of constraint c2 (no empty classes). Namely, it might delete the Class c1 together with its outgoing contains-edge. How-
ever, Criterion 1 states that this conflict does not need to be considered because (at least) one of the elements inducing the
conflict, here Class c1, stems from the preceding universally bound graph Pc2 already. Thus, deleteClass interacts consistency-
sustainingly with c2. This example also illustrates the intuitive reason why conflicts like this one do not need to be
considered: Here, the existence of a Feature is only required to complement a Class. Thus, the deletion of the contains-
edge is unproblematic when the Class is removed simultaneously. As rule deleteClass does not create anything, Criterion 2
of Definition 15 is automatically fulfilled.

We can use the criteria given in Definition 15 to automatically equip a given rule with an application condition such
that the resulting rule is consistency-sustaining w.r.t. the given constraint. The idea is to construct a set of NACs that forbid
all applications of the rule that (i) would introduce new occurrences of a universally bound graph of the constraint and (ii)
would destroy occurrences of an existentially bound graph of the constraint.

Construction 1 (Consistency-sustaining application condition). Let a plain rule r = (L ←↩ K ↪→ R) and a constraint c with nl(c) ≥ 1
be given. The application condition acsus of r is defined as

acsus := ac∀ ∧ ac∃
where ac∀ and ac∃ are constructed as follows:

For every universally bound graph Ci of c, let CRi be the set of all graphs P j that arise as overlaps of Ci and R such that there exists
a pair of injective and jointly surjective morphisms e1, j : Ci ↪→ P j and e2, j : R ↪→ P j with

e2, j(R \ K) ∩ e1, j(Ci) = ∅.

Then

ac∀ :=
∧

Ci∈c∀

∧

P j∈CRi

Left
(¬∃ (e2, j : R ↪→ P j), r

)
,

where c∀ denotes the set of the universally bound graphs of c.
For every existentially bound graph Ci of c, let CLi be the set of all graphs P j that arise as overlaps of Ci and L such that there exists

a pair of injective and jointly surjective morphisms e1, j : Ci ↪→ P j and e2, j : L ↪→ P j with

∅ ⊂ e2, j(L \ K) ∩ e1, j(Ci) ⊆ e1, j(Ci \ ai(Ci−1)).

Then

ac∃ :=
∧

Ci∈c∃

∧

P j∈CLi

¬∃ (e2, j : L ↪→ P j),

where c∃ denotes the set of the existentially bound graphs of c.

We prove the correctness of this construction by showing that a rule enhanced in such a way interacts with the given
constraint in a consistency-sustaining manner, i.e., by applying Theorem 3.

Proposition 3 (Correctness of consistency-sustaining application conditions). Given a constraint c and a plain rule p, the rule r :=
(p, acsus), i.e., p equipped with the application condition as constructed above, is consistency-sustaining w.r.t. c.

Example 6 (Construction of NACs). Given the rule moveFeature and the constraint c3, the construction given above results in
the application condition that is depicted in Fig. 11. The first two lines constitute ac∀ and the last line constitutes ac∃ . This
means that the subconditions on the first two lines prevent the creation of a new occurrence of graph Pc3 (compare Fig. 6).
14

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Fig. 11. A sustaining application condition for rule moveFeature with respect to the constraint c3. Names starting with ‘r’ denote elements stemming from
moveFeature, names starting with ‘c’ denote elements stemming from c3, and ‘=’ denotes identifications of elements.

The NACs in these lines are constructed from all possible overlaps of the contains-edge running between rf and rc2 with
contains-edges of Pc3 . As the contains-edge is the only element that is deleted by the rule moveFeature, we do not have to
consider further overlaps of Pc3 with the right-hand side. Shifting these overlaps to the left-hand side with the construction
Left deletes the overlapping contains-edge in each graph and inserts a contains-edge to another Class.

The two subconditions on the last line prevent the destruction of occurrences of graph P ′
c3

. Note that it is enough to
overlap Feature rf with cf3 since cf3 is in P ′

c3
\ Pc3 but cf1 and cf2 are not.

The above example shows a limitation of our construction of NACs: The resulting set of NACs is very strict, clearly stricter
than necessary to make a rule directly consistency-sustaining. In our example, the computed set of NACs almost prevents
the movement of a Feature that has an incoming or outgoing dependency (the exception is the case where the second
Feature is not contained in a Class yet). The advantage of our construction is that it computes NACs and not more general
application conditions. Those are comparatively easy to check and, moreover, conflicts and dependencies involving rules
with NACs have been characterised and their computation has been implemented in Henshin [20,4]. This is not the case
for more general application conditions yet. Determining whether our construction is useful in practice or potentially too
restrictive is left to future work.

5.2. Constraint-compatible dependencies and conflicts

The criteria presented in Theorem 3 are sufficient but not necessary. Next, we present further criteria for direct
consistency-sustainment; they are also sufficient but not necessary but strengthen the previous ones. Intuitively they state
the following: A rule is directly consistency-sustaining if it deletes only occurrences of existentially quantified graphs that are re-
dundant. Moreover, it creates new valid occurrences only when they are of universally quantified graphs of the given constraint. For
constraints of the form ∀ (C1, ∃ C2), for example, r may create a new valid occurrence of C1 or delete an occurrence of C2
but leaves another one intact. These cases are not taken into account by the criteria of Definition 15. The next proposition
strengthens the theorem above by partially remedying it. As above, we first introduce the new criteria.

Definition 16 (Constraint-compatible interaction). Let a condition c = Q (a1 : C0 ↪→ C1, Q̄ (a2 : C1 ↪→ C2, . . .) . . .) with nl(c) ≥ 1
and a rule r = (L ←↩ K ↪→ R, ac) be given. We say that r and c interact constraint-compatibly if the two following properties
are met.

1. r conflicts constraint-compatibly with c: For all graphs Ci in c that are bound by an existential quantifier, for all weak
critical pairs (t1, t2) : (G ⇒r,m H, G ⇒checkCi ,pi G) with problematic deletions (i.e., Criterion 1 in Definition 15 is violated),
there exists an injective morphism p′

i : Ci ↪→ H such that p′
i ◦ ai = p′

i−1 (where morphism p′
i−1 : Ci−1 ↪→ H is guaranteed

to exist since transformation t1 does not cause a conflict on transformation t′
2).

2. c depends constraint-compatibly on r: For all graphs Ci in c that are bound by a universal quantifier, if there exists a
weak critical sequence (t1; t2) : (G ⇒r,m H ⇒checkCi ,p′

i
H) with problematic creation (i.e., Criterion 2 in Definition 15 is

violated), then Ci is not the last graph occurring in c and there exists an injective morphism p′
i+1 : Ci+1 ↪→ H such that

p′
i+1 ◦ ai+1 = p′

i (where ai+1 : Ci ↪→ Ci+1 is the next morphism of c).

Proposition 4. Let a constraint c with nl(c) ≥ 1 and a rule r = (L ←↩ K ↪→ R, ac) be given. If r and c interact constraint-compatibly,
then r is directly consistency-sustaining w.r.t. c.

Example 7 (Constraint-compatible interaction). The rule checkPc2
that checks for the existence of the universally bound first

graph of the constraint c2 (no empty class) has a dependency on the rule createClass (see Fig. 4 in Example 1). However,
in the weak critical sequence (G ⇒createClass H ⇒checkPc2

H) that captures this dependency, the graph G consists of a single

Feature. Consequently, H has a newly created Class containing this Feature (both rules have only one possible match each).
15

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Fig. 12. Weak critical sequence for createClass and checkPc2
, extended with the occurrence of P ′

c2
.

There is also an occurrence p′
2 of the (existentially bound) graph P ′

c2
in H which suitably extends the newly created

occurrence of Pc2 , namely such that p′
2 ◦ a2 = p′

1 (depicted in Fig. 12). Moreover, as createClass does not delete elements, it
cannot cause a conflict on checkP ′

c2
(compare Fig. 5 in Example 1). Thus, c2 depends constraint-compatibly on createClass.

According to Proposition 4, createClass is directly consistency-sustaining with respect to constraint c2.

5.3. Consistency-improving interaction

For consistency-improvement we state criteria on rules as well: If a rule is directly consistency-improving w.r.t. a con-
straint, it is able to either (1) destroy an occurrence of a universally quantified graph (by deleting at least a part of it) or (2)
create a new occurrence of an existentially quantified one (by creating at least a part of it).

Definition 17 (Consistency-improving interaction). Let a condition c = Q (a1 : C0 ↪→ C1, Q̄ (a2 : C1 ↪→ C2, . . .) . . .) with nl(c) ≥ 1
and a rule r = (L ←↩ K ↪→ R, ac) be given. We say that r has a consistency-improving interaction with c if at least one of the
following properties is met.

1. Deletion of a universal occurrence: For some universally quantified graph Ci of c, there exists a weak critical pair
(t1, t2) : (G ⇒r,m H, G ⇒checkCi ,pi G) such that the transformation t1 does not cause a conflict on the transformation
t′

2 : G ⇒checkCi−1 ,pi◦ai G (with ai : Ci−1 ↪→ Ci).
2. Creation of existential occurrence: For some existentially quantified graph Ci of c, there exists a weak critical sequence of

transformations (t1; t2) : (G ⇒r,m H ⇒checkCi ,p′
i

H) such that the transformation t′
2 : H ⇒checkCi−1 ,p′

i◦ai
H is not dependent

on t1 (with ai : Ci−1 ↪→ Ci).

