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Abstract

Conflict and dependency analysis (CDA) is a static analysis for the detection of

conflicting and dependent rule applications in a graph transformation system.

The state-of-the-art CDA technique, critical pair analysis, provides all potential

conflicts and dependencies in minimal context as critical pairs, for each pair of

rules. Yet, critical pairs can be hard to understand; users are mainly interested

in core information about conflicts and dependencies occurring in various com-

binations. In this paper, we present an approach to conflicts and dependencies

in graph transformation systems based on two dimensions of granularity. The

first dimension refers to the overlap considered between the rules of a given rule

pair; the second one refers to the represented amount of context information

about transformations in which the conflicts occur. We introduce a variety of

new conflict notions, in particular, conflict atoms, conflict reasons, and mini-

mal conflict reasons, relate them to the existing conflict notions of critical pairs

and initial conflicts, and position all of these notions within our granularity

approach. Finally, we introduce dual concepts for dependency analysis. As

we discuss in a running example, our approach paves the way for an improved
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CDA technique.

Keywords: Graph Transformation (Double Pushout Approach), Parallel

Independence, Critical Pair Analysis (CPA)

1. Introduction

Graph transformation systems (GTSs) are a fundamental modeling concept

with applications in a wide range of domains, including software engineering

[1], mechanical engineering [2], and biology [3]. A GTS comprises a set of

transformation rules that are applied in coordination to achieve a higher-level

goal. The order of rule applications can either be specified explicitly using

a control flow mechanism, or it is given implicitly by causal dependencies of

rule applications. In the first case, the specified control flow might not be

executable due to conflicts or dependencies. In the latter case, conflicts and

dependencies affect the control flow. For instance, a rule may delete an element

whose existence is required by another rule to modify the graph.

To verify the explicit control flow of a GTS (as done, e.g., in [4]) or to bet-

ter understand an implicit one (as done, e.g., in [5]), one needs to analyze the

potential conflicts and dependencies of its rule applications. Conflict and de-

pendency analysis (CDA) is a static analysis for the detection of such conflicts

and dependencies. It has been applied to many use-cases such as, e.g., to de-

tect conflicting functional requirements [4], conflicts and dependencies between

refactorings [5, 6], feature interactions [7], conflicting and dependent change

operations for process models [8], causal dependencies of aspects in aspect mod-

eling [9], and to validate service-oriented architectures [10].

In these applications, there are generally two possible usage scenarios for CDA:

First, the user may start with a list of expected conflicts and dependencies that

are supposed to occur. CDA is used then to determine if the expected conflicts

and dependencies in fact arise, and/or if there are any unexpected conflicts

and dependencies. Violations of expectations signify potential errors in the rule

specifications, and can be used for debugging [11]. Second, the user may want
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to improve their transformation system to reduce conflicts and dependencies, so

that rules can be applied independently, e.g., to enable a collaborative modeling

process based on edit operation rules [12]. In this case, conflicts and depen-

dencies reported by CDA can be used to identify required modifications. In

both cases, users need to inspect conflicts or dependencies to pinpoint their

root causes.

The state-of-the-art CDA technique, which has been used in most of the

aforementioned use-cases, is critical pair analysis (CPA, [13, 14]). For a given

pair of rules, CPA produces a list of critical pairs, representing potential con-

flicts and dependencies between the rules. A critical pair specifies a graph to

which both rules can be applied such that a conflict arises from the rule ap-

plications; the graph represents a minimal context in the sense that each of its

elements stems from the rules’ left-hand sides. Confidence in CPA is established

by positive fundamental results: Via the Completeness Theorem, each pair of

conflicting or dependent rule applications is represented by a critical pair. If

the transformation system contains any conflicts, users may be interested in

knowing if it is possible to resolve all of them to check the system’s confluence.

The Local-Confluence Theorem allows to answer this question by providing a

sufficient condition that can be checked statically for each critical pair.

However, experiences with the CPA indicate two drawbacks: (i) understand-

ing the identified critical pairs can be a challenging task since they often display

too much information, (ii) calculating the results can be computationally ex-

pensive. To address these issues, our recent work [15] introduces a distinguished

subset of critical pairs, called initial conflicts and dependencies. While keeping

the Completeness and Local-Confluence properties, this subset is usually much

smaller and therefore, potentially easier to understand and to compute than the

set of all critical pairs. Still, this earlier contribution presents only a prelimi-

nary step. Users are still overwhelmed with information: each initial conflict or

dependency contains a, potentially large, graph obtained by overlapping both

rules, and the same root cause of a conflict or dependency is often shown in many

different combinations. Currently, the set of initial conflicts can be computed
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Figure 1: Positioning of conflict notions in two dimensions of granularity.

efficiently only under restricted conditions, as introduced in another work [16].

In this paper, to address the drawbacks of critical pairs as well as initial

conflicts and dependencies, we present a new approach to conflicts and depen-

dencies in GTSs. Our approach is based on the paradigm of granularity and,

building on the existing theory for algebraic graph transformation, focuses on

delete-use-conflicts. We investigate a variety of new notions for describing con-

flicts, and put these notions into relation to the existing ones. The new notions

alleviate the aforementioned issues by (i) stripping away the potentially unnec-

essary context of overlap graphs, and the possibility to abstract from potentially

irrelevant overlapped elements, and (ii) opening up new possibilities for comput-

ing conflicts based on the identified relationships between notions. By clarifying

the relations between old as well as new conflict notions along two newly in-

troduced granularity dimensions, our approach paves the way for reusing basic

constructions and hence, efficiently computing conflicts on any granularity level.

Figure 1 shows an overview of the considered conflict notions and their re-

lations; relations are underpinned with formal results, including new results

(shown in black) and existing ones from the literature (shown in gray). The
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conflict notions are aligned along two dimensions of granularity, which are de-

noted as vertical and horizontal scales in the figure, respectively: context and

overlap granularity. These two dimensions quantify a number of involved ele-

ments. Context granularity refers to the amount of context in which a conflict

is reported. The binary granularity level refers to a yes-no decision, i.e., the

presence or absence of conflicts, without showing any context. A coarse conflict

notion in this sense depicts only rule elements, a medium one a graph obtained

from overlapping two rules, and a fine one includes additional elements not con-

tained in the given rules. Overlap granularity refers to the overlap between

the two considered rules. Binary granularity does not show any details about

overlap, coarse only overlaps a smallest set of elements, medium only overlaps

deleting elements, and fine incorporates non-deleting ones, being irrelevant for

understanding the conflict.

Starting with the maximally fine-grained conflict notion in both dimensions,

we consider conflicting transformation pairs. A conflicting transformation pair

is represented by a graph to which both rules can be applied, so that the first

rule application renders the second one impossible. Since the graph may be ar-

bitrary large—in particular, it may contain elements for which no counterpart in

either of the rules exists—there can be infinitely many of such pairs for a given

pair of rules. Critical pairs and initial conflicts, explained above, strip away this

typically unnecessary context. Each conflicting transformation pair can be rep-

resented by a unique critical pair which might be an initial conflict. Conversely,

each critical pair, including the initial conflicts, is a conflicting transformation

pair and can be extended into several ones by embedding it into a bigger context

not affected by the rule applications. Each critical pair can be represented by

an initial conflict, obtained, in a certain sense, by unfolding it.

Moving to the more coarse-grained notions with respect to context granu-

larity, we now consider only the overlap of the input rules (intuitively, we now

consider intersections, rather than unions). Conflict reason extensions and con-

flict reasons comprise a set of elements being deleted by the first and used by

the second rule. For conflict reason extensions, the considered overlap may in-
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clude additional non-deleting elements from the considered rules. Each conflict

reason extension can be extended to one critical pair, and each critical pair can

be restricted to a conflict reason extension. Conflict reasons roughly correspond

to initial conflicts. Conflict atoms represent the smallest entities of conflicts,

which can be characterized as single conflict-inducing graph elements. Each

conflict atom can be embedded into a conflict reason, while each conflict reason

is fully covered by conflict atoms. A pair of rules affected by conflicts is called

a conflicting rule pair; for each such pair, at least one conflict atom exists. The

pair notion is binary, i.e., does not include information on overlap or context.

Moving from conflict reason extensions to reasons, atoms, and conflicting rule

pairs, we reduce the considered overlap in each step, while the context is fixed.

Contributions. In this paper, we investigate the granularity of conflicts and

dependencies in GTSs. Specifically, we make the following contributions.

• We present a conceptual consideration of conflicts in GTSs, based on the

two dimensions of overlap and context granularity, and focusing on delete-

use-conflicts.

• We arrange existing conflict notions along both granularity dimensions

and introduce new notions for coarse-grained context granularity.

• We introduce a variety of formal results for interrelating the new conflict

notions with each other and with the existing ones. In particular, we relate

the new conflict notions to the existing notions of critical pairs as well as

initial conflicts.

• We discuss how these notions and results can be transferred to dependen-

cies in a straightforward manner. In particular, we introduce dependency

atoms and reasons, the dual notions to those introduced for conflict anal-

ysis.

This paper is an extended version of [17], in which we presented an earlier

state of our work, focusing on overlap granularity. In the present paper, we
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significantly extended the results from the earlier version to align them with

the theory of initial conflicts and dependencies [15]. Specifically, we make three

extensions: First, we introduce a two-dimensional approach to granularity and

position the old and new conflict notions in it. Second, we study the relations

between the conflict and dependency notions from [17] and initial conflicts.

Third, we present a full account of formal results for relating the conflict notions

with each other; results from [17] have been updated and extended based on the

following considerations.

In [17], essential critical pairs, an earlier candidate for an optimized set of

critical pairs, played the same role as initial conflicts do in the present paper.

The shift to initial conflicts is motivated by the findings from [15]: Initial con-

flicts are a cleaner replacement for essential critical pairs, since they avoid cer-

tain counter-intuitive cases (related to a phenomenon called isolated boundary

nodes). To align the new granularity notions with initial conflicts, our starting

point is a change in the definition of conflict reasons. We introduce a stronger

conflict condition than in [17], which, as we will show, is more suitable for char-

acterizing medium overlap granularity. All results have been extended to take

the new conflict condition into account, and new results have been added in

order to complete our account of relationships. The running example has been

extended as well to illustrate the notion of initial conflicts and the accordingly

revised notion of conflict reason.

The rest of this paper is structured as follows: Section 2 illustrates our

approach using an example. In Sect. 3, we recall graph transformation con-

cepts and conflict notions from the literature. In Sect. 4, we present the new

conflict notions and position the new as well as the existing ones within our

two-dimensional approach; formal results for interrelating all presented conflict

notions are introduced. We compare with related work and conclude in Sect. 5.

2. Introduction to Granularity of Conflicts by Example

Before starting formal considerations, we illustrate our new conflict notions

presented in this article by an example. Readers can get a good impression of
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our work by reading this section.

