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Virtual Platform: Effective and Seamless
Variability Management for Software Systems

Wardah Mahmood, Gül Çalıklı, Daniel Strüber, Ralf Lämmel, Mukelabai Mukelabai, and Thorsten Berger

Abstract—Customization is a general trend in software engineering, demanding systems that support variable stakeholder requirements.
Two opposing strategies are commonly used to create variants: software clone & own and software configuration with an integrated
platform. Organizations often start with the former, which is cheap and agile, but does not scale. The latter scales by establishing an
integrated platform that shares software assets between variants, but requires high up-front investments or risky migration processes. So,
could we have a method that allows an easy transition or even combine the benefits of both strategies? We propose a method and tool
that supports a truly incremental development of variant-rich systems, exploiting a spectrum between the opposing strategies. We design,
formalize, and prototype a variability-management framework: the virtual platform. Virtual platform bridges clone & own and
platform-oriented development. Relying on programming-language independent conceptual structures representing software assets, it
offers operators for engineering and evolving a system, comprising: traditional, asset-oriented operators and novel, feature-oriented
operators for incrementally adopting concepts of an integrated platform. The operators record meta-data that is exploited by other
operators to support the transition. Among others, they eliminate expensive feature-location effort or the need to trace clones. A
cost-and-benefit analysis of using the virtual platform to simulate the development of a real-world variant-rich system shows that it leads
to benefits in terms of saved effort and time for clone detection and feature location. Furthermore, we present a user study indicating that
the virtual platform effectively supports exploratory and hands-on tasks, outperforming manual development concerning correctness. We
also observed that participants were significantly faster when performing typical variability management tasks using the virtual platform.
Furthermore, participants perceived manual development to be significantly more difficult than using the virtual platform, preferring virtual
platform for all our tasks. We supplement our findings with recommendations on when to use virtual platform and on incorporating the
virtual platform in practice.

Index Terms—software product lines, variability management, clone management, re-engineering, framework
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1 INTRODUCTION

SOFTWARE systems often need to exist in different variants.
Organizations create variants to adapt systems to varying

stakeholder requirements—for instance, to address a variety
of market segments, runtime environments, or different
hardware. Variants allow organizations to experiment with
new ideas and to test them on the market, which easily leads
to a portfolio of system variants that needs to be maintained.

Two opposing strategies exist for engineering variants. A
convenient and frequent strategy is clone & own [1], [2], [3], [4],
[5], [6], where developers create one system and then clone
and adapt it to the new requirements. This strategy is well-
supported by current version-control systems and tools, such
as GIT, relying on their forking, branching, merging, and
pull request facilities. The frequent adoption of clone & own
[7], [1], [5] is usually attributed to its inexpensiveness,
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flexibility, and provided developer independence. However,
clone & own does not scale with the number of variants and
then imposes substantial maintenance overheads. A scalable
strategy is to integrate the cloned variants into a configurable
and integrated platform by adopting platform-oriented engi-
neering methods, such as software product line engineering
(SPLE) [8], [9], [10], [11], [12], [13]. Individual variants are
then derived by configuring the platform. This strategy is
typically advocated for systems with many variants, such
as software product lines (e.g., automotive/avionics control
systems [14], [15], [16], [17], [18], robotics systems [19], [20],
and industrial automation systems [12], [21]) or highly
configurable systems (e.g., the Linux kernel [22], [23], [24],
[25]). This strategy scales, but is often difficult to adopt and
requires substantial up-front investments, since variability
concepts (e.g., a feature model [26], [27], feature-to-asset
traceability [28], [29], a configuration tool [30]) need to be
introduced and assets made reusable or configurable. In
practice, organizations often start with clone & own and later
face the need to migrate to a platform in a risky and costly
process [31], [32], [7], [33], eliciting meta-data that was never
recorded during clone & own, such as features and their
locations in software assets [34], [27].

Over the last decades, researchers focused on heuristic
techniques to recover information from legacy codebases,
including feature identification [35], [36], [37], feature
location [38], [39], [40], variability mining [41], [42], and
clone-detection techniques [43], [44]. Unfortunately, such
techniques are usually not accurate enough to be applicable
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in practice, and also require substantial effort to set them
up and provide with manual input (e.g., specific program
entry points for feature location techniques [45]). As we
will show, existing platform migration techniques either
heavily rely on such heuristics or have only been formulated
as abstract frameworks so far. Moreover, they tend to
prescribe non-iterative, waterfall-like migrations, making the
migration risky and expensive.