Remark 3. As in the case of consistency-sustaining interaction (Definition 15), such conflicts resp. dependencies can be
characterised with simple set-theoretical equations. Here, Criterion 1 ensures that the conflict is not already concerned with
the subgraph ai(Ci−1) of Ci . That is, there exists a conflict that satisfies

m(L \ K) ∩ pi(ai(Ci−1)) = ∅. (3)

Similarly, Criterion 2 requires that the newly created occurrence of Ci extends an existing occurrence of Ci−1. That is, there
exists a dependency that satisfies

n(R \ K) ∩ p′
i(ai(Ci−1)) = ∅, (4)

where n is the co-match of the first transformation.
16

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Table 2
Simplified summary of the sufficient criteria from Theorems 3 and 4 for constraints up to nesting level 3.
Here, ckC is short for checkC , r1 <D r2 denotes dependency of r2 on r1, r1 <C r2 denotes r1 causing a conflict
for r2, and crossed out versions denote the respective absence.

type of constr. crit. for directly consist. sust. crit. for not directly consist. impr.

∀ (C,false) ≡ ¬∃ C r ≮D ckC r ≮C ckC

∃ C r ≮C ckC r ≮D ckC

∀ (C1,∃ C2) r ≮D ckC1 ∧ r ≮C ckC2 r ≮C ckC1 ∧ r ≮D ckC2

∃ (C1,¬∃ C2) r ≮C ckC1 ∧ r ≮D ckC2 r ≮D ckC1 ∧ r ≮C ckC2

∀ (C1,∃ (C2,¬∃ C3)) r ≮D ckC1 ∧ r ≮C ckC2 ∧ r ≮D ckC3 r ≮C ckC1 ∧ r ≮D ckC2 ∧ r ≮C ckC3

∃ (C1,∀ (C2,∃ C3)) r ≮C ckC1 ∧ r ≮D ckC2 ∧ r ≮C ckC3 r ≮D ckC1 ∧ r ≮C ckC2 ∧ r ≮D ckC3

The two criteria just presented can be used as follows: If none of the two criteria is fulfilled, rule r is not consistency-
improving w.r.t. constraint c. Hence, they are necessary conditions. This relation is stated in the following theorem.

Theorem 4 (Criterion for direct consistency-improvement). Let a constraint c with nl(c) ≥ 1 and a rule r be given. If r is directly
consistency-improving w.r.t. c, then r interacts consistency-improvingly with c.

Since we want to have a criterion that helps us to decide whether a rule is directly consistency-improving w.r.t. a given
constraint, we will use this theorem in its negated form: If r does not interact consistency-improvingly with c, r is not directly
consistency-improving w.r.t. c. This form shows that the property of not interacting consistency-improvingly is a sufficient one
to decide that a rule is not directly consistency-improving.

Example 8 (Consistency-improving interaction). Considering the rule assignFeature and constraint c1 (no double assignment of
a Feature), we see that assignFeature cannot cause a conflict on checkPc1

as assignFeature does not delete anything. Hence,
assignFeature is not directly consistency-improving w.r.t. c1.

Considering the rule moveFeature and constraint c2 (no empty class), we can state that moveFeature fails to be
consistency-improving (directly or not), since it is not consistency-sustaining w.r.t. c2.

Considering the rule createClass and constraint c2, we know that createClass is consistency-sustaining w.r.t. c2 according
to Example 7. To check whether createClass is not additionally consistency-improving w.r.t. c2, we can state that createClass
does not cause a conflict on checkPc2

as it does not delete anything. Additionally, we have to check whether there may be
dependencies of checkP ′

c2
on createClass. This may happen as checkP ′

c2
has a contains-edge that may be created by createClass.

Hence, the criterion is not fulfilled and we have to check the rule by hand.

5.4. Summary

Table 2 offers a simplified summary of the sufficient criteria we obtain in Theorems 3 and 4 for constraints up to nesting
level 3. We ignore the fact that not all but rather specific kinds of conflicts and dependencies are forbidden by our results.

6. Validation

In Sect. 5, we introduce a set of criteria that, if implemented in a tool, allow automated analysis of direct consistency-
sustainment and direct consistency-improvement in rules. Since the criteria for direct consistency-sustainment are sufficient
ones, the resulting analysis is under-approximating: it can only classify some, but not all rules as sustaining with certainty.
Conversely, the criteria of direct consistency-improving rules are necessary ones, rendering the analysis over-approximating:
they can only tell us with certainty that a given rule is not improving. In our validation, we study the quality of both
approximations on a real rule set.

Specifically, we address the following research questions:

RQ1: What is the extent of under-approximation of the analysis regarding direct consistency-sustainment?
RQ2: What is the extent of over-approximation of the analysis regarding direct consistency-improvement?

6.1. Methodology

The considered rule set was generated by an automated tool, based on the rule generation approach by Burdusel et
al. [11]. The goal of that approach is to generate, from a given meta-model, search operator rules that are consistency-
sustaining with regard to the meta-model’s multiplicity constraints. Hence, it is a particularly relevant application scenario
for our analysis, since our analysis essentially tests whether the approach achieves its goal. The rules for our evaluation
were generated from the meta-model for the CRA case [15] (as introduced in Sect. 2) in the rule format of Henshin [3,4].
The overall rule set consists of seven rules related to the creation and deletion of classes and the creation and deletion
of containment references. Two of the generated rules had positive application conditions (PACs) which are of the form
17

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Table 3
Validation results for RQ1 and RQ2.

Rule Dir. cons. sustaining Dir. cons. improving

c1 c2 c′
3 c1 c2 c′

3

r1: addToClass_encapsulates_Feature + + + − ?− ?−
r2: createClass_IN_ClassModel + + + − − ?−
r3: createClass_IN_ClassModel_LB ?− + + ?+ − ?+
r4: deleteClass_IN_ClassModel + + ?− ?− ?+ −
r5: removeFromClass_encapsulates_Feature + + ?− ?− − −
r6: changeFeature_isEncapsulatedBy_TO_Class_S ?− + + ?+ ?− ?+
r7: deleteClass_IN_ClassModel_S ?− + + ?+ ?− ?+

∃ (L ↪→ P). Since the definition of constraint compatible interaction (Definition 16 being the basis for Proposition 4) does
not yet take elements into account whose existence is required by a PAC, we included the elements of these PACs in the
rules’ left-hand sides leading to equivalent rules.

Since the rule set was generated in a way that was tailored towards multiplicity constraints, we considered direct
consistency-sustainment and direct consistency-improvement with regard to three multiplicity constraints. The first two
are the same as c1 and c2 in the running example (see Fig. 6). As a third constraint c′

3, we considered another real con-
straint from the CRA case: each feature needs to be assigned to at least one class. This constraint can be expressed as a
nested graph constraint in a similar way as c2. In particular, like every multiplicity constraint these constraints are naturally
expressed as constraints in ANF, i.e., our definitions and methods are applicable.

Our criteria from Sect. 5 rely on conflicts and dependencies between certain rule pairs, in which the first rule is the
rule to be analysed, and the second rule is a check rule for some component of the constraint at hand. We performed this
analysis automatically, using the conflict and dependency analysis capabilities provided by the Henshin tool [4]. Our criteria
further specify certain properties of the identified conflicts and dependencies, the analysis of which could, in principle, be
automated. Since a full automation of the analysis is out of scope of the present work, we inspected the obtained conflicts
and dependencies manually. To reduce the possibility of manual errors, two authors double-checked the results.

In total, we check our criteria for direct consistency-sustainment and direct consistency-improvement for 21 cases, arising
from 7 rules and 3 constraints. To address the research questions, we consider the “recognition ratio”, defined as the number
of cases covered by the criterion at hand, divided by the number of all cases. In RQ1, this number quantifies the ratio of
cases where we can classify a rule as sustaining. In RQ2, this number quantifies the ratio of cases where we can classify
a rule as non-improving. In addition, we consider the “coverage ratio”, defined as the number of cases covered by the
criterion at hand, divided by the number of directly consistency-sustaining rules for RQ1 and the number of rules that are
not directly consistency-improving for RQ2.

In all cases, we obtain a real number between 0 and 1, where a number close to 1 indicates a low extent of under- or
over-approximation, respectively. We discuss the practical implications of these numbers by comparing with the alternative
of a fully manual assessment.

The artifacts for our validation (implementation, subject rules with representation as images, spreadsheet with results
analysis) are publicly available at https://github .com /dstrueber /conssus/.

6.2. Results

Table 3 shows the results of applying the criteria to the subject rules. In the table, a “+” indicates that our analysis
supports the correct classification of the case as directly consistency-sustaining, a “-” indicates a correct classification as
non-improving, and a “?” indicates that our criteria do not support any statement about the case. Each “?” is annotated
with a “+” when a rule has the property in question (i.e. is directly consistency-sustaining or -improving, resp.). Otherwise,
a “?” is annotated with a “-”.