Our running example is concerned with conflicts between software refactor-

ings. Refactoring is a generally acknowledged technique to improve the design

of an object-oriented system [18]. To achieve a larger improvement there is

typically a sequence of refactorings required. Due to implicit conflicts and de-

pendencies that may occur between refactorings, it is not always easy for devel-

opers to determine which refactorings to use and in which order to apply. To

this end, CDA can support the developer in finding out if there are conflicts or

dependencies at all and, if this is the case, in understanding them.

The structure of an object-oriented software system can be modeled using

typed graphs, and refactorings can be specified using graph transformation rules.

Since the theory is restricted to delete-use conflicts for now, we consider simple

rules without attributes and application conditions here. Figure 2 shows two

rules which specify class-structure refactorings Decapsulate Attribute and Pull

Up Encapsulated Attribute in a simple form.

Figure 2: Simplified rules specifying Decapsulate Attribute and Pull Up Encapsulated Attribute

Rules are depicted in an integrated form where annotations specify which

graph elements are deleted, preserved, and created. While the preserved and

deleted elements form the left-hand side (LHS) of a rule, the preserved and cre-

ated elements form its right-hand side (RHS). A rule is applied by finding the

LHS as pattern in an instance graph, removing all elements to be deleted and
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adding all elements to be created. Elements with the same annotation form a

common condition. Rule decapsulateAttribute removes getter and setter meth-

ods for a given attribute, thus inverting the well-known encapsulate attribute

refactoring. Rule pullUpEncapsulatedAttribute takes an attribute with its getter

and setter methods and moves them to a superclass. Note that we do not con-

sider names here, i.e., getter and setter methods are just distinguished by having

no parameter (getter) and one parameter (setter). Not considering attributes,

we do not check if the superclass has already an attribute or methods with the

same names as the ones we want to pull up. Note that there are two kinds

of arrows, those starting in a diamond specifying containment relations, and

those without diamond specifying normal references. In what follows, we will

not further address this distinction. Instead, edges are distinguished in terms

of their types only. Besides names, we also omit the visibility of attributes and

methods for simplicity.

Conflict considerations. In the following, we informally explain all main con-

flict notions depicted in Fig. 1 by our running example. We introduce them

along increasing overlap and context granularity levels. Starting on the binary

level, we continue with conflict atoms and conflict reasons on the coarse context

granularity level and go over to conflicting transformation pairs representing the

medium and fine context granularity levels.

Binary context granularity. Our two example rules in Fig. 2 lead to four pairs

of rules. As starting point of our conflict considerations, we check if there are

any potential conflicts caused by the first rule on the second rule of a given pair,

i.e., if there are conflicting rule pairs. If the application of the first rule can

make the second rule inapplicable in consequence, the corresponding entry in

Table 1 contains ‘+’ while ‘–’ marks that there is no conflict.

Coarse context granularity. In the following, we consider the rule pair (decap-

sulateAttribute, pullUpEncapsulatedAttribute) more closely. The root causes of

potential conflicts are the three nodes 2:Method, 3:Method and 5:Parameter to
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Rule 1 / Rule 2 decapsulateAttribute pullUpEncapsulatedAttribute

decapsulateAttribute + +

pullUpEncapsulatedAttribute + +

Table 1: Overview on conflicting rule pairs

be deleted by rule decapsulateAttribute. Nodes of the same type are to be used

in rule pullUpEncapsulatedAttribute. Method-nodes are to be deleted twice by

rule decapsulateAttribute as well as to be used twice in rule pullUpEncapsulate-

dAttribute. Building all combinations this leads to four different candidates for

conflict atoms. Only three of them can occur in conflicting transformation pairs.

Nodes 2,13:Method, 3,13:Method, and 3,14:Method are actually conflict atoms;

they are depicted in Fig. 3 on the left. Note that 2,14:Method is not a conflict

atom since the corresponding overlap would lead to a dangling parameters-edge,

i.e., there is no conflicting rule pair overlapping in this node. A further conflict

atom exists for nodes of type Parameter being 5,15:Parameter which is deleted by

decapsulateAttribute and used by pullUpEncapsulatedAttribute. Note that the

numbers in atom nodes indicate the overlap of corresponding rule nodes in this

figure and in following ones. The first number of each node indicates an element

of the left rule while the second number concerns an element of the right rule.

Figure 3: Conflict atoms (left) and minimal conflict reasons (right) of rule pair (decapsulateAt-

tribute, pullUpEncapsulatedAttribute)

The four conflict atoms are embedded into three minimal conflict reasons

shown on the right of Fig. 3. Each minimal reason describes a minimal in-
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tersection of two rule applications to be conflicting. The two conflict atoms

3,14:Method and 5,15:Parameter can only be covered by a common minimal

conflict reason since an intersection in only one conflict atom would lead to

one or more dangling edges, rendering the first rule inapplicable. Note that

elements to be deleted are shown with red dashed frames or lines. Minimal

conflict reasons are the building bricks of conflict reasons, i.e., all their possible

combinations are further conflict reasons. Altogether, we have 4 conflict rea-

sons: Each minimal conflict reason alone and the combination of the top and

the bottom ones in Fig. 3.

Medium and fine context granularity levels. All conflict reasons show overlaps of

the participating rules’ LHSs that lead to conflicting transformation pairs when

applying these rules. Joining the LHSs of both rules along a conflict reason for

rule pair (r1, r2), potentially combined with another one for pair (r2, r1), we get

an overlap graph which can be used to construct a conflicting transformation

pair in minimal context.

Figure 4: Two overlap graphs for simplified refactoring rules decapsulateAttribute and pullU-

pEncapsulatedAttribute, only the left one belongs to an initial conflict

Figure 4 shows two possible overlap graphs G1 and G2. Note that as before

the first number in the node labels indicates an element stemming from the

left rule while the second number concerns an element stemming from the right

rule. If no first or second number occurs, then this means that the node was not

overlapped at all and therefore only stems from the left or right rule, respectively.
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Both overlap graphs present conflicting situations in minimal context. G1 shows

the deletion of a method with parameter which shall be pulled up. G2 shows the

deletion of a parameterless method to be pulled up as well. In addition, there are

overlaps in 7,17:Class and 4,12:Attribute. Since these nodes are preserved in both

rules, their overlaps do not harm and are therefore less interesting for the user.

Nevertheless, such overlaps are identified by conflict reason extensions. Since

7:Class has incident edges to be deleted it is called boundary node. Its overlap

with 17:Class does not coincide with overlaps of adjacent edges. Therefore, this

overlap is called isolated. Joining the rules’ LHSs at a conflict reason extension,

the corresponding conflicting transformation pair is called critical pair. Both

graphs, G1 and G2 (Fig. 4), show overlap graphs of critical pairs. Graph G1

shows an overlap graph without overlaps of isolated preserved nodes. Moreover,

a preserved node of the first rule’s LHS is overlapped with a node of the second

rule’s LHS only if a deleted adjacent edge is also overlapped (compare, e.g.,

,13:Method but 6,16:Class). In general, deleted nodes or deleted edges (with

incident nodes) are the only elements of the first rule that are overlapped with

elements of the second rule. A critical pair with such an overlap graph is called

initial conflict. Rule pair (decapsulateAttribute, pullUpEncapsulatedAttribute)

has 13 critical pairs altogether, 4 of them are initial conflicts.

Each overlap graph is the starting graph for a conflicting transformation

pair. Figure 5 shows the result graphs H11 and H12 when applying the sim-

plified refactoring rules decapsulateAttribute (left) and pullUpEncapsulatedAt-

tribute (right) to graph G1 in Fig. 4. We see that rule pullUpEncapsulatedAt-

tribute cannot be applied to graph H11 since one method is missing. In contrast,

rule decapsulateAttribute can still be applied to graph H12, however, not at the

original match anymore.

3. Preliminaries

As a prerequisite for our new analysis of conflicts and dependencies, we

recall the double-pushout approach to graph transformation as presented in
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Figure 5: Result graphs when applying the simplified refactoring rules decapsulateAttribute

(left) and pullUpEncapsulatedAttribute (right) to G1 graph in Fig. 4

[14]. Furthermore, we reconsider the notion of conflicts as well as the recently

introduced concept of initial conflicts.

3.1. Graph Transformation: Double-Pushout Approach

Throughout this paper we consider graphs and graph morphisms as pre-

sented in [14] for the category of graphs; all results can be easily extended to

the category of typed graphs by assuming that each graph and morphism is

typed over some fixed type graph TG. Since most of the definitions and results

are given in a category-theoretical way, the extension to e.g. typed, attributed

graphs [14] is prepared, but up to future work.

Graph transformation is the rule-based modification of graphs. A rulemainly

consists of two graphs: L is the left-hand side (LHS) of the rule representing

a pattern that has to be found to apply the rule. After the rule application, a

pattern equal to R, the right-hand side (RHS), has been created. The intersec-

tion K is the graph part that is not changed; it is equal to L∩R provided that

the result is a graph again. The graph part that is to be deleted is defined by

L \ (L∩R), while R \ (L∩R) defines the graph part to be created. Throughout

this paper we consider a graph transformation system just as a set of rules.

A direct graph transformation G
m,r
=⇒ H between two graphs G and H is
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defined by first finding a graph morphism1 m of the LHS L of rule r into G

such that m is injective, and second by constructing H in two passes: (1) build

D := G \ m(L \ K), i.e., erase all graph elements that are to be deleted; (2)

construct H := D ∪m′(R \K). The morphism m′ has to be chosen such that

a new copy of all graph elements that are to be created is added. It has been

shown for graphs and graph transformations that r is applicable at m iff m

fulfills the gluing condition [14]. In that case, m is called a match. For injective

morphisms as we use them here, the gluing condition reduces to the dangling

condition. It is satisfied if all adjacent graph edges of a graph node to be

deleted are deleted as well, such that D becomes a graph. Injective matches are

usually sufficient in applications and w.r.t. our work here, they allow to explain

constructions with more ease than for general matches. In categorical terms, a

direct transformation step is defined using a so-called double pushout as in the

following definition. Thereby step (1) in the previous informal explanation is

represented by the first pushout and step (2) by the second one [14].

Definition 1 (Rule and transformation). A rule r is defined by r = (L ←↩

K ↪→ R) with L,K, and R being graphs connected by two graph inclusions. A

direct transformation G
m,r
=⇒ H which applies rule r to a graph G consists of two

pushouts as depicted below. Rule r is applicable and the injective morphism

m : L → G is called match if there exists a graph D such that (PO1) is a

pushout. Rule r is non-deleting if L = K. A transformation is a sequence

G0 ⇒ G1 ⇒ . . .⇒ Gn of direct transformations, written G0 ⇒∗ Gn.

L K R

G D H

(PO1) (PO2)m m′

Example 1 (Graph transformation). Applying the simplified refactoring rule

1A morphism between two graphs consists of two mappings between their nodes and edges

being both structure-preserving w.r.t. source and target functions. Note that in the main

text we denote inclusions by ↪→ and all other morphisms by →.
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decapsulateAttribute to graph G1 in Fig. 4, there are several matches since we can

choose to match 4,:Attribute or ,12:Attribute as well as 2,:Method or ,13:Method.