We take a different route and present a method to
continuously record the relevant meta-data already during
clone & own, and to incrementally transition towards a
more scalable platform-oriented strategy, exploiting the
meta-data recorded. We design, formalize, and prototype
a lightweight method called virtual platform, generalizing
clone-management and product-line migration frameworks.
We exploit a spectrum between the two extremes of ad
hoc clone & own and fully integrated platform, supporting
both kinds of development. As such, the virtual platform
bridges clone & own and platform-oriented development
(SPLE). Based on the number of variants, their size, the
number and diversity of the implemented features, and
the available resources, organizations can decide to use
only a subset of all the variability-implementation concepts
that are typically required for an integrated platform. This
allows organizations to be flexible and innovative by starting
with clone & own and then incrementally adopting the
variability-implementation concepts necessary to scale
the development, as indicated by industrial practices for
product-line adoption [46], [12], [47], [48]. This realizes an
incremental adoption of platforms with incremental benefits
for incremental investment. Furthermore, it also allows to
use clone & own even when a platform is already established,
to support a more agile development with cloning and
quickly prototyping new variants. The framework is
lightweight, since it avoids upfront investments and can
be easily integrated with version-control systems or IDEs,
where its operators can be mapped to existing activities,
avoiding extra effort. This way, our new (feature-oriented)
operators are cheap to invoke during development, when
the feature knowledge is still fresh in the developer’s mind,
allowing to record meta-data in a lightweight way.

The term “virtual platform” was introduced earlier
in a short paper [49] discussing an incremental migration
of clone-based variants into a platform. It introduced
governance levels reflecting a spectrum between the two
extremes ad hoc clone & own and fully integrated platform.
Higher levels involve a super-set of the variability concepts
of lower levels. Advancing a level—e.g., when the number
of variants increases—supports an incremental adoption
of variability concepts, avoiding the costly and risky “big
bang” migration [31] often leading to re-engineering efforts
over years [32], [21]. This early, high-level description of a
strategy to incrementally scale the management of variants
paved the way for this paper. One of our core contributions
is the conceptual structures and formalized operators for the
virtual platform, which are related to ordinary code editing,
but also record and exploit meta-data.

Our evaluation of the proposed framework is two-fold.
First, we prototypically implemented the virtual platform
on top of an ordinary file system. Using the prototype, we
simulated the development of variants of a medium-sized

system (57.4k lines of text, 4 variants). We verified that
our prescribed operators sufficed to cover each evolution
scenario undertaken in the development of the variants.
We also conducted a cost and benefit analysis of using our
framework, the results of which indicated that using virtual
platform leads to significant cost savings during inevitable
evolution and maintenance activities. Second, as an extension
to our prototype-based evaluation of the virtual platform, we
conducted a user study with 12 participants, where they were
required to perform routine developer tasks on two subject
systems to assess the effect on developer performance using
the virtual platform, in terms of correctness and efficiency
measures. In addition, we present a qualitative analysis over
the subjective preferences that we retrieved from our user
study participants. Our results show that virtual platform
outperformed manual mode of work for all tasks with respect
to correctness. Participants also performed the tasks faster
when using the virtual platform, significantly so for all tasks.
Additionally, in terms of subjective preferences, participants
perceived manual mode of work to be more difficult than
using the virtual platform for all tasks, and subsequently
indicated their preference to use virtual platform over
manual mode of work for all tasks.

In summary, we contribute:

• a mechanization of the so-far abstract idea of operators
mediating between clone & own and an integrated plat-
form, defined upon conceptual, language-independent
structures (Sections 6 and 7),

• a prototype of the virtual platform [50] in Scala,
• a command-line interface for virtual platform that

allows invoking the operators using a common modality,
• a cost-and-benefit evaluation of the virtual platform,

based on a simulation study featuring the revision
history of a real variant-rich open-source system,

• a user study with 12 participants to measure the ac-
curacy and efficiency of performing routine software
evolution tasks using the virtual platform, and

• an online appendix [51] with a technical report about
our operators, additional examples, data from the simu-
lation study, and a study replication package.

This paper significantly extends our earlier conference
paper [52], where we present a conceptualization and initial
evaluation of virtual platform. In the present work, we make
the following extensions. First, to support the interactions
of developers with the virtual platform, we developed a
command-line interface. Second, we extended our language
supporting towards Java [53] by developing a Java parser
(which mimics typical Java parsers, but can also parse Java
code with embedded feature annotations (e.g., preprocessor
directives) that record features in code. Third, we imple-
mented various technical improvements: a new, more robust
versioning scheme, persistence over traceability metadata, se-
rialization (to persist in-memory modifications of conceptual
structures; previously only a prototypical implementation for
the evaluation existed), and code-level cloning and change
propagation. Fourth, we conducted a user study with 12
participants, comparing the correctness and efficiency of
frequent developer tasks manually and using the virtual
platform. Fifth, we extended our discussion of findings with
practical implications and recommendations in Sec. 10.5.
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2 MOTIVATION AND OVERVIEW

We provide a scenario of seamless variability management as
a running example and an overview of the virtual platform.
While rooted in a deliberately simple application domain,
the example is inspired by documented real product-line
migrations [33], [54]. It includes tasks that are tedious and
error-prone in practice (e.g., bug-fix propagation along
branches). Notably, while we present the details and
technicalities of our framework only later (Sec. 6 and Sec. 7),
we already introduce some of the concepts intuitively using
examples and scenarios presented below for a smooth flow
and easier comprehension. Additionally, we present the
problems and solutions in the same section (instead of having
a separate section for the latter) for cohesion and conciseness.