In total, we find that our criteria lead to 16 of 21 cases being correctly classified as directly consistency-sustaining,
leading to a recognition ratio of 0.76. As all rules are classified that are consistency-sustaining, the coverage ratio is 1.0.
Furthermore, 7 of 21 cases were correctly classified as non-improving, leading to a recognition ratio of 0.33. As there are
further 7 cases where the rule is non-improving that are not covered by our criteria, the coverage ratio is 0.5.

We consider in more detail how these cases arise. For direct consistency-sustainment, 7 of the identified 16 cases follow
from the absence of relevant conflicts or dependencies and do not require further inspection. The other 9 cases follow from
inspection of the obtained conflicts and dependencies: The occurring conflicts either satisfy Criterion 1 in Definition 15—and
therefore do not have to be considered—or direct sustainment is implied by Proposition 4 in these cases. Further considering
the 5 cases where we cannot make a statement, we find that 3 of them are in fact consistency-sustaining, but not directly
so, and hence, not covered by our criterion (c1 combined with r3, r6, and r7). The other 2 cases are indeed not consistency-
sustaining at all and hence, not covered by our criterion (c′

3 combined with r4 and r5). Thus, even though our criteria are
not necessary for direct consistency-sustainment, every such case has been detected by them, which is very promising.

For direct consistency-improvement, 5 of the identified cases follow from the existence of relevant conflicts or dependen-
cies, and 2 from further inspection. Considering the remaining 14 cases, 7 of them are indeed directly consistency-improving
18

https://github.com/dstrueber/conssus/

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
(c1 and c′
3 each combined with r3, r6, and r7; c2 combined with r4), but cannot be distinguished from the other 7 non-

improving ones using our criterion. (Remember that, for being consistency-improving, a rule has to be consistency-sustaining
but not directly though.)

In conclusion, addressing RQ1, we observe good results concerning our analysis of directly consistency-sustaining rules:
The criteria recognised directly consistency-sustaining rules in 76% of all cases which are all in this setup leading to a
coverage ratio of 1. Hence, it looks like the criteria for consistency-sustainment work well. Addressing RQ2, the results
concerning the analysis of directly consistency-improving rules are not as satisfying, but manual recognition can be avoided
in 33% of all cases which is still half of the cases that could be recognised as not directly consistency-improving ones. We
conjecture that the analysis for direct consistency-improvement can catch up in the future with improved results if more
advanced criteria can be found.

6.3. Threats to validity

The external validity of our validation is threatened as we consider only one rule set (in addition to the one of our run-
ning example). Still, this rule set uses the expressivity of transformation rules and includes practically relevant constraints
of the type one would also find in other examples. While a standard benchmark of rules together with graph constraints is
not readily available, developing one is a desirable direction for future work.

The internal validity of our validation is threatened by possible mistakes in the analysis, either implementation bugs
or mistakes in the manual analysis. To reduce the likelihood of implementation errors, we used both internal engines for
conflict and dependency analysis offered by Henshin, which led to agreeing results. Since two of the authors double-checked
the manual results, we still have a reasonable level of confidence in their correctness.

7. Related work

In this paper, we introduce a graduated version of a specific logic on graphs, namely of nested graph constraints in
alternating normal form. Moreover, we focus on the interaction of this graduation with graph transformations. Therefore,
we leave a comparison with fuzzy or multi-valued logics (on graphs) to future work. Instead, we focus on works that also
investigate the interaction between the validity of nested graph constraints and the application of transformation rules.

Given a graph transformation (sequence) G ⇒ H , the validity of graph H can be established with basically three strate-
gies: (1) graph G is already valid and this validity is preserved, (2) graph G is not valid and there is a c-guaranteeing rule
applied which makes the graph valid in one step, and (3) graph G is made valid by a graph transformation (sequence)
step-by-step.

Strategies (1) and (2) are supported by the incorporation of constraints in application conditions of rules as presented in
[5] for nested graph constraints in general and implemented in Henshin [24]. As the applicability of rules enhanced in that
way can be severely restricted, improved constructions have been considered for specific forms of constraints. For constraints
of the form ∀(C, ∃C ′), for example, a suitable rule scheme is constructed in [25]. In [26], refactoring rules are checked for
the preservation of constraints of nesting level ≤ 2. In [24], two of the present authors suggested certain simplifications of
application conditions; the resulting ones are still constraint-preserving. In [27], we even showed that they result in the
logically weakest application condition that is still directly consistency-sustaining. However, the result is only shown for
negative constraints of nesting level 1. A very similar construction of negative application conditions from such negative
constraints has been suggested in [28] very recently.

Strategy (3) is followed in most of the rule-based repair approaches for graphs or models. In [9], the violation of mainly
multiplicity constraints is considered. In [7], Habel and Sandmann derived graph programs from graph constraints of nesting
level ≤ 2. In [10], they extended their results to constraints in ANF which end with ∃C or constraints of one of the forms
∃(C, ¬∃C ′) or ¬∃C . They also investigated whether a given set of rules allows to repair such a given constraint. In [29], Dyck
and Giese presented an approach to automatically check whether a transformation sequence yields a graph that is valid with
relation to specific constraints of nesting level ≤ 2. In [30,31], the authors consider model repair approaches where already
performed model changes are preserved as far as possible. Models are completed such that they become valid. All these
model repair approaches are rule-based. In contrast, Schneider et al. [32] derive graph repairs from consistency constraints
by using constraint solving techniques.

All these related approaches have in common that result graphs of transformations are considered either valid or invalid
with relation to a graph constraint; intermediate consistency grades have not been made explicit. Thereby, c-preserving
and c-guaranteeing transformations [5] focus on the full validity of the result graphs. Our newly developed notions of
consistency-sustainment and improvement are located properly in between existing kinds of transformations (as proven in
Theorems 1 and 2). These new forms of transformations make the gradual improvements in consistency explicit. While a
detailed and systematic investigation (applying the static methods developed in this paper) is future work, a first check of
the kinds of rules generated and used in model editing [33], model repair [9], and search-based model engineering [11]
reveals that—in each case—at least some of them are indeed (directly) consistency-sustaining or consistency-improving.
Therefore, we are confident that the current paper formalises properties of rules that are practically relevant in diverse
application contexts. Work on partial graphs as in [34], for example, investigates the validity of constraints in families of
graphs which is not our focus here and therefore, not further considered.
19

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Stevens [35] discussed similar challenges in the specific context of bidirectional transformations. There, consistency is a
property of a pair of models (or graphs) rather than between a graph and constraint. It may be argued that our formalisation
generalises that of [35], as consistency between two graphs could be represented as consistency between a graph and a
constraint by creating a union graph and making the consistency condition explicit as a constraint. Several concepts are
introduced in [35] that initially seem to make sense only in the specific context of bidirectional transformations (such as
the idea of

→
R candidates, which are best-possible consistency restorations that a bi-directional transformation can produce),

but may provide inspiration for a further extension of our framework with corresponding concepts (e.g., with a partial
ordering of consistency-improving rule applications based on the amount of improvement they produce).

8. Conclusions

In this paper, we have introduced a definition of graph consistency as a graduated property, which allows for graphs
to be partially consistent w.r.t. a graph constraint, inducing a partial ordering between graphs based on the number
of constraint violations they contain. Two new forms of transformation can be identified as consistency-sustaining and
consistency-improving, respectively. They are properly located in between the existing notions of constraint-preserving
and constraint-guaranteeing transformations. Lifting them to rules, we have presented criteria for determining whether
a rule is consistency-sustaining or -improving w.r.t. a given graph constraint. We have practically validated these criteria
in an application case from search-based model engineering. Our validation shows that our criteria, especially the one for
consistency-sustainment, allow considerably reducing the manual effort for checking automatically generated rules.

While the criteria presented allow us to check a given rule against a graph constraint, their lifting to a set of constraints
is the next step to go. Furthermore, efficient algorithms are needed that implement our static analysis of rules and are able
to construct consistency-sustaining or -improving rules from a set of constraints.

CRediT authorship contribution statement

Jens Kosiol: Conceptualization, Writing – original draft, Writing – review & editing. Daniel Strüber: Conceptualization,
Data curation, Writing – original draft, Writing – review & editing. Gabriele Taentzer: Conceptualization, Writing – original
draft, Writing – review & editing. Steffen Zschaler: Conceptualization, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank the anonymous reviewers for their helpful comments. This work was partially funded by the German Research
Foundation (DFG), project “Triple Graph Grammars (TGG) 2.0” and research fellowship with project number 413074939.