Choosing to match 4,:Attribute and 2,:Method, this partial match can be com-

pleted in only one way. It fulfills the dangling condition since, in graph G1, all

adjacent edges of nodes to be deleted are explicitly specified in the rule. The

resulting graph is H11 depicted in Fig. 5.

3.2. Conflicts

In this subsection, we recall existing conflict notions and critical pairs repre-

senting conflicts in a minimal context. We moreover reintroduce a recent result

on initial conflicts representing a subset of critical pairs being still complete as

well as usable for static local confluence analysis. In particular, we concentrate

on delete-use conflicts which means that the first rule application deletes graph

items that are used by the second rule application.

The definition of a delete-use conflict [14] states that the match of the second

transformation cannot be found anymore after applying the first transformation.

This may happen if the second transformation wants to preserve (delete-read)

or delete (delete-delete) elements that are deleted by the first transformation.

Note that we do not consider delete-use conflicts of the second transformation

on the first one explicitly. To get those ones as well, we simply consider the

inverse pair of transformations.

Definition 2 (Delete-use conflict). Given a pair of direct transformations (t1, t2) =

(G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) applying rules r1 : L1

le1←↩ K1
ri1
↪→ R1 and r2 : L2

le2←↩

K2
ri2
↪→ R2 as depicted below. Transformation pair (t1, t2) is delete-use conflict-

ing if there does not exist a morphism x : L2 → D1 such that g1 ◦ x = m2.

Rule pair (r1, r2) is delete-use conflicting if there exists a delete-use conflicting

transformation pair (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2).

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′2

L1K1R1

D1H1

x

le1ri1

g1h1

m1d1m′1

15



Understanding this definition set-theoretically, it means that at least one

element is deleted by r1 and used by r2, i.e., m1(L1) ∩m2(L2) 6⊆ m1(le1(K1)).

In the rest of the paper we merely consider delete-use conflicts such that in the

following we abbreviate delete-use conflict with conflict.

This work is inspired by an alternative characterization for a pair of trans-

formations to be in delete-use conflict (as introduced in [19]), expressing that

at least one deleted element of the first transformation overlaps with some used

element of the second transformation. As a prerequisite, we consider closer the

deletion information contained in a rule. We use an initial pushout construc-

tion [14] over the left-hand side morphismK → L of a rule to extract the deletion

graph C stripping away as much preserved graph elements from L as possible.

The remaining graph C contains all elements to be deleted completed by those

preserved nodes of K that are needed to complete L \ K to a graph. These

additional nodes are called boundary nodes summarized in graph B. Then the

overlap characterizing delete-use conflicts in an alternative way is formally ex-

pressed by a span s1 of graph morphisms between the deletion graph of the first

rule, and the LHS of the second rule (Fig. 6). In particular, this overlap should

not contain only boundary elements, otherwise no conflicting elements between

the rule applications exist. In the following section, we will reuse this condition

on the span s1 and call it in particular weak conflict condition (compare Def. 6).

L2 K2 R2

G D2 H2

le2 ri2

g2 h2

m2 d2 m′2

(1)

(2)

S1

C1B1

L1K1R1

D1H1

x
o1 q12

b1

c1

le1ri1

g1h1

m1d1m′1

Figure 6: Conflict characterization
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Theorem 1 (Conflict characterization [19, 20]). Given a pair of transformations

(t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) via rules r1 : L1

le1←↩ K1
ri1
↪→ R1 and r2 :

L2
le2←↩ K2

ri2
↪→ R2, the initial pushout (1) for K1

le1
↪→ L1, and the pullback (2) of

(m1 ◦ c1,m2) in Fig. 6 yielding the span s1 : C1
o1←↩ S1

q12→ L2, then the following

equivalence holds: (t1, t2) are conflicting according to Def. 2 iff there does not

exist a morphism x : S1 → B1 such that b1 ◦ x = o1.

Static conflict detection as well as local confluence analysis are based on the

idea of critical pairs representing all possible conflicting transformation pairs

in a minimal context. In the classical pair definition this minimal context is

materialized by a pair of jointly surjective matches, i.e., each element in the

common codomain of the two morphisms has a pre-image in one of the domains

of both morphisms.

Definition 3 (Critical pair). A critical pair is a conflicting transformation pair

(t1 : K
r1,m1⇒ P1, t2 : K

r2,m2⇒ P2), where (m1,m2) are jointly surjective.

It has been shown that for each conflicting transformation pair there exists a

critical pair that represents the same conflict in a minimal context. In particular,

so-called extension diagrams are used as a technical means to embed a critical

pair into a conflicting transformation pair. Note that the extension morphism

f as well as the related vertical morphism f ′ used in the following extension

diagram are not necessarily injective.

Definition 4 (Extension diagram). An extension diagram is a diagram (1) as

shown on the left of Fig. 7 where f : G′ → G is a morphism, called extension

morphism, and t : G
p

=⇒ H as well as t′ : G′ p
=⇒ H ′ are two direct transforma-

tions via the same rule p with matches m′ and f ◦m′ respectively, defined by

the four pushouts in the middle of Fig. 7.

A transformation is actually extended by extending its context D′ to D.

Morphisms f : G′ → G and f ′ : H ′ → H are the resulting pushout morphisms.

This means that the context graph D′ may be embedded into a larger one;
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Figure 7: Extension diagram (overview and more detailed), extension diagram for transfor-

mation pair

additionally, elements of D may be glued together. Corresponding actions are

reflected in f and f ′; additional actions may not happen.

If a transformation pair can be embedded into another conflicting pair of

transformations, then it inherits this conflict from the first transformation pair.

The following lemma clarifies this inheritance.

Lemma 1 (Conflict inheritance). Given a conflicting transformation pair (t1 :

G
r1=⇒ H1, t2 : G

r2=⇒ H2) and another transformation pair (t′1 : G′
r1=⇒ H ′1, t

′
2 :

G′
r2=⇒ H ′2) that can be embedded into (t1, t2) via extension morphism f and

corresponding extension diagrams as depicted in Fig. 8, then (t′1, t
′
2) is also a

conflicting transformation pair.

Proof. This follows from the conflict inheritance lemma in [15] for transforma-

tions with general matching. We in addition show that it holds for transforma-

tions restricted to injective matching (as assumed in this paper) as well: the

matches of the embedded conflict m′1,m
′
2 : L1, L2 → G′ are injective since it

holds that m1 = f ◦m′1 and m2 = f ◦m′2 with the matches of the original pair

of transformations m1,m2 : L1, L2 → G being injective.

The embedded pair of transformations is a critical pair if it has jointly sur-

jective matches. The following theorem states that such a pair exists indeed

for each given conflicting transformation pair with extension morphism being

injective [14]. In particular, this critical pair can be obtained from the pair
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Figure 8: Conflict inheritance

of matches of the conflicting transformation pair via a unique so-called E ′-M

pair factorization [15] in the more general context ofM-adhesive transformation

systems [21, 14] and thus in particular for GTSs.2

Theorem 2 (Completeness Theorem for critical pairs). For each conflicting

transformation pair (t1 : G
r1=⇒ H1, t2 : G

r2=⇒ H2) there is a critical pair

(t′1 : K
r1=⇒ P1, t

′
2 : K

r2=⇒ P2) with extension diagrams (1) and (2) and m

injective as depicted on the right of Fig. 7.

Proof. This follows from the Completeness Theorem for critical pairs [14], where

two direct transformations in conflict are considered independent of the order

in which they occur, and Lemma 1 which guarantees that the critical pair given

by the Completeness Theorem is conflicting also according to the asymmetric

conflict definition (see Def. 2) used here.

Initial conflicts [15] offer a more declarative view on minimal conflicting

transformation pairs. In categorical terms, one can use actually the notion of

initial transformation pairs, representing the “smallest” transformation pair that

can be embedded into a given one, to obtain this new view on critical pairs. Ini-

tial conflicts are conflicting transformation pairs that coincide with their initial

transformation pairs, since they represent already the “smallest” conflicts. In-

2Here, E ′ and M refer to a set of jointly surjective and a set of injective morphisms,

respectively.
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terestingly, it turns out that each initial conflict is a critical pair but not vice

versa. By definition, initial conflicts have the important new characteristic that

there exists a unique initial conflict for each given conflicting transformation

pair. Additionally, all initial conflicts still satisfy the Completeness Theorem as

well as the Local Confluence Theorem [15].3 For the category of (typed) graphs,

all these requirements hold [14, 15]. The Completeness Theorem states that for

every conflict there exists an analogous initial conflict that can be embedded into

it. The Local Confluence Theorem states that if all initial conflicts are strictly

confluent, then the graph transformation system is locally confluent. Conse-

quently, initial conflicts represent an important subset of critical pairs listing all

conflict variants in a minimal context and with maximal unfolding. Restricting

static conflict detection as well as local confluence analysis for graph transfor-

mation systems to initial conflicts might yield a considerable performance boost

since a smaller set of critical pairs is computed. Moreover, the set of initial

conflicts gives a better overview on conflict results.

In the following, we do not recall the categorical definition of initial con-

flicts [15], but simply reintroduce its set-theoretical characterization for the

category of (typed) graphs. Note that recently also an alternative constructive

characterization of initial conflicts for arbitrary set-valued functor categories

has been shown [22]. The idea of initial conflicts is that they are critical pairs

into which no different critical pair can be embedded. Otherwise speaking, it

describes the “smallest” conflict that can be embedded into a given conflict. In

particular, it has been shown [15] for the category of typed graphs that an initial

conflict is a conflicting transformation pair with minimal context and maximal

unfolding of preserved elements leading to the following characterization.

Definition 5 (Initial conflict [15]). A pair of transformations ic : (G
r1,m1
=⇒

H1, G
r2,m2
=⇒ H2) for a pair of rules (r1 : (L1

le1←− K1
ri1−→ R1), r2 : (L2

le2←−

K2
ri2−→ R2)) with deletion and boundary graphs Ci and Bi over the morphisms

3For Completeness of initial conflicts the existence of initial transformation pairs for con-

flicts is assumed. For Local Confluence, initial POs are required in addition.
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lei : Ki → Li for i = 1, 2 (compare Fig. 6 for the asymmetric case) is an initial

conflict if ic has the following properties:

1. Minimal context: m1 and m2 are jointly surjective.

2. At least one conflicting element, i.e. deleted by r1 and used by r2:

m1(L1) ∩m2(L2) 6⊆ m1(le1(K1)).

3. Overlap in deletion graphs only:

m1(L1) ∩m2(L2) ⊆ (m1(c1(C1)) ∩m2(L2)) ∪ (m1(L1) ∩m2(c2(C2))).

4. No isolated boundary node in overlap graph:

∀x ∈ m1(c1(b1(B1))) ∩m2(L2) :

∃e ∈ m1(c1(C1)) ∩m2(L2) : x = src(e) ∨ x = tgt(e) and

∀x ∈ m2(c2(b2(B2))) ∩m1(L1) :

∃e ∈ m2(c2(C2)) ∩m1(L1) : x = src(e) ∨ x = tgt(e).