Appendix A. Detailed proofs

Proof of Lemma 1. The identity morphism idC0 satisfies c′ but not c. This is clear, whenever c = false or c′ = true.
If c = ∃ (a1 : C0 ↪→ C1, d) or c′ = ∀ (a′

1 : C0 ↪→ C ′
1, d

′), there cannot exist any injective morphism p1 : C1 ↪→ C0 such that
p1 ◦ a1 = idC0 . Otherwise, a1 would be an isomorphism which is excluded by definition. Hence, idC0 � c. Likewise there
cannot be an injective morphism p′

1 : C ′
1 ↪→ C0 such that p′

1 ◦ a′
0 = idC0 . This implies idC0 |= c′ . �

Proof of Proposition 1. First, 0 ≤ ci(G, c) ≤ 1 since in any case 0 ≤ ncv(G, c) ≤ ro(G, c), i.e., 0 ≤ ncv(G,c)
ro(G,c) ≤ 1. Moreover,

ci(G, c) = 1 if and only if ncv(G, c) = 0 if and only if G |= c. The last claim for existential constraints follows from the
fact that ncv(G,c)

ro(G,c) ∈ {0, 1} by definition of ncv(G, c) and ro(G, c). �
Proof of Proposition 2. In the first case, by definition, the number of constraint violations strictly decreases with every step.
In the second case, it decreases with every step, as long as constraint violations still exist, and remains 0 afterwards. As
finite graphs only allow for finitely many constraint violations, both claims follow: ncv(G0, c) constitutes an upper bound
on the possible length of sequences of consistency-improving transformations (w.r.t. c) starting at G0 . �
Proof of Lemma 2. 1. Set pD(x) := g−1(p(x)) for all x ∈ C . Since g−1(p(C)) belongs to the domain of trt by assumption,

this results in a graph morphism with the desired property. For the other direction, the existence of pD : C ↪→ D with
p = g ◦ pD ensures that p(C) belongs to the domain of trt , i.e., trt ◦ p is total.

2. The second statement is completely symmetrical by considering tr−1
t as a partial (injective) morphism from H to G . �
20

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Proof of Theorem 1. Throughout the proof, let c be the relevant constraint and t : G ⇒r,m H a transformation.
We first show that a c-guaranteeing transformation is directly consistency-sustaining. By definition, guarantee of a con-

straint implies its preservation [5]. In particular, the statement that guarantee implies direct sustainment is true in the case
of existential constraints. For the universal case, by H |= c, either occ(H, c) = ro(H, c) = 0 or ncv(H, c) = 0. In either case,
the definition of direct consistency-sustainment is met: All preserved as well as all newly created occurrences of c in H are
valid.

Next, we show that direct consistency-sustainment implies consistency-sustainment. In the case of existential constraints,
if G |= c, then preservation implies H |= c such that ncv(G, c) = ncv(H, c) = 0. If G � c, i.e., if ncv(G, c) = 1, either ncv(H, c) =
1 or ncv(H, c) = 0 may hold. In both cases, ncv(G, c) ≥ ncv(H, c). In the case of universal constraints, the two conditions
together imply that ncv(G, c) ≥ ncv(H, c). This is because any constraint violation in H must stem from one that already
exists in G .

Finally, let a consistency-sustaining transformation be given. If G |= c, then 0 = ncv(G, c) ≥ ncv(H, c) ≥ 0, and ncv(H, c) =
0 implies H |= c. This means, the transformation is c-preserving.

Since the above statements are true on the transformation level, they can be directly lifted to the rule level. �
Proof of Theorem 2. Again, throughout the proof, let c be the relevant constraint and G ⇒ H a transformation. Note that,
for both notions of improvement, an improving transformation G ⇒ H assumes G |= c by definition.

First, let G ⇒ H be a c-guaranteeing transformation where G |= c. By Theorem 1, this transformation is consistency-
sustaining in particular. Hence, when c is an existential constraint, the transformation is directly consistency-improving by
definition. When c is a universal constraint, we have the following: G |= c implies that there is an injective morphism
p : C ↪→ G with p |= d. As H |= c by definition of c-guaranteeing rule applications, either trt ◦ p is not total or trt ◦ p |= d.
This means that either the first or the second condition of the definition of a directly consistency-improving transformation
is met. Therefore, the transformation is directly consistency-improving.

In the following we show that every directly consistency-improving transformation is consistency-improving. The last
claim, that every consistency-improving transformation is consistency-sustaining, holds again by definition.

First, every directly consistency-improving transformation is directly consistency-sustaining by definition and by Theo-
rem 1 every directly consistency-sustaining transformation is consistency-sustaining. This means that we only have to check
the conditions on the number of constraint violations. By assumption ncv(G, c) > 0. When c is an existential constraint, the
transformation is even c-guaranteeing by definition and we obtain H |= c. Hence,

ncv(G, c) = 1 > 0 = ncv(H, c)

and the transformation is consistency-improving. When c is universal, there exists (at least) one occurrence p : C ↪→ G that
meets either the first or the second condition of the formula. In either case, this has the effect of decreasing ncv(G, c) by
one. Moreover, direct consistency-sustainment ensures that no new occurrences are introduced that violate the constraint.
In summary, ncv(G, c) > ncv(H, c) and the transformation is consistency-improving.

That a consistency-improving transformation is also consistency-sustaining is immediate from the definition.
On the rule level, (direct) consistency-improvement is defined in such a way that at least one (directly) consistency-

improving transformation via that rule needs to exist. Hence, the proven statements on the transformation level lift to the
rule level as long as there exists a c-guaranteeing transformation via that rule starting at an inconsistent graph G . �

The following proofs, which show the correctness of our criteria for direct consistency-sustainment and direct
consistency-improvement, closely study how transformations interact with occurrences of graphs from a constraint. A sim-
ple but important observation is that the track morphism of a transformation preserves occurrences in the sense stated in
the next lemma.

Lemma 3 (Interaction of track morphism and occurrences). Let a transformation t : G ⇒r,m H with transformation morphisms G
g←−↩

D
h

↪−→ H and a condition c be given that contains an injective morphism ai : Ci−1 ↪→ Ci . Given injective morphisms pi−1 : Ci−1 ↪→ G
and pi : Ci ↪→ G such that pi−1 = pi ◦ ai and the track morphism trt : G ��� H is total when restricted to pi(Ci), then p′

i−1 = p′
i ◦ ai ,

where p′
i−1 := trt ◦ pi−1 and p′

i := trt ◦ pi . Likewise, given injective morphisms p′
i−1, p

′
i : Ci−1, Ci ↪→ H such that p′

i−1 = p′
i ◦ ai and

pi(Ci) is contained in trt(G), then pi−1 = pi ◦ ai , where pi−1 := tr−1
t ◦ pi−1 and pi := tr−1

t ◦ pi .

Proof. First, Lemma 2 ensures that trt being total when restricted to pi(Ci) can equivalently be expressed by stating that
there exists an (injective) morphism pi,D : Ci ↪→ D such that pi = g ◦ pi,D (compare Fig. 7 or A.13). Moreover, we have p′

i :=
trt ◦ pi = h ◦ pi,D . The analogously implied morphism pi−1,D : Ci−1 ↪→ D with pi−1 = g ◦ pi−1,D is given as pi−1,D = pi,D ◦ai :
We calculate

g ◦ pi,D ◦ ai = pi ◦ ai

= pi−1
21

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
G D H

C2

C1

C0

g h

p2,Dp2 p′
2

a2

p1,D

p1 p′
1

a1

p0,D

p0 p′
0

Fig. A.13. Relations of satisfying morphisms.

= g ◦ pi−1,D ,

which implies

pi,D ◦ ai = pi−1,D

since g is injective. Composing this equation with h results in p′
i ◦ ai = p′

i−1 as desired.
The second statement follows in exactly the same manner, switching the roles of h and g . �
The following technical lemma is the key to showing that rules that interact in a consistency-sustaining manner with a

constraint are indeed directly consistency-sustaining w.r.t. it. As well as most of the following results, this lemma is proved
inductively as explained in Remark 1.

Lemma 4 (Preservation and reflection). Let a condition c = Q (a1 : C0 ↪→ C1, d) in ANF with nl(c) ≥ 1 and a rule r be given such that
r interacts in a consistency-sustaining manner with c. In case c is an existential condition, all transformations t : G ⇒r,m H preserve
satisfying morphisms: For every injective morphism p0 : C0 ↪→ G such that p0 |= c and trt ◦ p0 is total, i.e., there exists an injective
morphism p0,D : C0 ↪→ D with g ◦ p0,D = p0 , the induced injective morphism p′

0 := h ◦ p0,D satisfies the condition c.
In case c is a universal condition, all transformations t : G ⇒r,m H reflect occurrences and sustain validity of preserved occur-

rences: For every injective morphism p′
1 : C1 ↪→ H such that for p′

0 := p′
1 ◦a1 we have p′

0(C0) ⊆ trt(G) there is an injective morphism
p1,D : C1 ↪→ D such that h ◦ p1,D = p′

1 . Moreover, for every injective morphism p1 : C1 ↪→ G with p1 |= d, the existence of an injective
morphism p1,D : C1 ↪→ D such that g ◦ p1,D = p′

1 implies p′
1 := h ◦ p1,D |= d.

Proof. We prove the statement using structural induction starting at conditions of nesting level 1. Throughout the whole

proof let G
g←−↩ D

h
↪−→ H be the transformation morphisms of a transformation step t : G ⇒r,m H via r at match m and

compare Fig. A.13 for different occurring morphisms and their relations.
As induction basis, first assume c = ∃ (a1 : C0 ↪→ C1, true) and let p0 : C0 ↪→ G be such that p0 |= c and trt ◦ p0 is total.

Satisfaction of c via p0 implies the existence of an injective morphism p1 : C1 ↪→ G such that p1 ◦ a1 = p0. Consider p1 as
a match for checkC1 in G. Suppose transformation t to cause a conflict for the application of checkC1 at p1. Without loss
of generality, we can assume this conflict to be a weak critical pair; otherwise we can consider the weak critical pair that
embeds into it. (We exemplary provide the full details for this line of reasoning in the proof of Lemma 5; this constitutes
the most complex situation where we need this argument.) Since C1 is bound by an existential quantifier, unproblematic
deletions in conflicts implies that t already causes a conflict for the transformation G ⇒checkC0 ,p0 G . But this contradicts the
totality of trt ◦ p0. Thus, t cannot cause a conflict, which means that there exists an injective morphism p1,D : C1 ↪→ D such
that g ◦ p1,D = p1. Moreover, by Lemma 3 we obtain p′

1 ◦ a1 = p′
0 for p′

j := h ◦ p j,D , where j = 0, 1. In particular p′
0 |= c as

p′
1 |= true.

Secondly, assume c = ∀ (a1 : C0 ↪→ C1, false). Sustainment of validity is trivially true in this case, as no morphism
satisfies false. Thus, assume p′

1 : C1 ↪→ H to be an occurrence of C1 in H such that for p′
0 := p′

1 ◦ a1 we have p′
0(C0) ⊆

trt(G). We can consider p′
1 as a match for rule checkC1 in H . By assumption, any possible dependency of this match on

the transformation t is unproblematic (as specified in Condition 2 of Definition 15). However, an unproblematic dependency
implies that p′

0(C0) ⊆ trt(G) does not hold (as at least one of the elements from p′
0(C0) gets newly created by transformation

t . Therefore, the application of checkC1 at match p′
1 is sequentially independent from t , i.e., there is an injective morphism

p1,D : C1 ↪→ D such that h ◦ p1,D = p′
1 as desired.

For the inductive step, first let c = ∃ (a1 : C0 ↪→ C1, d) be an existential condition with d = ∀ (a2 : C1 ↪→ C2, d′) being a
universal one such that nl(d) ≥ 1. Let p0 : C0 ↪→ G be such that p0 |= c. Like above, we obtain p′

1 : C1 ↪→ H such that
p′ ◦ a1 = p′ ; in particular, p′ (C1) ⊆ trt(G). We have to show that p′ |= d, i.e., that p′ |= d′ for any injective morphism
1 0 1 1 2

22

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
p′
2 : C2 ↪→ H with p′

2 ◦ a2 = p′
1. Thus, let p′

2 be such a morphism. By the inductive hypothesis, reflection of occurrences
holds for the condition d. This means, we obtain an injective morphism p2,D : C2 ↪→ D; moreover, by Lemma 3, the induced
morphism p2 := g ◦ p2,D satisfies p2 ◦ a2 = p1. In particular, since p0 |= c, necessarily p2 |= d′ . By the induction hypothesis,
since t preserves this valid occurrence, it also sustains its validity, which means that p′

2 |= d′ .
Secondly, let c = ∀ (a1 : C0 ↪→ C1, d) be a universal condition with d = ∃ (a2 : C1 ↪→ C2, d′) being an existential one such

that nl(d) ≥ 1. Reflection of occurrences is exactly shown as in the base step of the induction. Thus, let p1 : C1 ↪→ G be such
that p1 |= d. We have to show that, whenever p1,D : C1 ↪→ D with g ◦ p1,D = p1 exists, also p′

1 := h ◦ p1,D |= d. But existence
of p1,D just means that trt ◦ p1 is total. By inductive hypothesis and since d is existential, the validity of d is preserved by
the transformation t , i.e., p′

1 |= d. �
Proof of Theorem 3. The whole proof is a specialisation of the above lemma to the case of constraints. Let t : G ⇒r,m H be
a transformation via r and c be a constraint in ANF with nl(c) ≥ 1 such that r and c interact in a consistency-sustaining
manner.

First, assume that c = ∃ (a1 : ∅ ↪→ C1, d) is existential. In this case, we have to show that G |= c implies H |= c. If G |= c,
i.e., if iG |= c, where iG : ∅ ↪→ G is the empty morphism, Lemma 4 implies that iH : ∅ ↪→ H |= c since trt is always total on
the empty graph.

If c = ∀ (a1 : ∅ ↪→ C1, d) is universal, we have to check the two requirements defining direct consistency-sustainment.
The first requirement is directly stated in Lemma 4. Moreover, this lemma also ensures that the second condition is true,
namely for trivial reasons: There is no p′

1 : C1 ↪→ H such that no p1 : C1 ↪→ G exists with p′
1 = trt ◦ p1. �

Proof of Proposition 3. We show that r interacts sustainingly with c. Then, Theorem 3 ensures the correctness of the state-
ment.

Hence, first, let Ci be an existentially bound graph of c. Let there be a pair of transformations (t1 : G ⇒r,m H, t2 :
G ⇒checkCi ,pi G) such that t1 causes a conflict for t2. This means, the set m(L \ K) ∩ pi(Ci) is not empty. We have to
show that Eq. (1) holds, i.e., that one of the elements already stems from Ci−1. For this, consider the graph P that arises by
restricting G to the images of m and pi . The morphisms m and pi (considered as morphisms with codomain P) are a pair
of injective and jointly surjective morphisms. Since m is a match for r, in particular m |= ac∃ . This means, there is no j ∈ CLi
such that P ∼= P j . Therefore, m(L \ K) ∩ pi(Ci) � pi(Ci \ ai(Ci−1)) which is equivalent to Eq. (1).

Next, let Ci be a universally bound graph of c. Let there be a sequence of transformations G ⇒r,m H ⇒checkCi ,pi H .
We have to show that the second transformation is sequentially independent from the first. Since checkCi does not delete
elements and is not equipped with an application condition, for this it is enough to show that n(R) ∩ pi(Ci) ⊆ n(K) or,
equivalently, n(R \ K) ∩ pi(Ci) = ∅ where n is the comatch of the first transformation step. We consider the graph P that
arises by restricting H to the images of n(R) and pi(Ci). The morphisms n and pi (considered as morphisms with codomain
P) are a pair of injective and jointly surjective morphisms. Again, since m is a match for r, m |= ac∀ . In particular, if there
were a graph P j, j ∈ CRi such that P ∼= P j , by construction of Left, ac∀ would have blocked the application of r at m. This
means, pi(Ci) ∩ n(R \ K) = ∅, as desired. �

Again, we first introduce a technical lemma on which we will base the proof of Proposition 4. In this proof, we exemplary
provide the details of how a property we require for all weak critical pairs (resp. all weak critical sequences) is even valid
for all pairs of conflicting transformations (sequentially dependent transformations), then.

Lemma 5 (Preservation and reflection II). Let a condition c = Q (a1 : C0 ↪→ C1, d) in ANF with nl(c) ≥ 1 and a rule r be given such
that r and c interact constraint-compatibly. In case c is an existential condition, all transformations t : G ⇒r,m H preserve satisfying
morphisms: For every injective morphism p0 : C0 ↪→ G such that p0 |= c and trt ◦ p0 is total, i.e., there exists an injective morphism
p0,D : C0 ↪→ D with g ◦ p0,D = p0 , the induced injective morphism p′

0 := h ◦ p0,D satisfies the condition c.
In case c is a universal condition, all transformations t : G ⇒r,m H satisfy newly created occurrences and sustain validity

of preserved occurrences: For every injective morphism p′
1 : C1 ↪→ H, if there is no injective morphism p1,D : C1 ↪→ D such that

h ◦ p1,D = p′
1 , then p′

1 |= d. Moreover, for every injective morphism p1 : C1 ↪→ G with p1 |= d, the existence of an injective morphism
p1,D : C1 ↪→ D such that g ◦ p1,D = p′

1 implies p′
1 := h ◦ p1,D |= d.

Proof. Again, we prove the statement using structural induction for conditions in ANF with nesting level ≥ 1. Throughout

the whole proof let G
g←−↩ D

h
↪−→ H be a span resulting from a transformation t : G ⇒r,m H via r at match m.

As induction basis, first assume c = ∃ (a1 : C0 ↪→ C1, true) and let p0 : C0 ↪→ G be such that p0 |= c and trt ◦ p0 is total,
i.e., there exists an injective morphism p0,D : C0 ↪→ D such that g ◦ p0,D = p0 (compare Lemma 2); again p′

0 := h ◦ p0,D .
We have to show p′

0 |= c. Satisfaction of c via p0 implies the existence of an injective morphism p1 : C1 ↪→ G such that
p1 ◦ a1 = p0. Either t does not cause a conflict for the application of checkC1 at match p1. Then we have p′

0 |= c exactly
as in the proof of Lemma 4. Or t causes such a conflict. By completeness of critical pairs and every critical pair being a
weak critical pair, there exists a weak critical pair (X ⇒r,o1 H X , X ⇒checkC1 ,o2 X that embeds into the conflicting pair of
transformations via an injective morphism f : X ↪→ G such that f ◦ o1 = m and f ◦ o2 = p1 (see, e.g., [36, Definition 5.40
23

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
C0

R K L C1 C1 C1

H X D X X X X

H D G G G

a1

õ1 o1 o2

f H f D f

hX gX

h g

m p1

p0,D X

p0,D

p̄′
1,X

Fig. A.14. Preservation of satisfaction via constraint-compatible conflicts.

and Theorem 5.41]). This whole situation is depicted in Fig. A.14, where all four squares are pushouts and p0 = p1 ◦ a1 is
omitted.