Note that the first two items of the above characterization describe critical

pairs for a given conflicting rule pair (r1, r2). The first three items characterize

essential critical pairs as Item 3 follows directly from their construction [19].

In the category of (typed) graphs a critical pair is essential if two injective

matches overlap in deleted elements and boundary nodes only [19]. Item 4 is

an additional condition that needs to hold for initial conflicts ensuring that no

further unfolding of elements is possible. Note that we adapted slightly the

characterization of initial conflicts compared to their introduction in [15], since

we are interested in the asymmetric case of a delete-use-conflict (according to

Def. 2) in this paper only. In particular, we adapted Item 2 to the asymmetric

case.

Each initial conflict is a critical pair, but not vice versa. This means that,

if preserved elements are not unfolded maximally, we do not have an initial

conflict.

Theorem 3. Each initial conflict ic : (G
r1,m1
=⇒ H1, G

r2,m2
=⇒ H2) is a critical

pair.

Proof. Since Item 1 and 2 of Def. 5 characterize critical pairs set-theoretically,

this follows directly from Def. 3 and Def. 5.
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Example 2 (Initial conflict). The left overlap graph in Fig. 4 can function as

graph G of an initial transformation pair applying the refactoring rules in Fig. 2.

These applications show minimal context and minimal overlaps of LHSs just as

much as needed to form a conflict. This means that an initial conflict is shown.

The right overlap graph shows another conflict, here each two methods are

overlapped. In addition, 7,17:Class and 4,12:Attribute show overlaps of two pre-

served classes. Node 4:Attribute is neither deleted nor a boundary node (and

therefore not an element of graph C1) but overlapped with node 12:Attribute

from the LHS of rule pullUpEncapsulatedAttribute so that Item 3 in Def. 5 is

not fulfilled. Node 7:Class is a boundary node since incoming adjacent edge type

is deleted, but that edge is not overlapped with the corresponding edge type to

node 17:Class so that Item 4 in Def. 5 is not fulfilled. Hence, the shown conflict

is not initial. But it still depicts a conflict in a minimal context, which means

that a critical pair is shown.

Similarly to the Completeness Theorem for critical pairs, it is possible to

formulate a Completeness Theorem for initial conflicts. The difference is that

initial conflicts are embedded into a conflict via an extension morphism that

does not need to be injective.4

Theorem 4 (Completeness Theorem for initial conflicts). For each conflicting

transformation pair (t1 : G
p1
=⇒ H1, t2 : G

p2
=⇒ H2), there is an initial conflict

(tI1 : K
r1=⇒ P1, t

I
2 : K

r2=⇒ P2) with extension diagrams (1) and (2) as depicted

on the right of Fig. 7.

Proof. This follows from the Completeness Theorem for initial conflicts [15],

where two direct transformations in conflict are considered independent of the

order in which they occur, and Lemma 1 which guarantees that the initial

conflict given by the Completeness Theorem is in conflict also according to the

4Therefore critical pairs are also called M-initial conflicts [15], since as opposed to regular

initial conflicts the extension morphism in the Completeness Theorem for critical pairs is

injective.

22



asymmetric conflict definition (see Def. 2) used here.

Finally, note that since a critical pair is a conflicting transformation pair,

it is possible to find a unique initial conflict that can be embedded into this

critical pair. In particular, this extension morphism will be surjective since

both, the critical pair as well as the initial conflict, have jointly surjective match

morphisms already.

4. Two-Dimensional Approach to Granularity of Conflicts and De-

pendencies

In this section, we present our two-dimensional granularity approach to con-

flicts and dependencies. We distinguish conflict notions with varying context

and overlap granularity. Our overall intention from a practical point of view is

the possibility to gradually introduce users to conflicts by showing them conflict

notions belonging to a specific context or overlap granularity level. Our overall

intention from a theoretical point of view is to classify all different conflict no-

tions in a descriptive way according to their context and overlap granularity level

and find interesting relationships between all notions varying these granularity

dimensions.

As first contribution, in Sect. 4.1 we introduce the two granularity dimen-

sions (overlap as well as context granularity) and specific levels therein (binary,

coarse, medium, fine) along which we want to classify all existing and new

conflict notions as introduced in this paper. We classify and relate the exist-

ing conflict notions recalled in Sect. 3 within our two-dimensional granularity

approach in Sect. 4.2. The existing conflict notions as reintroduced in the pre-

vious section will be of binary (conflicting rule pairs), medium (critical pairs) or

fine (conflicting transformation pair) context granularity, in particular. There-

after, in Sect. 4.3 we start investigating more closely new conflict notions on

another level of context granularity in between the binary and medium one,

called coarse. We connect the new conflict notions with coarse context gran-

ularity with the already known notions of initial conflicts and classical critical
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pairs, having medium context granularity in Sect. 4.4. We show the interrela-

tions of the new conflict notions with coarse context granularity in Sect. 4.5 and

we introduce coarse overlap granularity as a new level of overlap granularity in

between the binary and medium one. We connect the new notions with the

binary level in Sect. 4.6. Finally, we sketch dual notions for dependencies.

4.1. Two dimensions of granularity

In this paper, we consider existing and new conflict notions describing con-

flicting transformations with more or less detail.

Context granularity. Our conflict notions shall be able to express conflicts with

a varying amount of context. In the previous section, we have considered four

different conflict notions already: conflicting rule pair, conflicting transforma-

tion pair, initial conflict, and critical pair. Since rule pairs do not show any

context for the conflicting transformation pairs related to this rule pair, we

consider them to be of binary context granularity. On the contrary, conflict-

ing transformation pairs show conflicts with their complete context such that

we classify them to be of fine context granularity (see Fig. 1). Critical pairs,

and in particular also initial conflicts, show conflicts with minimal context (via

jointly surjective matches); we consider them therefore to be of medium context

granularity. The new conflict notions such as conflict atom, conflict reason and

conflict reason extension do not show concrete matches into a graph for which

related conflicts occur. They are merely based on spans between the rule’s LHSs

(or their deletion graphs) indicating how the matches in related conflicting trans-

formations will need to overlap certain elements. We consider them therefore

to be of coarse context granularity. These observations are summarized in the

following description list of context granularity levels.

Given a conflicting rule pair (r1, r2) with r1 : L1
le1←↩ K1

ri1
↪→ R1 and r2 : L2

le2←↩

K2
ri2
↪→ R2, we consider the following context granularity levels:

• The context granularity of the conflicting rule pair (r1, r2) is binary.
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• Given a conflict notion consisting of a span C1 ←↩ S1 → L2 with C1 the

deletion graph of r1 or span L1 ←↩ S → L2, then the context granularity

of this conflict notion is coarse.

• Given a conflicting transformation pair (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2)

via rules (r1, r2), then the context granularity of (t1, t2) is medium if the

pair of matches (m1,m2) is jointly surjective.

• Given a conflicting transformation pair (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2)

via rules (r1, r2), the context granularity of (t1, t2) is fine if the pair of

matches (m1,m2) is not jointly surjective.

In this order, granularity levels show an increasing amount of context: The

binary level does not show any context of conflicts arising from rule pairs, the

coarse level shows conflicts in the form of spans, the medium level shows a

conflict in a minimal context represented by rule overlaps, and the fine level

allows context additional to the minimal one.

Overlap granularity. Our conflict notions shall be able to show a varying amount

of overlap between rule pairs that leads to conflicts between applications of

these rules. Given a conflicting transformation pair, an overlap is a specific

span between the LHSs of the corresponding conflicting rule pair. This span is

derived for each conflict notion reviewed or introduced in this paper according to

the following considerations. Overlaps for conflict notions express via this span

which elements of both LHSs are mapped to the same element. A conflicting rule

pair shows no overlap information at all such that we will consider its overlap to

be empty. Conflicting transformation pairs on the other hand describe via their

matches which elements from both LHSs are mapped identically. Therefore we

can summarize these elements into a span, resprenting the overlap, by building

the pullback of the matches. For conflict notions already consisting of spans it is

more straightforward to derive their overlap. We summarize these observations

in the following description list of overlaps of different conflict notions.
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Given a conflicting rule pair (r1, r2) with r1 : L1
le1←↩ K1

ri1
↪→ R1 and r2 : L2

le2←↩

K2
ri2
↪→ R2, we characterize the following kinds of overlaps:

• The overlap of a rule pair (r1, r2) is the empty span L1 ←↩ ∅ → L2.

• The overlap of a conflict notion given by a span C1
a1←↩ S1

b2→ L2 with C1

being the deletion graph of r1 is the span L1
c1◦a1← S1

b2→ L2 with c1 being

the embedding of the deletion graph C1 into L1.

• The overlap of a conflict notion given by a span L1 ←↩ S → L2 is this

span.

• The overlap of a conflicting transformation pair (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒

H2) is the span L1 ← S → L2 being the pullback of matches (m1,m2).

Conflict notions related to the same conflicting transformation pair become

comparable via their overlaps if there exists an embedding of one overlap into the

other one. Such an embedding defines a relation between overlaps as follows:

Given two overlaps s′ : L1
a′1← S′

b′2→ L2 and s : L1
a1← S

b2→ L2, overlap s′ is

embeddable into overlap s if there exists an injective morphism e : S′ → S such

that a1 ◦ e = a′1 and b2 ◦ e = b′2.

In the following, we will explain why the relation between overlaps of conflict

notions corresponding to a given conflicting transformation pair induces a par-

tial ordering on these notions. This allows us to consider four specific overlap

granularity levels (analogous to context granularity): fine, medium, coarse, and

binary. Conflict notions classified into these levels become less detailed w.r.t.

overlap granularity when moving from fine over medium and coarse to binary,

respectively.

4.2. Classifying Existing Conflict Notions

From our considerations above it follows immediately that rule pairs have

binary context level, conflicting transformation pairs not being critical pairs have

fine context level, critical pairs have medium context level.
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Let us introduce overlap granularity of the reviewed conflict notions in the

following. We consider conflicting rule pairs to have binary overlap granularity,

since they do not show any detail about overlapping elements for a conflicting

transformation pair via these rules. On the other hand, we consider conflicting

transformation pairs to have fine overlap granularity. The overlap of a con-

flicting pair describes completely which elements from both LHSs are matched

identically. In Sect. 3, we have recalled the relationships between conflicting

transformation and rule pairs as well as between initial conflicts and critical

pairs. For each conflicting transformation pair there exists a unique critical pair

embeddable into it via an injective extension morphism (see Theorem 2). Both

this critical pair as well as the initial conflict for a conflicting transformation

pair represent the given conflict on medium context granularity level, but the

extension morphism is general for an initial conflict whereas it is injective for a

critical pair. This means that the match morphisms of a critical pair glue all

elements that are glued by the match morphisms of the conflicting transforma-

tion pair. On the contrary, the match morphisms of an initial conflict do not

glue elements if this is not necessary for the conflict to be reproduced. Hence,

the conflicting transformation pair and its critical pair have the same overlap

and therefore overlap granularity, whereas the overlap granularity of an initial

conflict is in general coarser. We consider it to be of medium overlap granular-

ity level. The relationships between existing conflict notions of medium and fine

context granularity are summarized in the lower triangle of Fig. 1.