First, since D X is also a pullback object and g ◦ p0,D = p0 = p1 ◦ a1 = f ◦ o2 ◦ a1, there exists an injective morphism
p0,D X : C0 ↪→ D X such that p0,D = f D ◦ p0,D X and p0,X := o2 ◦ a1 = g X ◦ p0,D X . Moreover, there cannot exist any injective
morphism p1,D X : C1 ↪→ D X such that g X ◦ p1,D X = o2. Otherwise, we would obtain g ◦ f D ◦ p1,D X = f ◦ g X ◦ p1,D X = o2 ◦ f =
p1, which would contradict the transformation t to cause a conflict for G ⇒checkC1 ,p1 G . This means, the weak critical
sequence constitutes a problematic conflict (i.e., Eq. (1) is violated). Thus, by assumption, there is an injective morphism
p̄′

1,X : C1 ↪→ H X such that p′
0,X := hX ◦ p0,D X = p̄′

1,X ◦ a1. For p′
1 := f H ◦ p̄′

1,X we can then compute

p′
1 ◦ a1 = f H ◦ p̄′

1,X ◦ a1

= f H ◦ hX ◦ p0,D X

= h ◦ f D ◦ p0,D X

= h ◦ p0,D = p′
0.

Hence, p′
0 |= c.

Secondly, assume c = ∀ (a1 : C0 ↪→ C1, false). Sustainment of validity is trivially true in this case, as no morphism
satisfies false. Moreover, there cannot be any new occurrence of C1 in H because this would induce a weak critical
sequence for r and checkC1 , which is excluded since C1 is the last graph of c.

For the inductive step, first let c = ∃ (a1 : C0 ↪→ C1, d) be an existential condition with d = ∀ (a2 : C1 ↪→ C2, d′) being a
universal one such that nl(d) ≥ 1. Let p0 : C0 ↪→ G be such that p0 |= c. Like in the base step, we obtain p′

1 : C1 ↪→ H such
that p′

1 ◦a1 = p′
0. We have to show that p′

1 |= d, i.e., that p′
2 |= d′ for any injective morphism p′

2 : C2 ↪→ H with p′
2 ◦a2 = p′

1.
Thus, let p′

2 be any such morphism. Either (i), there exists an injective morphism p2,D : C2 ↪→ D such that p′
2 = h ◦ p2,D . By

Lemma 3, we obtain p2 ◦ a2 = p1 for p2 := g ◦ p2,D . In particular, p2 |= d′ as p1 |= d. Thus, by inductive hypothesis, p′
2 |= d′ .

Or (ii), no such morphism p2,D exists. In that case, we directly obtain p′
2 |= d′ by the inductive hypothesis.

Finally, let c = ∀ (a1 : C0 ↪→ C1, d) be a universal condition with d = ∃ (a2 : C1 ↪→ C2, d′) being an existential one such
that nl(d) ≥ 1. First, let p′

1 : C1 ↪→ H be a new occurrence, i.e., assume no injective morphism p1,D : C1 ↪→ D to exist such
that p′

1 = h ◦ p1,D . In this case, the transformation H ⇒checkC1 ,p′
1

H sequentially depends on the given transformation t . As
for the conflicting case above, completeness of critical pairs (and the duality between conflicts and dependencies) provides
us with a weak critical sequence G X ⇒r,o1 X ⇒checkC1 ,o2 X that can be embedded into the given sequence via an injective
morphism f : X ↪→ H ; in particular, f ◦ o2 = p′

1. By assumption, there thus exists an injective morphism p̄′
2 : C2 ↪→ X such

that p̄′
2 ◦ a2 = o2. By composition with f we obtain p′

2 := f ◦ p̄′
2 which satisfies p′

2 ◦ a2 = f ◦ p̄′
2 ◦ a2 = f ◦ o2 = p′

1. We have
to show that p′

2 |= d′ . However, d′ is either true such that p′
2 |= d′ trivially holds, or it is another universal condition with

nl(d′) < nl(c). Then d′ = ∀(a3 : C2 ↪→ C3, d′′) and every occurrence of C3 in H extending p′
1 is necessarily new (otherwise

the original one of C1 could not be). Thus, by the inductive hypothesis on universal conditions, again p′
2 |= d′ .

Second, let p1 : C1 ↪→ G be such that p1 |= d and an injective morphism p1,D : C1 ↪→ D with p1 = g ◦ p1,D exists.
As trt ◦ p1 is total (as guaranteed by the existence of p1,D) and d is an existential constraint, the induced morphism
p′

1 := h ◦ p1,D satisfies d by the inductive hypothesis on existential conditions. �
Proof of Proposition 4. Basically, this proposition follows from the above lemma in the same way as Theorem 3 follows
from Lemma 4. The only difference is that in the case of universal constraints, Lemma 5 directly states the second require-
ment for direct sustainment (instead of ensuring it in a trivial way). �
Lemma 6. Let c = Q (a1 : C0 ↪→ C1, d) be a condition over C0 in ANF with nl(c) ≥ 1 and t : G ⇒r,m H a transformation.
24

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
Whenever c is existential, p0 : C0 ↪→ G � c, p′
0 := trt ◦ p0 is total, and p′

0 |= c, then r has a consistency-improving interaction
with c.

Whenever c is universal and there exists an injective morphism p1 : C1 ↪→ G with p1 � d such that for p0 := p1 ◦ a1 the morphism
trt ◦ p0 is total and p′

1 := trt ◦ p1 is either (i) total and p′
1 |= d or (ii) is not total, then r has a consistency-improving interaction with c.

Proof. Again, we prove the statement using structural induction for conditions in ANF. Let the transformation t be given by

the span G
g←−↩ D

h
↪−→ H .

For the inductive basis, first assume c = ∃ (a1 : C0 ↪→ C1, true) to be existential and p0 : C0 ↪→ G be such that p0 � c,
p′

0 := trt ◦ p0 is total, and p′
0 |= c. This means, there exists an injective morphism p′

1 : C1 ↪→ H such that p′
1 ◦ a1 = p′

0. In
particular, the transformation H ⇒checkC1 ,p′

1
H sequentially depends on t; otherwise, the morphism p1 := g ◦ p1,D would

witness p0 |= c (see Lemma 3). Moreover, this dependency satisfies

n(R \ K) ∩ p′
1(a1(C0)) = ∅, (A.1)

where n is the co-match of the transformation, i.e., Eq. (4) holds; otherwise, the morphism p0,D relating p0 and p′
0 could

not exist. Again, without loss of generality, this dependency constitutes a weak critical sequence. In particular, r has a
consistency-improving interaction with c.

Second, assume c = ∀ (a1 : C0 ↪→ C1, false) to be universal and p1 : C1 ↪→ G an injective morphism such that trt ◦ p0

is total, where p0 := p1 ◦ a1, and p1 � d = false (which is trivially true). If p′
1 := trt ◦ p1 is total, p′

1 |= d = false cannot
hold. So we only need to consider the case where trt ◦ p1 is not total. In that case, the transformation t causes a conflict for
the transformation G ⇒checkC1 ,p1 G such that

m(L \ K) ∩ p1(a1(C0)) = ∅, (A.2)

i.e., Eq. (3) is satisfied. Otherwise, the morphism p′
0 could not be total. Again, without loss of generality, this conflict

constitutes a weak critical pair. In particular, r has a consistency-improving interaction with c.
For the inductive step, again first assume c = ∃ (a1 : C0 ↪→ C1, d) to be existential, d a universal condition with nl(d) ≥ 1,

and p0 : C0 ↪→ G be such that p0 � c, p′
0 := trt ◦ p0 is total, and p′

0 |= c. First, p′
0 |= c implies that there exists an injective

morphism p′
1 : C1 ↪→ H such that p′

1 ◦ a1 = p′
0 and p′

1 |= d. Either (i), there exists an injective morphism p1,D : C1 ↪→ D
such that h ◦ p1,D = p′

1. Then, by Lemma 3, p1 := g ◦ p1,D satisfies p1 ◦ a1 = p0. Hence, p1 � d (otherwise, p0 |= c). But
trt ◦ p1 = p′

1 is total. Thus, the inductive hypothesis (on universal conditions) applies to p1 and d and r has a consistency-
improving interaction with c. Or (ii), no such morphism p1,D exists. In that case, a weak critical sequence satisfying Eq. (4)
exists exactly as shown in the inductive base step. Again, r has a consistency-improving interaction with c.

Finally, let c = ∀ (a1 : C0 ↪→ C1, d) be universal, d an existential condition with nl(d) ≥ 1, and p1 : C1 ↪→ G an injective
morphism such that trt ◦ p0 is total, where p0 := p1 ◦ a1, and p1 � d. First, assume that p′

1 := trt ◦ p1 is total and p′
1 |= d.

In that case, the inductive hypothesis (on existential conditions) applies to p1 and d. Hence, r has a consistency-improving
interaction with c. Secondly, assume p′

1 to not be total. In that case, a weak critical pair satisfying Eq. (3) exists exactly as
shown in the inductive base step. Again, r has a consistency-improving interaction with c. �
Proof of Theorem 4. Again, to prove Theorem 4 one just instantiates Lemma 6 to the special case of conditions, noting that
on the rule level, direct consistency-improvement in particular implies the existence of a directly consistency-improving
transformation G ⇒r,m H . �
References

[1] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph Transformation, Monographs in Theoretical Computer Science, Springer,
2006.

[2] R. Heckel, G. Taentzer, Graph Transformation for Software Engineers – with Applications to Model-Based Development and Domain-Specific Language
Engineering, Springer, 2020.

[3] T. Arendt, E. Biermann, S. Jurack, C. Krause, G. Taentzer, Henshin: advanced concepts and tools for in-place EMF model transformations, in: D.C. Petriu,
N. Rouquette, Ø. Haugen (Eds.), Model Driven Engineering Languages and Systems – 13th International Conference, MODELS 2010, Oslo, Norway,
October 3–8, 2010, Proceedings, Part I, in: Lecture Notes in Computer Science, vol. 6394, Springer, 2010, pp. 121–135.

[4] D. Strüber, K. Born, K.D. Gill, R. Groner, T. Kehrer, M. Ohrndorf, M. Tichy Henshin, A usability-focused framework for EMF model transformation
development, in: J. de Lara, D. Plump (Eds.), Graph Transformation – 10th International Conference, ICGT 2017, Held as Part of STAF 2017, Marburg,
Germany, July 18–19, 2017, Proceedings, in: Lecture Notes in Computer Science, vol. 10373, Springer, 2017, pp. 196–208.

[5] A. Habel, K.-H. Pennemann, Correctness of high-level transformation systems relative to nested conditions, Math. Struct. Comput. Sci. 19 (2009)
245–296, https://doi .org /10 .1017 /S0960129508007202.

[6] B. Nuseibeh, S. Easterbrook, A. Russo, Making inconsistency respectable in software development, J. Syst. Softw. 58 (2) (2001) 171–180, https://doi .org /
10 .1016 /S0164 -1212(01)00036 -X.

[7] A. Habel, C. Sandmann, Graph repair by graph programs, in: M. Mazzara, I. Ober, G. Salaün (Eds.), Software Technologies: Applications and Foundations
– STAF 2018 Collocated Workshops, Toulouse, France, June 25–29, 2018, Revised Selected Papers, in: Lecture Notes in Computer Science, vol. 11176,
Springer, 2018, pp. 431–446.

[8] N. Nassar, J. Kosiol, H. Radke, Rule-based repair of EMF models: formalization and correctness proof, in: A. Corradini (Ed.), Eighth International Work-
shop on Graph Computation Models – Electronic Pre-Proceedings, 2017, http://pages .di .unipi .it /corradini /Workshops /GCM2017 /papers /Nassar-Kosiol -
Radke -GCM2017.pdf.
25

http://refhub.elsevier.com/S0167-6423(21)00122-2/bib86EA775DB21D4DF6986481BC53A90A3Bs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib86EA775DB21D4DF6986481BC53A90A3Bs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib24F04967C622932F7E0D14C6C6116BB9s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib24F04967C622932F7E0D14C6C6116BB9s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibBDE5AD3E8B33A428A1B61569144227E2s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibBDE5AD3E8B33A428A1B61569144227E2s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibBDE5AD3E8B33A428A1B61569144227E2s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibC5A418240CCF4C1FBA975EC74F2A8BB0s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibC5A418240CCF4C1FBA975EC74F2A8BB0s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibC5A418240CCF4C1FBA975EC74F2A8BB0s1
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1016/S0164-1212(01)00036-X
https://doi.org/10.1016/S0164-1212(01)00036-X
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib48059BC517D388323C25B7F585EEEF1Es1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib48059BC517D388323C25B7F585EEEF1Es1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib48059BC517D388323C25B7F585EEEF1Es1
http://pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf
http://pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf

J. Kosiol, D. Strüber, G. Taentzer et al. Science of Computer Programming 214 (2022) 102729
[9] N. Nassar, H. Radke, T. Arendt, Rule-based repair of EMF models: an automated interactive approach, in: E. Guerra, M. van den Brand (Eds.), Theory
and Practice of Model Transformation – 10th International Conference, ICMT@STAF 2017, Marburg, Germany, July 17–18, 2017, Proceedings, in: Lecture
Notes in Computer Science, vol. 10374, Springer, 2017, pp. 171–181.

[10] C. Sandmann, A. Habel, Rule-based graph repair, in: R. Echahed, D. Plump (Eds.), Proceedings Tenth International Workshop on Graph Computation
Models, GCM@STAF 2019, Eindhoven, the Netherlands, 17th July 2019, in: EPTCS, vol. 309, 2019, pp. 87–104.

[11] A. Burdusel, S. Zschaler, S. John, Automatic generation of atomic consistency preserving search operators for search-based model engineering, in: M.
Kessentini, T. Yue, A. Pretschner, S. Voss, L. Burgueño (Eds.), 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, MODELS 2019, Munich, Germany, September 15–20, 2019, IEEE, 2019, pp. 106–116.

[12] M. Fleck, J. Troya, M. Wimmer, Search-based model transformations, J. Softw. Evol. Process 28 (12) (2016) 1081–1117, https://doi .org /10 .1002 /smr.1804.
[13] J. Kosiol, D. Strüber, G. Taentzer, S. Zschaler, Graph consistency as a graduated property – consistency-sustaining and -improving graph transformations,

in: F. Gadducci, T. Kehrer (Eds.), Graph Transformation – 13th International Conference, ICGT 2020, Held as Part of STAF 2020, Bergen, Norway, June
25–26, 2020, Proceedings, in: Lecture Notes in Computer Science, vol. 12150, Springer, 2020, pp. 239–256.

[14] M. Bowman, L.C. Briand, Y. Labiche, Solving the class responsibility assignment problem in object-oriented analysis with multi-objective genetic algo-
rithms, IEEE Trans. Softw. Eng. 36 (6) (2010) 817–837, https://doi .org /10 .1109 /TSE .2010 .70.

[15] M. Fleck, J. Troya, M. Wimmer, The class responsibility assignment case, in: A. García-Domínguez, F. Krikava, L.M. Rose (Eds.), Proceedings of the 9th
Transformation Tool Contest, Co-Located with the 2016 Software Technologies: Applications and Foundations (STAF 2016), Vienna, Austria, July 8, 2016,
in: CEUR Workshop Proceedings, vol. 1758, CEUR-WS.org, 2016, pp. 1–8, http://ceur-ws .org /Vol -1758 /paper1.pdf.

[16] D. Strüber, Generating efficient mutation operators for search-based model-driven engineering, in: E. Guerra, M. van den Brand (Eds.), Theory and
Practice of Model Transformation – 10th International Conference, ICMT@STAF 2017, Marburg, Germany, July 17–18, 2017, Proceedings, in: Lecture
Notes in Computer Science, vol. 10374, Springer, 2017, pp. 121–137.

[17] A. Burdusel, S. Zschaler, D. Strüber, MDEoptimiser: a search based model engineering tool, in: Ö. Babur, D. Strüber, S. Abrahão, L. Burgueño, M. Gogolla,
J. Greenyer, S. Kokaly, D.S. Kolovos, T. Mayerhofer, M. Zahedi (Eds.), Proceedings of the 21st ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, MODELS 2018, Copenhagen, Denmark, October 14–19, 2018, ACM, 2018, pp. 12–16.

[18] M.T. Jensen, Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimisation, J. Math. Model. Algorithms 3 (4) (2004)
323–347, https://doi .org /10 .1007 /s10852 -005 -2582 -2.

[19] D. Plump, Confluence of graph transformation revisited, in: A. Middeldorp, V. van Oostrom, F. van Raamsdonk, R.C. de Vrijer (Eds.), Processes, Terms
and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday, in: Lecture Notes in Computer
Science, vol. 3838, Springer, 2005, pp. 280–308.

[20] L. Lambers, H. Ehrig, F. Orejas, Conflict detection for graph transformation with negative application conditions, in: A. Corradini, H. Ehrig, U. Montanari,
L. Ribeiro, G. Rozenberg (Eds.), Graph Transformations, Third International Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil, September 17–23,
2006, Proceedings, in: Lecture Notes in Computer Science, vol. 4178, Springer, 2006, pp. 61–76.

[21] L. Lambers, K. Born, J. Kosiol, D. Strüber, G. Taentzer, Granularity of conflicts and dependencies in graph transformation systems: a two-dimensional
approach, J. Log. Algebraic Methods Program. 103 (2019) 105–129, https://doi .org /10 .1016 /j .jlamp .2018 .11.004.

[22] A.H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, M. Zimakova, Modelling and analysis using GROOVE, Int. J. Softw. Tools Technol. Transf. 14 (1)
(2012) 15–40, https://doi .org /10 .1007 /s10009 -011 -0186 -x.

[23] L. Lambers, D. Strüber, G. Taentzer, K. Born, J. Huebert, Multi-granular conflict and dependency analysis in software engineering based on graph
transformation, in: M. Chaudron, I. Crnkovic, M. Chechik, M. Harman (Eds.), Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 – June 03, 2018, ACM, 2018, pp. 716–727.

[24] N. Nassar, J. Kosiol, T. Arendt, G. Taentzer, Constructing optimized validity-preserving application conditions for graph transformation rules, in: E.
Guerra, F. Orejas (Eds.), Graph Transformation – 12th International Conference, ICGT 2019, Held as Part of STAF 2019, Eindhoven, the Netherlands, July
15–16, 2019, Proceedings, in: Lecture Notes in Computer Science, vol. 11629, Springer, 2019, pp. 177–194.