4.3. Conflict Notions of Coarse Context Granularity

We introduce new conflict notions of coarse context granularity by lifting our

conflict considerations from transformations to the rule level, i.e., we consider

conflicting rule pairs. A rule pair is conflicting if there is a conflicting trans-

formation pair applying the respective rules. We thus largely abstract from

the context in which the conflict occurs, but not entirely. Starting from the

already known binary description of conflicting rule pairs with binary context

granularity, we refine it to conflict notions with coarse context granularity. In
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particular, we concentrate on certain spans (see Fig. 6) between rules specify-

ing the conflict reasons (or at least parts of it) for conflicting transformation

pairs via these rules; we distinguish several forms of spans showing conflict rea-

sons with varying overlap granularity. The idea of considering such spans as

conflict reasons for transformations originates from the work on characteriz-

ing delete-conflicts (see reintroduced Theorem 1) and so-called essential critical

pairs [19]. We will start with introducing conflict atoms between rules being

of coarse overlap granularity. Staying on this coarse context granularity level,

more overlap information can be gradually added yielding conflict reasons be-

ing of medium overlap granularity or even conflict reason extensions being of

fine overlap granularity. Adding more context again, we leave the coarse con-

text granularity level and arrive at the already known notion of initial conflicts

and more generally, critical pairs both having medium context granularity. We

will show the interrelations of the new conflict notions in Sect. 4.5, where it

becomes clear why a conflict atom specifies less overlapping elements than a

conflict reason or conflict reason extension because of embedding relations in

between them, respectively.

In case of a conflict at least one deleted element of the first transformation is

overlapped with some used element of the second transformation. This overlap

is formally expressed by a span of graph morphisms between graph C1 and the

LHS of the second rule (Fig. 6).

We start focusing on minimal building bricks, called conflict atoms, overlap-

ping as few elements as possible for a conflict to be caused. In particular, we

consider a conflict atom to be a minimal sub-graph of C1 which can be embed-

ded into L2 but not into B1 (conflict and minimality conditions). Moreover,

a pair of direct transformations needs to exist for which the match morphisms

overlap on the conflict atom (transformation condition). Note that, in general,

the matches of this pair of transformations may overlap also in graph elements

not contained in the conflict atom. Hence, such a pair of transformations may

be chosen flexibly, it need not show a conflict in a minimal context as critical

pairs do. While conflict atoms describe the smallest conflict parts, a conflict
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reason is a complete conflict part in the sense that all atoms being involved

in the reported conflict are subsumed by it (completeness condition) and thus

overlapped. The conflict condition for the conflict reason ensures moreover that

conflicting elements are overlapped only. In more details, this means that each

graph component in the overlap S1 of graphs C1 and L2 has to fulfill the weak

conflict condition, i.e., isolated boundary nodes are not allowed in S1. In par-

ticular, the conflict condition ensures that each “part” of S1 fulfills the weak

conflict condition and is therefore formulated based on constructing all possi-

ble coproducts.5 While conflict reasons overlap in conflicting graph elements

(and adjacent boundary nodes) only, conflict reason extensions may overlap in

non-conflicting elements of the LHSs of participating rules as well (extended

completeness condition).

Definition 6 (Overlap conditions). Given rules r1 : L1
le1←↩ K1

ri1
↪→ R1 and

r2 : L2
le2←↩ K2

ri2
↪→ R2 with the initial pushout (1) for K1

le1
↪→ L1 as well as a span

s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 6, overlap conditions for the span s1 of

(r1, r2) are defined as follows:

1. Weak conflict condition: Span s1 satisfies the weak conflict condition if

there does not exist any injective morphism x : S1 → B1 such that b1◦x =

o1.

2. Conflict condition: Span s1 satisfies the conflict condition if for each co-

product
⊕

i∈I S
i
1, where each Si

1 is non-empty and S1 =
⊕

i∈I S
i
1, each of

the induced spans si1 : C1

oi1←↩ Si
1

qi12→ L2 with oi1 = o1|Si
1
and qi12 = q12|Si

1

fulfills the weak conflict condition.

3. Transformation condition: Span s1 satisfies the transformation condition

if there is a pair of transformations (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2)

via (r1, r2) with m1(c1(o1(S1))) = m2(q12(S1)) (i.e. (2) is commuting in

Fig. 6).

5In the category of (typed) graphs, an easier definition of the new conflict condition is

possible; instead of considering all possible coproducts, it suffices to consider only the one

decomposing a graph into its connected components.
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4. Completeness condition: Span s1 satisfies the completeness condition if

there is a pair of transformations (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) via

(r1, r2) such that (2) is the pullback of (m1 ◦ c1,m2) in Fig. 6.

5. Minimality condition: A span s′1 : C1
o′1←↩ S′1

q′12→ L2 can be embedded into

span s1 if there is an injective morphism e : S′1 → S1, called embedding

morphism, such that o1 ◦e = o′1 and q12 ◦e = q′12. If e is an isomorphism,

then we say that the spans s1 and s′1 are isomorphic. (See (3) and (4)

in Fig. 9.) Span s1 satisfies the minimality condition w.r.t. a set SP of

spans if any s′1 ∈ SP that can be embedded into s1 is isomorphic to s1.

Finally, span s : L1
a1←↩ S b2→ L2 fulfills the

extended completeness condition if there is

a pair of transformations (t1, t2) = (G
m1,r1
=⇒

H1, G
m2,r2
=⇒ H2) via (r1, r2) such that s

arises from the pullback of (m1,m2) in the

figure on the right.

S

L2L1

G

a1 b2

m1 m2

(PB)

L2 K2 R2
le2 ri2

(1)

(3) (4)

S′
1

S1

SC1B1

L1K1R1

o1

q12

o′1

q′12

e

c1

le1ri1

a1 b2

e′

(5) (6)

Figure 9: Illustrating span embeddings

Example 3 (Overlap conditions). Figure 10 shows the essential part of a con-

flicting transformation pair applying simplified refactoring rules decapsulateAt-

tribute and pullUpEncapsulatedAttribute at graph G1 already shown in Fig. 4.

The weak conflict condition is fulfilled since S1 cannot be embedded into B1.

The only coproduct of graphs yielding S1 just consists of S1 itself. Therefore,
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the general conflict condition is also fulfilled. Since m1 and m2 are matches

for their corresponding rules, there is a pair of transformations. Furthermore,

diagram (2) is commuting which means that the transformation condition is

satisfied. Actually, S1 is the intersection of C1 and L2 in G1 which means

that the completeness condition is also fulfilled. Finally, we can state that any

smaller graph than S1 would yield a setting where at least one of the conditions

discussed above is violated. Hence, assuming that all the conditions discussed

are fulfilled, the minimality condition is also satisfied.

Figure 10: Illustrating overlap conditions on example conflict for simplified refactoring rules

decapsulateAttribute and pullUpEncapsulatedAttribute

In [17], the above introduced weak conflict condition served as conflict con-

dition. As already mentioned above, in the case of graphs the strengthening of

this condition ensures that the graph S1 of a span fulfilling the conflict condition

does not contain isolated boundary nodes. These are isolated nodes of S1 (i.e.,

without adjacent edge) that get nevertheless mapped by o1 to a node in C1
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which has a preimage under b1. This exclusion of isolated boundary nodes from

graph S1 leads to a better comparability with the concept of initial conflicts

and proved to lead to much more elegant results (compare, e.g., Cor. 1). The

following lemma characterizes the conflict condition in a set-theoretical way.

Lemma 2 (Conflict condition characterization). Given rules r1 : L1
le1←↩ K1

ri1
↪→

R1 and r2 : L2
le2←↩ K2

ri2
↪→ R2 with the initial pushout (1) for K1

le1
↪→ L1 as

well as a span s1 : C1
o1←↩ S1

q12→ L2 as depicted in Fig. 6 fulfilling the weak

conflict condition, then s1 fulfills the conflict condition iff S1 does not contain

any isolated boundary nodes.

Proof. If S1 contained an isolated boundary node v, i.e., a node that has no

adjacent edge but is mapped by o1 to a node in C1 with preimage v′ in B1, then

S1 = {v}⊕ (S1 \ {v}) and x : {v} → B1 may be defined as mapping v to v′. By

construction b1 ◦ x = o1|{v}, so that the conflict condition is violated.

Let span s1 fulfill the weak conflict condition but not the conflict condition.

Then there exists a coproduct
⊕

i∈I S
i
1 = S1 where each Si

1 is non-empty and

(at least) one component Sj
1, j ∈ I can be embedded into B1 via an injective

morphism x : Sj
1 → B1 such that b1 ◦ x = o1|Sj

1
. Since there exists a morphism

from Sj
1 to B1, the graph Sj

1 consists of nodes only. Since Sj
1 is a summand

of the coproduct, S1 does not contain an edge between two nodes, one being

part of Sj
1 and the other being not. Since b1 ◦ x = o1|Sj

1
, Sj

1 consists of isolated

boundary nodes (having no adjacent edges, but preimages under b1).

In the following, we define the new building bricks of conflicts with coarse

context granularity, but gradually enforcing one overlap condition after the other

(i.e. varying the overlap granularity from coarse to fine).

Definition 7 (Conflict notions with coarse context granularity). Let the rules

r1 : L1
le1←↩ K1

ri1
↪→ R1 and r2 : L2

le2←↩ K2
ri2
↪→ R2 with initial pushout (1) for

K1
le1
↪→ L1 and a span s1 : C1

o1←↩ S1
q12→ L2 as depicted in Fig. 6, be given.

1. Span s1 is called conflict part candidate for the pair of rules (r1, r2) if it

satisfies the conflict condition. Graph S1 is called the conflict graph of s1.
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2. A conflict part candidate s1 for (r1, r2) is a conflict part for (r1, r2) if s1

fulfills the transformation condition.

3. A conflict part candidate s1 for (r1, r2) is a conflict atom candidate for

(r1, r2) if it fulfills the minimality condition w.r.t. the set of all conflict

part candidates for (r1, r2).

4. A conflict atom candidate s1 for (r1, r2) is a conflict atom for (r1, r2) if s1

fulfills the transformation condition.

5. A conflict part s1 for (r1, r2) is a conflict reason for (r1, r2) if s1 fulfills

the completeness condition.

6. A conflict reason s1 for (r1, r2) is minimal if it fulfills the minimality

condition w.r.t. the set of all conflict reasons for (r1, r2).

7. Span s : L1
a1←↩ S b2→ L2 is a conflict reason extension for (r1, r2) if it fulfills

the extended completeness condition and if there exists a conflict reason

s1 for (r1, r2) with e′ : S1 → S a so-called embedding morphism being

injective such that (5) and (6) in Fig. 9 commute. If the latter is the case,

we say that s1 can be embedded via e′ into s.

Note that a conflict part fulfilling the minimality condition is a conflict atom.

Example 4 (Conflict notions with coarse context granularity). Graphs in Fig. 3

refer to the rule pair in Fig. 2 and compactly denote spans indicated by equal

numbers in span and rule graphs.