[25] J. Kosiol, L. Fritsche, N. Nassar, A. Schürr, G. Taentzer, Constructing constraint-preserving interaction schemes in adhesive categories, in: J.L. Fiadeiro, I.
Tutu (Eds.), Recent Trends in Algebraic Development Techniques – 24th IFIP WG 1.3 International Workshop, WADT 2018, Egham, UK, July 2–5, 2018,
Revised Selected Papers, in: Lecture Notes in Computer Science, vol. 11563, Springer, 2019, pp. 139–153.

[26] B. Becker, L. Lambers, J. Dyck, S. Birth, H. Giese, Iterative development of consistency-preserving rule-based refactorings, in: J. Cabot, E. Visser (Eds.),
Theory and Practice of Model Transformations – 4th International Conference, ICMT@TOOLS 2011, Zurich, Switzerland, June 27–28, 2011. Proceedings,
in: Lecture Notes in Computer Science, vol. 6707, Springer, 2011, pp. 123–137.

[27] N. Nassar, J. Kosiol, T. Arendt, G. Taentzer, Constructing optimized constraint-preserving application conditions for model transformation rules, J. Log.
Algebraic Methods Program. 114 (2020) 100564, https://doi .org /10 .1016 /j .jlamp .2020 .100564.

[28] N. Behr, M.G. Saadat, R. Heckel, Commutators for stochastic rewriting systems: theory and implementation in Z3, in: B. Hoffmann, M. Minas (Eds.),
Proceedings of the Eleventh International Workshop on Graph Computation Models, GCM@STAF 2020, Online-Workshop, 24th June 2020, in: EPTCS,
vol. 330, 2020, pp. 126–144.

[29] J. Dyck, H. Giese, k-inductive invariant checking for graph transformation systems, in: J. de Lara, D. Plump (Eds.), Graph Transformation – 10th Inter-
national Conference, ICGT 2017, Held as Part of STAF 2017, Marburg, Germany, July 18–19, 2017, Proceedings, in: Lecture Notes in Computer Science,
vol. 10373, Springer, 2017, pp. 142–158.

[30] G. Taentzer, M. Ohrndorf, Y. Lamo, A. Rutle, Change-preserving model repair, in: M. Huisman, J. Rubin (Eds.), Fundamental Approaches to Software
Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, pp. 283–299.

[31] M. Ohrndorf, C. Pietsch, U. Kelter, L. Grunske, T. Kehrer, History-based model repair recommendations, ACM Trans. Softw. Eng. Methodol. 30 (2) (Jan.
2021), https://doi .org /10 .1145 /3419017.

[32] S. Schneider, L. Lambers, F. Orejas, A logic-based incremental approach to graph repair, in: R. Hähnle, W. van der Aalst (Eds.), Fundamental Approaches
to Software Engineering, Springer International Publishing, Cham, 2019, pp. 151–167.

[33] T. Kehrer, G. Taentzer, M. Rindt, U. Kelter, Automatically deriving the specification of model editing operations from meta-models, in: P.V. Gorp,
G. Engels (Eds.), Theory and Practice of Model Transformations – 9th International Conference, ICMT@STAF 2016, Vienna, Austria, July 4–5, 2016,
Proceedings, in: Lecture Notes in Computer Science, vol. 9765, Springer, 2016, pp. 173–188.

[34] O. Semeráth, D. Varró, Graph constraint evaluation over partial models by constraint rewriting, in: E. Guerra, M. van den Brand (Eds.), Theory and
Practice of Model Transformation – 10th International Conference, ICMT@STAF 2017, Marburg, Germany, July 17–18, 2017, Proceedings, in: Lecture
Notes in Computer Science, vol. 10374, Springer, 2017, pp. 138–154.

[35] P. Stevens, Bidirectionally tolerating inconsistency: partial transformations, in: S. Gnesi, A. Rensink (Eds.), Fundamental Approaches to Software Engi-
neering – 17th International Conference, FASE 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5–13, 2014, Proceedings, in: Lecture Notes in Computer Science, vol. 8411, Springer, 2014, pp. 32–46.

[36] H. Ehrig, C. Ermel, U. Golas, F. Hermann, Graph and Model Transformation - General Framework and Applications, Monographs in Theoretical Computer
Science. An EATCS Series, Springer, 2015.
26

http://refhub.elsevier.com/S0167-6423(21)00122-2/bibA59182E405C48AC4EAC9E2B61144DF41s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibA59182E405C48AC4EAC9E2B61144DF41s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibA59182E405C48AC4EAC9E2B61144DF41s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibD36E7DF570E67F80AFD0E92520EABECDs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibD36E7DF570E67F80AFD0E92520EABECDs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib0B4F24C2FEDF480C97F70238FF5E5336s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib0B4F24C2FEDF480C97F70238FF5E5336s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib0B4F24C2FEDF480C97F70238FF5E5336s1
https://doi.org/10.1002/smr.1804
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib9B55E9CF94B9528D523AE431CF84B4D5s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib9B55E9CF94B9528D523AE431CF84B4D5s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib9B55E9CF94B9528D523AE431CF84B4D5s1
https://doi.org/10.1109/TSE.2010.70
http://ceur-ws.org/Vol-1758/paper1.pdf
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF7436EC7177BEF977BAF9939D8152B23s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF7436EC7177BEF977BAF9939D8152B23s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF7436EC7177BEF977BAF9939D8152B23s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibCDC93144BD7D1DDAE02A0B56A8D7EAA2s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibCDC93144BD7D1DDAE02A0B56A8D7EAA2s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibCDC93144BD7D1DDAE02A0B56A8D7EAA2s1
https://doi.org/10.1007/s10852-005-2582-2
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE6BE0C7F461DFD019317B694FACD87CFs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE6BE0C7F461DFD019317B694FACD87CFs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE6BE0C7F461DFD019317B694FACD87CFs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib6763723B0112A22012C68A0F7BDAD440s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib6763723B0112A22012C68A0F7BDAD440s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib6763723B0112A22012C68A0F7BDAD440s1
https://doi.org/10.1016/j.jlamp.2018.11.004
https://doi.org/10.1007/s10009-011-0186-x
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE13D9BBE93DFD311086B25E249EB5192s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE13D9BBE93DFD311086B25E249EB5192s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE13D9BBE93DFD311086B25E249EB5192s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib6AF25BDEC463412853F7615D8003C8FAs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib6AF25BDEC463412853F7615D8003C8FAs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib6AF25BDEC463412853F7615D8003C8FAs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF75F0A596DEA140DF973F3B71AF4F523s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF75F0A596DEA140DF973F3B71AF4F523s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF75F0A596DEA140DF973F3B71AF4F523s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibDB1262D8E3AF65B313581CAEFD93F325s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibDB1262D8E3AF65B313581CAEFD93F325s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibDB1262D8E3AF65B313581CAEFD93F325s1
https://doi.org/10.1016/j.jlamp.2020.100564
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF706387B469C2958DAD95912CB5DDC15s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF706387B469C2958DAD95912CB5DDC15s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF706387B469C2958DAD95912CB5DDC15s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibCB56CD70A401D0148414A6B14E61E50As1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibCB56CD70A401D0148414A6B14E61E50As1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibCB56CD70A401D0148414A6B14E61E50As1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib3F1CE5C77CD3E6B6A9FF557F186C8172s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib3F1CE5C77CD3E6B6A9FF557F186C8172s1
https://doi.org/10.1145/3419017
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibB752540E10899E5E32370177444BAECFs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibB752540E10899E5E32370177444BAECFs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE292362D5F630A7CA33AD9CCDFB8AD07s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE292362D5F630A7CA33AD9CCDFB8AD07s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibE292362D5F630A7CA33AD9CCDFB8AD07s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF2B089B19878FE68FE2A65DDB25A2CF0s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF2B089B19878FE68FE2A65DDB25A2CF0s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bibF2B089B19878FE68FE2A65DDB25A2CF0s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib9B4999B7993003B7358B01FB6D199F3Bs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib9B4999B7993003B7358B01FB6D199F3Bs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib9B4999B7993003B7358B01FB6D199F3Bs1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib7BDB313F2278D7CBB0F500CCC67F4B47s1
http://refhub.elsevier.com/S0167-6423(21)00122-2/bib7BDB313F2278D7CBB0F500CCC67F4B47s1

	Sustaining and improving graduated graph consistency: A static analysis of graph transformations
	1 Introduction
	2 Example
	3 Preliminaries
	3.1 Graphs and graph morphisms
	3.2 Graph conditions and constraints
	3.3 Graph transformation
	3.4 Conflicts and dependencies

	4 Consistency-sustaining and consistency-improving rules and transformations
	4.1 Partial consistency
	4.2 Consistency-sustainment and -improvement
	4.3 Direct consistency-sustainment and -improvement

	5 Static analysis for direct consistency-sustainment and -improvement
	5.1 Consistency-sustaining interaction
	5.2 Constraint-compatible dependencies and conflicts
	5.3 Consistency-improving interaction
	5.4 Summary

	6 Validation
	6.1 Methodology
	6.2 Results
	6.3 Threats to validity

	7 Related work
	8 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Detailed proofs
	References