• All depicted spans fulfill the conflict condition since they show overlaps in

elements to be deleted (weak conflict condition) without including overlaps

in isolated preserved nodes (full conflict condition).

Considering the span in Fig. 11, the weak conflict condition holds since

elements to be deleted take part in the overlap. The general conflict

condition, however, is not fulfilled since 7,9:Class does not fulfill the weak

conflict condition. Actually, it is an isolated boundary node.

• Figure 4 shows two graphs, which both can function as graph G in the

transformation condition to which the rules are applied. Both rule embed-
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Figure 11: Span over rule pair (decapsulateAttribute, pullUpEncapsulatedAttribute) with iso-

lated boundary node

dings (again indicated by numbers) are valid rule matches, i.e, fulfill the

gluing condition. For three of the left (compactly denoted) spans in Fig. 3

(all except 3,13:Method) graphs G1 or G2 form overlap graphs such that

the transformation condition is fulfilled. (There is also one for 3,13:Method

not depicted in this paper.) All left spans in Fig. 3 are conflict atoms since

they are minimal in addition. (The empty graph never fulfills the weak

conflict condition.)

Considering the span encoded by 2,14:Method we can first of all state that

it is a conflict atom candidate since the conflict condition is satisfied. The

transformation condition, however, cannot be fulfilled since overlapping

the LHSs of both rules along this span would lead to a dangling parameters-

edge. Hence, rule decapsulateAttribute cannot be applied in this setting.

• The right (compactly denoted) spans in Fig. 3 fulfill the completeness

condition since there are transformations applying the conflicting rules

such that C1 and L2 are overlapped as in the depicted spans. Moreover,

each one of them fulfills the conflict and the transformation condition.

Hence, they are conflict reasons. One example illustrating the fulfilled

completeness (as well as the transformation condition) is the left overlap

graph in Fig. 4; the intersection of C1 and L2 in it is the conflict reason at

the bottom of Fig. 3. We get a further conflict reason by gluing the top

most conflict reason of Fig. 3 with the bottom one at commonly named

nodes.

• In addition, all three conflict reasons in Fig. 3 fulfill the minimality con-

dition, i.e., they are minimal conflict reasons. There cannot be a smaller

span fulfilling the completeness condition since all their elements to be
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deleted are connected. In addition, there are boundary nodes only. The

pullback over any smaller (non-empty) span would lead to an overlap

graph such that an application of the left rule would cause dangling edges.

However, these smaller spans represent conflict parts since there are trans-

formation pairs they can be embedded into. Additional conflict reasons

that are constructed from these three are not minimal since they include

the minimal ones.

• The compactly notated spans in the right part of Fig. 3 and the one

in Fig. 11 are also conflict reason extensions if one interprets them as

embedded into L1 and L2 (instead of C1 and L2). The overlap graphs

G1 and G2 in Fig. 4 with the implied matches, for instance, ensure that

the extended completeness condition for the last span in the right part of

Fig. 3 and the span in Fig. 11, respectively, is satisfied. In contrast to

conflict reasons, a conflict reason extension may also contain additional

overlappings such as 4,12:Attribute and adjacent edges of type variables in

Fig. 12. Such an overlapping is not needed to characterize a conflict but

it does not hurt.

Figure 12: Conflict reason extension of rule pair (decapsulateAttribute, pullUpEncapsulate-

dAttribute)

Table 2 provides an overview over the new conflict notions for rules (i.e., with

coarse context granularity) and their overlap conditions illustrating the variety

in overlap granularity.

We end this section by showing a first rough relationship between a conflict-

ing transformation pair (of medium or fine context granularity) and a conflict

part being of coarse context granularity. This result can be considered as a

kind of quality criterion for the definition of new conflict notions above since it
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Overlap condition / conflict transf. compl. minimality

conflict notion condition condition condition condition

conflict part candidate x

conflict part x x

conflict atom candidate x x

conflict atom x x x

conflict reason x x x

min. conflict reason x x x x

Table 2: Overview of conflict notions with coarse context granularity

establishes a relation of these new conflict notions to the classical one in Def. 2.

For future reference, we prove this theorem in a way that then can be repeated

analogously for finitaryM-adhesive categories withM-initial object6 such that

the relationship holds for this more general context as well. However, for graphs

the result is true for infinite instances also.

Theorem 5 (Conflicting transformation and conflict part). Restriction Given

a conflicting transformation pair (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) then

there exists a conflict part s1 : C1
o1←↩ S1

q12→ L2 for (r1, r2) with (2) in

Fig. 6 commuting.

Extension Given a conflict part s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2)

then there exists a conflicting transformation pair (t1, t2) = (G
m1,r1
=⇒

H1, G
m2,r2
=⇒ H2) with (2) in Fig. 6 commuting.

Proof. Restriction: Build the pullback of (m1 ◦ c1,m2). According to The-

orem 1 the arising span s
{1}
1 : C1

o
{1}
1←↩ S

{1}
1

q
{1}
12→ L2 fulfills the weak conflict

6Finitary M-adhesive categories [23] describe M-adhesive categories with finite objects

only. The existence of an M-initial object implies finite coproducts with injections into the

coproduct being inM, an assumption that this proof relies on and which holds for the category

of finite graphs, in particular.
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condition. Suppose that it does not fulfill the conflict condition yet. Then there

exists a coproduct summing up to S
{1}
1 with at least one of its components not

fulfilling the weak conflict condition. Consequently, we can construct a new

span s
{2}
1 : C1

o
{2}
1←↩ S

{2}
1

q
{2}
12→ L2 by omitting the components not fulfilling the

weak conflict condition from the coproduct and restricting the morphisms ac-

cordingly. This procedure can be repeated as long as the conflict condition is

not fulfilled; the newly arising spans s{k}1 always inherit the weak conflict con-

dition and the transformation condition from the span originally constructed

via the pullback construction. Since at every repetition there is only a finite

number of possibilities to partition the graph S
{k}
1 as coproduct and since with

every repetition the number of possibilities decreases, this procedure terminates.

Assume it terminates with the empty graph as result. Then summing up the

deleted parts again, on the one hand results in the original span s
{1}
1 , but on

the other hand provides a morphism x : S1 → B1 with b1 ◦ x = o1 (sum up the

morphisms that caused the violation of the conflict condition at the different

steps of the repetition). Since this contradicts s
{1}
1 fulfilling the weak conflict

condition, the procedure terminates with a span s1 : C1
o1←↩ S1

q12→ L2 fulfilling

the transformation and the conflict condition.

Extension: Because of the transformation condition there exists a pair of

transformations (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) with (2) in Fig. 6 commut-

ing. We can now build the pullback of (m1 ◦ c1,m2). The span arising from this

pullback fulfills the weak conflict condition, since otherwise s1 would not fulfill

the weak conflict condition. Therefore because of Theorem 1, we can conclude

that (t1, t2) is conflicting.

4.4. Relating Conflict Notions of Coarse and Medium Context Granularity

As illustrated in Fig. 1 and recalled in Sect. 3, the notions of critical pair and

initial conflict express conflicts of medium context granularity (i.e., the context

only entails elements stemming from the rules). In this section, we show the

interrelation of critical pairs (and initial conflicts) with our newly introduced

notions of coarse context granularity. In particular, we can establish a 1-1 re-
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lationship between critical pairs and conflict reason extensions for a given rule

pair. For each critical pair we can determine its overlap, corresponding to a

conflict reason extension with the same overlap. Therefore we consider this

conflict reason extension to have fine overlap granularity such as the critical

pair itself. Moreover, there is a relationship between initial conflicts and con-

flict reasons for a given rule pair, where their overlap granularity remains almost

the same. This means that an initial conflict overlaps the same elements as pre-

scribed by the embedded conflict reason, but it might overlap some additional

elements. This happens if the initial conflict is not only a delete-use, but also

a use-delete conflict (i.e., the second transformation in the conflicting transfor-

mation pair deletes elements used by the first one).7 We consider this difference

to be marginal in this framework such that we assign both to initial conflicts as

well as conflict reasons the medium granularity level. The established relation-

ships are illustrated by the vertical arrows between the top and medium row

of the conflict notion overview in Fig. 1. The relationships are described more

precisely in the following two theorems.

Theorem 6 (Initial conflict and conflict reason). Restriction. Given an ini-

tial conflict (t1, t2) = (K
m1,r1
=⇒ P1,K

m2,r2
=⇒ P2), the span s1 : C1

o1←↩ S1
q12→

L2 arising from taking the pullback of (m1 ◦c1,m2) is a conflict reason for

(r1, r2).

Extension. Given a conflict reason s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2),

there exists an initial conflict (t1, t2) = (K
m1,r1
=⇒ P1,K

m2,r2
=⇒ P2) with the

pullback of (m1 ◦ c1,m2) being isomorphic to s1.

Proof. Restriction: The completeness and transformation condition for the

span s1 are fulfilled by construction and Theorem 1 states that the weak conflict

7This phenomenon arises from the fact that, in this work, we opted for defining conflict

reasons for a conflicting transformation pair asymmetrically (i.e., concentrating on only one

order of rules). On the contrary, the notion of conflict reasons was originally introduced for

conflicting transformations in a symmetrical form in [19].
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condition also holds. Assume the conflict condition not to hold. Because of

Lemma 2, this implies the existence of an isolated boundary node v ∈ S1. Its

image m1(c1(b1(x(v)))) ∈ K is an isolated boundary node in the sense of Def. 5,

Item 4. That is a contradiction to (t1, t2) being an initial conflict.

Extension: Compare Fig. 13 for the following proof: Since s1 fulfills the

completeness condition, there exists a pair of transformations (t′1, t′2) = (G
m′1,r1=⇒

H1, G
m′2,r2=⇒ H2) with s1 arising from the pullback of (m′1 ◦ c1,m′2). Because of

Theorem 5 and the fact that s1 fulfills the conflict condition we know that (t′1, t′2)

is also conflicting. Due to Theorem 4, for each such conflicting transformation

pair, we can build the initial conflict (t1, t2) = (K
m1,r1
=⇒ P1,K

m2,r2
=⇒ P2) for

(t′1, t
′
2) with an extension morphism m : K → G s.t. m◦m1 = m′1 and m◦m2 =

m′2. Now we show that s1 is also a pullback of (m1 ◦c1,m2). Assume a graph X

and morphisms x1 : X → C1 and x2 : X → L2 s.t. m1 ◦c1 ◦x1 = m2 ◦x2. Then,

because s1 is also a pullback of (m′1 ◦ c1,m′2) we can use its pullback property

and conclude that since m′1 ◦ c1 ◦ x1 = m ◦m1 ◦ c1 ◦ x1 = m ◦m2 ◦ x2 = m′2 ◦ x2,

it holds that there exists a unique morphism x : X → S1 s.t. o1 ◦ x = x1 and

q12 ◦ x = x2.

L2

X

S1

C1

L1

K

G

o1

q12

x1

x2

c1

x

m

m1 m2

m′1 m′2= =

= =

Figure 13: Illustrating the proof of the Extension Case of Theorem 6
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The following theorem describes the 1-1 relationship between critical pairs

and conflict reason extensions. Both have the same overlap granularity, but

critical pairs show more context than conflict reason extensions. In particular,

critical pairs show conflicts in their minimal context and conflict reason exten-

sions merely show how the rules’ LHSs overlap in order for such conflicts to

occur.

Theorem 7 (Critical pair and conflict reason extension). Restriction. Given

a critical pair (t1, t2) = (K
m1,r1
=⇒ P1,K

m2,r2
=⇒ P2) then the span arising

from taking the pullback of (m1,m2) is a conflict reason extension for

(r1, r2).

Extension Given a conflict reason extension s : L1
a1←↩ S b2→ L2 for (r1, r2)

then the cospan arising from building the pushout of (a1, b2) defines the

matches (m1,m2) of a critical pair (t1, t2) = (K
m1,r1
=⇒ P1,K

m2,r2
=⇒ P2).

Bijective correspondence The restriction and extension constructions are

inverse to each other up to isomorphism.

Proof. Restriction: It is obvious that, by taking the pullback (1) of (m1,m2),

the extended completeness condition is fulfilled. Because of Theorem 4 we

know that an initial conflict can be embedded into this critical pair. Due to

Theorem 6 we know that this initial conflict can be restricted to a conflict

reason s1 : C1
o1←↩ S1

q12→ L2 arising from taking the pullback of (m′1 ◦ c1,m′2)

with (m′1,m
′
2) being the matches of the initial conflict. In particular, s1 can be

embedded into the conflict reason extension s via some morphism e′.

Extension: We get by definition of conflict reason extension two trans-

formations (t′1, t
′
2) = (G

m′1,r1=⇒ H1, G
m′2,r2=⇒ H2) s.t. s is the span arising from

building the pullback (2) of (m′1,m′2). By Theorem 2 we know that we get a

critical pair that can be embedded via some injective extension morphism into

(t′1, t
′
2) = (G

m′1,r1=⇒ H1, G
m′2,r2=⇒ H2). The diagram consisting of s together with

the matches (m1,m2) of this critical pair is also a PB. The PB property is in-

herited from pullback (2). Because of Remark 2.25 in [14] a PB of two injective,
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jointly surjective morphisms is also a pushout (PO).

Bijective correspondence: The constructions have a bijective correspon-

dence since, in the category of typed graphs, a PO over at least one injective

morphism (morphism in M, resp.) is also a PB [14]. Moreover, because of

Remark 2.25 in [14], a PB being built from two injective, jointly surjective

morphisms is also a PO. Last but not least, POs and PBs are unique up to

isomorphism.

Figure 14: Example of a conflict reason extension for the pair of simplified refactoring rules

decapsulateAttribute and pullUpEncapsulatedAttribute

Example 5 (Critical pair and conflict reason extension). Fig. 14 shows the

overlap graph G2 already shown in Fig. 4. It overlaps not only 2:Method with

13:Method and adjacent classes but also 7:Class with 17:Class and 4:Attribute

with 12:Attribute. While 2,13:Method and adjacent classes form a conflict rea-

son, the other overlaps in S are additional. 7,17:Class forms an isolated bound-
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ary node since 7:Method occurs as boundary node in rule decapsulateAttribute

(see also Fig. 10) and is not connected to any other node in S. In contrast, 4:At-

tribute is not a boundary node. 4,12:Attribute may, however, occur in a conflict

reason extension, i.e., in S. Gluing the LHSs of rules decapsulateAttribute and

pullUpEncapsulatedAttribute at the graph S we get graph G2, the overlap graph

of a critical pair.

We conclude this section by positioning conflict notions of coarse context

granularity as they were used in the conference paper [17] with the notions of

coarse context granularity as considered here. Based on the rationale to align

our granularity considerations with the new findings on initial conflicts [15],

these former notions are now deprecated. The relationships, shown in Fig. 15,

illustrate in particular the contribution of this work w.r.t. the conference paper.

In particular, the former notion of conflict reason [17] is aligned with the notion

of essential critical pairs [19]. Since the notion of conflict reason introduced in

this paper includes a stronger condition than the one given in [17], each conflict

reason in the new sense is also a conflict reason according to [17] but not vice

versa. As explained before, our adapted conflict reason notion corresponds more

closely to initial conflicts, which are therefore preferable to essential critical

pairs for representing medium context granularity [15]. On the medium context

granularity level, we thus have that each initial conflict is an essential critical

pair, but not vice versa. Compared to Def. 5, this means that each initial conflict

satisfies also Item 4 (no isolated boundary node in overlap graph) in addition to

the first three items that are satisfied by an essential critical pair. This explains

why the overlap granularity of the latter is finer than for initial conflicts. On the

other hand, each essential critical pair is a critical pair, but not vice versa [19].

Compared to Def. 5, this means that each essential critical pair satisfies Item

3 (overlap in deletion graphs only) in addition to the first two conditions that

are satisfied by a critical pair. This explains why the overlap granularity of the

latter is finer than the one for essential critical pairs.
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Theorem 4

Theorem 6

Def. 7,

[17]

Figure 15: Positioning conflict notions as used in conference paper [17] in two dimensions of

granularity

4.5. Interrelating Conflict Notions of Coarse Context Granularity

The subsequent results clarify the main interrelations between the new con-

flict notions for rules, i.e., conflict notions with coarse context, and varying

overlap granularity (see coarse context granularity level in Fig. 1). Basically,

we show that conflict notions with coarser overlap granularity can be extended

to conflict notions with finer overlap granularity. Conversely, those with finer

overlap granularity can be restricted to or are covered by conflict notions with

finer overlap granularity. In particular, we will show that conflict reasons are

covered by conflict atoms embedded into it. This implies that the overlap of

conflict atoms is, in general, coarser than the one of a conflict reason. Therefore,

we assign to conflict atoms the new remaining coarse overlap granularity level.

Theorem 8 (Extension of conflict part to reason). Given a conflict part s1 :

C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2) with LHSs L1 and L2, there is a conflict

reason for (r1, r2) such that the conflict part s1 can be embedded into it.

Proof. Due to Def. 7, a conflict part fulfills the transformation condition. Hence,

there exists a pair of direct transformations (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒

H2) such that m1(c1(o1(S1))) = m2(q12(S1)). Then, we construct the initial

conflict (with matches mI
1 for rule r1 and mI

2 for rule r2) for the given conflicting

transformation pair (t1, t2) which exists due to Theorem 4. We construct the
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pullback over mI
1 ◦ c1 and mI

2 yielding span sI1 : C1

oI1←↩ SI
1

qI12→ L2. This span is

a conflict reason for (r1, r2) due to Theorem 6. Due to the pullback property,

there is a unique morphism e : S1 → SI
1 such that oI1 ◦ e = o1 and qI12 ◦ e = q12.

Hence, conflict part s1 can be embedded into conflict reason sI1.

The following lemma gives a more constructive characterization of conflict

atom candidates compared to their introduction in Def. 7. This result helps us

to characterize conflict atom candidates for a given pair of rules. Candidates are

either nodes deleted by rule r1 and used by rule r2 or edges deleted by r1 and

used by r2 if their incident nodes are preserved by r1. Edges with at least one

incident deleted node are not considered as atom candidates since their deletion

is caused by node deletions.

Lemma 3 (Conflict atom candidate characterization). A conflict atom can-

didate s1 : C1
o1←↩ S1

q12→ L2 for rules (r1, r2) has a conflict graph S1 either

consisting of a node v s.t. o1(v) ∈ C1 \ B1 or consisting of an edge e with its

incident nodes v1 and v2 s.t. o1(e) ∈ C1 \B1 and o1(v1), o1(v2) ∈ B1.

Proof. Since S1 is included in the context graph C1 of rule r1 (1) each edge of

graph S1 must be deleted by r1. From the conflict condition it follows that (2)

each preserved node of graph S1 is incident with a deleted edge of S1 and that

(3) S1 contains at least one graph element that is deleted.

Assume that graph S1 contains more than one graph element being deleted.

We can find an embedding of a graph S′1 with exactly one graph element being

deleted. If an extra node is deleted, we can pick the node itself. If an extra

edge is deleted with incident preserved nodes, we pick this edge with its inci-

dent nodes. If an extra edge e is deleted with one of its incident nodes n or m

being deleted as well, we pick one of the nodes n or m being deleted. These

observations contradict with the minimality condition for s1 such that S1 can-

not contain more than one graph element being deleted. Therefore, the graph

elements of S1 are mapped to C1 according to cases (1) or (2) above.

The following theorem states that each conflict part (and therefore also each
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conflict reason) is covered by a unique non-empty set of conflict atoms, i.e.,

all atoms that can be embedded into that conflict part. This means that by

investigating the set of conflict atoms one gets a complete overview of graph

elements that can cause conflicts in a given conflict reason. Note that our

notion of covering assumes that all edges incident with deleted nodes contained

in some conflict part are covered implicitly, since conflict atoms as shown in

Lemma 3 only consist of deleted nodes or deleted edges incident with preserved

nodes. Of course, this result also holds for the special case when the conflict

reason is minimal.

Theorem 9 (Covering of conflict parts by atoms). Given a conflict part s1 :

C1
o1←↩ S1

q12→ L2 for rules (r1, r2), then the set A of all conflict atoms that

can be embedded into s1 is non-empty and covers s1, i.e., for each conflict part

s′1 : C1
o′1←↩ S′1

q′12→ L2 for (r1, r2) that can be embedded into s1, it holds that s′1
is isomorphic to s1 if each atom in A can be embedded into s′1.

Proof. We first show that the set A is non-empty. Assume that the conflict part

s1 is not already a conflict atom. Then we can construct at least one conflict

atom that can be embedded into s1 as follows: A conflict part fulfills the weak

conflict condition; hence there is at least one graph element x in S1 that is

deleted. Then we have three cases: (1) x is a node, then we consider the graph

consisting of this node. (2) x is an edge not incident to a deleted node, then we

consider the graph consisting of this edge with incident nodes. (3) x is an edge

incident to a deleted node, then we consider the graph consisting of one of such

an incident deleted node. In all three cases it is obvious that a conflict atom

candidate arises that can be embedded into s1. Since, for the conflict part s1,

two transformations exist which overlap in at least this conflict part, and since

each of these conflict atom candidates is embedded into s1, the transformation

condition is simply inherited. Therefore we have found, in particular, a conflict

atom.

Now we assume that s′1 is not isomorphic to s1: This is possible only if

at least one graph element of S1 is missing in S′1. This element cannot be a
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deleted node or a deleted edge with incident nodes being preserved by the first

rule since there are atoms for these cases. The missing element cannot be an

isolated boundary node, since this would contradict with a conflict part fulfilling

the conflict condition. Hence, the missing element must be an edge e incident

with a deleted node. Since e occurs in S1, there has to be a corresponding edge

e2 in L2. Since s′1 is a conflict part for (r1, r2) as well, there exists according

to Theorem 5 a conflicting transformation pair (t′1, t′2). The matches of such a

pair (t′1, t′2) do not identify e with e2 (because of the completeness condition),

but then, since t′1 deletes e but not e2 although they have a common incident

deleted node, t′1 cannot be a transformation since e2 would dangle. Hence, s′1

cannot be a conflict part which contradicts our assumption.

From this Theorem the following Corollary can be derived.8

Corollary 1 (Covering of conflict reasons by atoms). Given a conflict reason

s1 : C1
o1←↩ S1

q12→ L2 for rules (r1, r2), then the set A of all conflict atoms that can

be embedded into s1 covers s1, i.e., for each conflict reason s′1 : C1
o′1←↩ S′1

q′12→ L2

for (r1, r2) that can be embedded into s1 it holds that s′1 is isomorphic to s1 if

each atom in A can be embedded into s′1.

Proof. This follows directly from Theorem 1.

Example 6 (Covering of conflict reason by atoms). On the left of Fig. 16

an example of a conflict reason is shown as it occurs for the pair of refactor-

ing rules decapsulateAttribute and pullUpEncapsulatedAttribute. Conflict atoms

2,13:Method, 3,14:Method, and 5,15:Parameter (which are shown in Fig. 3) can

be embedded into it. These three atoms cover the conflict reason on the left

of Fig. 16 in the sense that there is no smaller reason which can be embedded

8In comparison to the conference paper [17], this result has become much more elegant

since our notion of conflict reason relies on a stronger conflict condition now aligned with

the notion of initial conflicts. In particular, we can disregard isolated boundary atoms in the

coverings of conflict reasons now.
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Figure 16: Conflict reason (left) and conflict reason extension (right) for the pair of refactoring

rules decapsulateAttribute and pullUpEncapsulatedAttribute

into this one and where all three atoms can be embedded in. Actually, there are

three further conflict reasons as pointed out in Sect. 2. All these three reasons

are smaller than this conflict reason; they are all covered by, however, less than

three atoms.

Conflict reason extensions contain all graph elements that overlap in a con-

flicting transformation pair, even elements that are not deleted but used by

both participating rules. Hence, a conflict reason extension might show too

much overlap information. By definition, for each conflict reason extension,

there is a conflict reason which can be embedded into this extension. Hence, a

conflict reason extension can always be restricted to a conflict reason.Vice versa,

each conflict reason (being defined over C1 and L2) can be extended to at least

one conflict reason extension (being defined over L1 and L2).

Theorem 10 (Conflict reason and conflict reason extension). Restriction. Given

a conflict reason extension s : L1
a1←↩ S b2→ L2 for rules (r1, r2), there is

a conflict reason s1 : C1
o1←↩ S′1

q12→ L2 for rules (r1, r2) which can be

embedded into s.

Extension. Given a conflict reason s1 : C1
o1←↩ S′1

q12→ L2 for rules (r1, r2),

there exists a conflict reason extension s : L1
a1←↩ S b2→ L2 for rules (r1, r2)

such that s1 can be embedded into s.

Proof. Restriction: Follows directly from Def. 7.

Extension: For the conflict reason s1 there exists a pair of direct transfor-

mations (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) with s1 being the pullback of
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(m1 ◦ c1,m2). Now we can also build the pullback (PB) of (m1,m2) such that

we get a conflict reason extension s. In particular, the conflict reason s1 can

be embedded into s because of the pullback property of (PB) and the fact that

m1 ◦ c1 ◦ o1 = m2 ◦ q12.

Example 7 (Conflict reason extension). The conflict reason on the left of

Fig. 16 can be extended to a conflict reason extension if the conflicting transfor-

mation pair is embedded into overlaps in exactly the contained graph elements.

On the right of Fig. 16 a slightly larger conflict reason extension is shown which

overlaps the attribute nodes and their adjacent edges in addition. The corre-

sponding conflicting transformation pair would also overlap in all graph elements

indicated by the conflict reason extension. The conflict reason on the left, how-

ever, would also be the corresponding conflict reason of the right conflict reason

extension. So, this example shows that a conflict reason can be embedded into

a conflict reason extension; there may be more than one extension in general.

4.6. Relating Conflict Notions of Binary and Coarse Context Granularity

Finally, we consider the interrelation of conflict notions having binary and

coarse context granularity (see Fig. 1). We show that for each conflicting rule

pair (binary granularity) there is a conflict part (coarse context granularity)

and vice versa. Finally, we show that for each pair of conflicting rules (binary

granularity) there is in particular a conflict atom and vice versa. Note that by

transitively combining all other relationships depicted in Fig. 1, the binary level

can be related analogously to all other conflict notions.

Corollary 2 (Conflicting rule pair and conflict part). A rule pair (r1, r2) is

conflicting if and only if there exists a conflict part for (r1, r2).

Proof. Given a conflicting rule pair (r1, r2) as in Def. 2, there is a conflicting

transformation pair (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2). Due to Theorem 5 we

know that there exists a conflict part for (r1, r2).

Given a conflict part s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2), there is

a conflicting transformation pair (t1, t2) = (G
m1,r1
=⇒ H1, G

m2,r2
=⇒ H2) due to
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Theorem 5 such that the rule pair (r1, r2) is indeed conflicting.

Corollary 3 (Conflicting rule pair and conflict atom). A rule pair (r1, r2) is

conflicting if and only if there exists a conflict atom for (r1, r2).

Proof. From Corollary 2 it follows that there is a conflict part for (r1, r2). From

Theorem 9 it follows that each conflict part is covered by at least one conflict

atom for (r1, r2).

Given a conflict atom s1 : C1
o1←↩ S1

q12→ L2 for rule pair (r1, r2), then, because

of Corollary 2, we know that this rule pair is conflicting.

4.7. Dual Notions for Dependencies

To reason about dependencies, we consider the dual concepts and results

that we get by inverting the left transformation of a conflicting transformation

pair. This means that we check if G
p−1
1 ,m′1⇐= H1

p2,m2
=⇒ H2 is conflicting, which

is equivalent to the sequence G
p1,m1
=⇒ H1

p2,m2
=⇒ H2 being dependent. This is

possible since a transformation is symmetrically defined by two pushouts. They

ensure in particular that morphisms m : L → G and m′ : R → H both fulfill

the gluing condition.

Dependency parts, atoms, reasons, and reason extensions can be defined

analogously to Def. 7. They characterize graph elements being produced by the

first rule application and used by the second one. Results presented for conflicts

above can be formulated and proven for dependencies in an analogous way. We

illustrate this with an example.

Example 8. Figure 17 specifies the encapsulation of an attribute in a slightly

simplified way. When checking for dependencies between this rule and the rule

pullUpEncapsulatedAttribute (Fig. 2, right), one can equivalently check for con-

flicts between its inverse rule, decapsulateAttribute (Fig. 2, left), and pullUpEn-

capsulatedAttribute. Therefore, the conflict atoms and minimal conflict reasons

of the rule pair (decapsulateAttribute, pullUpEncapsulatedAttribute) (Fig. 3) are

exactly the dependency atoms and minimal dependency reasons for the rule pair

(encapsulateAttribute, pullUpEncapsulatedAttribute). As a matter of course,
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e.g., these dependency atoms cover the dependency reasons for the rule pair

(encapsulateAttribute, pullUpEncapsulatedAttribute) in the same sense in which

the conflict atoms cover the conflict reasons of the rule pair (decapsulateAt-

tribute, pullUpEncapsulatedAttribute) (compare Corollary 1).

Figure 17: Simplified rule specifying the refactoring Encapsulate Attribute

5. Related Work and Conclusion

In this paper, we lay the basis for a refined analysis of conflicts and de-

pendencies by presenting conflict and dependency notions along two different

granularity dimensions: overlap and context granularity. Furthermore, we in-

vestigate their interrelations.

With this contribution, we aim to improve on critical pair analysis (CPA),

the standard technique for detecting conflicts and dependencies in graph trans-

formation systems [13] at design time. Originally being developed for term

and term graph rewriting [24], CPA extends the theory of graph transforma-

tion and, more generally, of M-adhesive transformation systems [21, 14]. The

CPA is available for plain rules as well as rules with application conditions [25].

Moreover, several works [13, 26, 27] exist to design CPA for attributed rules.
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Tool support for CPA is offered by the graph transformation tools AGG [28] and

Verigraph [29] and by the graph-based model transformation tool Henshin [30].

All of these tools provide the user with a set of (essential) critical pairs for each

pair of rules.

The computation of conflicts and dependencies using the concepts intro-

duced in the present work has been prototypically implemented in Henshin [16].

The evaluation of a part of this prototype – where we have chosen to implement

the computation of binary results, minimal conflict reasons and conflict reasons

– shows improved performance [16] compared to the state-of-the-art CPA im-

plementations. The improved usability of coarser conflict notions w.r.t. overlap

granularity in the form of minimal conflict reasons has been confirmed in a user

study [16]; investigating the effect of context granularity is left as future work.

The formal study of relationships in the present paper lays the basis for extend-

ing this solution by implementing the computation of conflict notions on any

desired level of granularity, and studying the associated effect on usability and

performance.

Azzi et al. conducted similar research aiming to identify root causes of con-

flicting rule applications in [22] appearing after the publication of [17]. Their

work is based upon an alternative characterization of parallel independence [31].

The most important difference is that we define our notions for pairs of rules

instead of pairs of transformation as done by Azzi et al. Moreover, they do not

consider the different levels of granularity proposed in this work but only what

corresponds to conflict reasons and conflict reason extensions (in our terminol-

ogy). And technically, we consider spans while they are interested in subobjects

of the intersection of the rules’ LHSs. By computing their so-called disabling

essences in a slightly different order (first taking pullbacks and afterwards an

initial pushout), these do not contain isolated boundary nodes. Moreover, Azzi

et al. proved a disabling essence to be a subobject of a (suitably adapted) con-

flict reason (basically, the conflict graph S1) as it was defined in [17]. Using

the newly introduced conflict condition of this paper it is not difficult to prove

the converse in the setting of categories of set-valued functors. This means,
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given a pair of rules, a conflict reason is isomorphic to the disabling essence

of the corresponding pair of transformations (existing by the transformation

condition).

Currently, we restrict our formal considerations to graphs and graph trans-

formations. Since all main conflict notions are based on concepts from category

theory, our work is prepared to adapt to more sophisticated forms of graphs or

graph transformation. It is up to future work to – if possible – come up with

categorical means to define also the granularity dimensions more formally than

introduced in this paper. Furthermore, it is interesting to adapt the new notions

to transformation rules with negative [20] or more complex nested application

conditions [25]. Analogously, to handle attributes within conflicts appropriately

it is promising to adapt our approach to lazy graph transformations [32] and to

come up with a light-weight conflict analysis complementing the work of Deck-

werth et al. [33] where conflicts are detected between edit operations on feature

models. They combine the CPA with a SMT solver for an improved handling

of conflicts based on attribute changes. Performance is still a limiting factor

for applying the CPA to large rule sets. A family-based analysis based on the

unification of multiple similar rules [34] is a promising idea to save redundant

computation effort.
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