2.1 Motivating Running Example

We now discuss relevant problems of managing variants
inspired by industrial practices, also presenting our solution
in the virtual platform and how a developer would
use it. Specifically, developers interact with the virtual
platform by invoking its provided operators, either via the
command-line interface or an integration with an IDE or
version-control system provided by a tool vendor (see Sec. 4
for details). While the traditional, asset-oriented operators
(e.g., copying an asset using CloneAsset, explained in
Sec. 7.1) can run transparently in the background, only
the feature-oriented operators (e.g., mapping an asset to a
feature using MapAssetToFeature, explained in Sec. 7.2)
require an extra user interaction for invoking the operators.
The operator are described in detail in Sec. 7.

Consider the scenario of an organization developing and
evolving variants of a calculator tool. Our organization starts
creating a project of a simple calculator called BasicCalculator
(BC) that supports basic arithmetics: addition, subtraction, mul-
tiplication, and division. Soon, based on customer requests, the
organization needs to create variants of BC, which have sub-
stantial commonalities, but also differ in functional aspects.

Fig. 1 illustrates the two opposing strategies (cf. Sec. 1)
for realizing the variants. Specifically, it shows two alternate
realizations of a variant of BasicCalculator with a small display,
requiring the rounding of results (feature SmallDisplay). To
the left, the code is cloned and adapted (one line changed
in the branch BC+SmallDisplay); to the right, a configura-
tion option represents the change in a common codebase
(integrated platform). The changes are usually more complex
(e.g., features can be highly scattered [55], [56]), as well as
the representation of variability in the integrated platform.
We also need more variability concepts, among others,
features [57], [58], [59], code-level configuration [11], feature-
to-asset traceability [28], [29], [60], a feature model (a hierar-
chical structure with features and their dependencies) [26],
[27], a configurable build system [11], and a configurator
tool [30], [23], [61]. This example shows that, when it becomes
necessary to migrate from clone & own to an integrated
platform, important information needs to be recovered,
specifically: that a feature SmallDisplay was implemented
and where its code is located. Recovering such information
in systems with many features and sizable codebases is
laborious, time-consuming, and inaccurate at best. Also,

function divide(a, b){
var result = 0
result = a/b
return result.toFixed(2)

}

function divide(a,b){
var result = 0
result = a/b
return result

}

function divide(a,b){ 
var result = 0
result = a/b
#ifdef SmallDisplay
return result.toFixed(2)

#else
return result;

#endif
}

main branch

BC+SmallDisplay branch

basic

advanced

^

ad hoc clone & own fully integrated platform

main branch
feature
model

SmallDisplay

Fig. 1: Ad hoc clone & own vs. fully integrated platform
illustrated for two variants: the BasicCalculator and a variant
with only a small display

migration can be invasive, risky, and costly, especially hard to
achieve under market pressure [62], [32], [21], [34], [31], [63].

The virtual platform exploits a spectrum between the two
extremes and supports an incremental transition as in Fig. 2.
It adapts the governance levels from prior work [49], which
also explains the benefits of each transition step in detail.

Let us further discuss the evolution of our calculator
using ad hoc clone & own. After the BasicCalculator and
a variant of it for small displays (BC+SmallDisplay) is
created, customers request a ScientificCalculator, which
should solve complex inputs, such as expressions, factorials,
and logarithms. Our organization decides to copy and adapt
the codebase from BasicCalculator, since there is no need for a
ScientificCalculator with small display support; otherwise we
would already have four cloned variants. As such, cloning
provides a baseline minimizing the duplication of efforts.
Soon after, the organization needs to create another variant
called GraphingCalculator, for which it selects the most
similar variant, ScientificCalculator, and clones and adapts it.
It also notices that some functionality in BasicCalculator had
in the meantime received a bug fix, which the organization
also applies to GraphingCalculator, now realizing that also
ScientificCalculator needs to receive the bug fix.
Problem 1: Where are my clones? With many more variants
developed using ad hoc clone & own, developers lose
overview. If a change (e.g., a bug fix) is to be replicated, devel-
opers need to recover which project was cloned from which,
in the worst case requiring a clone-detection technique. Also,
the added effort in synchronizing cloned implementations
is likely to surpass the initial benefit of reuse via cloning.
Solution 1: Clone & own with provenance (Fig. 2, Level
1). Our solution is to record traceability information about
the cloned variants’ provenance, which eases tracking and
synchronizing clones. It also bypasses the inaccuracies
associated with clone detection, making tasks such as change
propagation more effective. The virtual platform records
clone traces among assets in the background, without
requiring extra effort from the developer, but who can query
it for obtaining the clones of an asset.

To this end, the developer invokes the CloneAsset
operator provided by the virtual platform. As a result, a trace
between the original asset and its clone is stored in a trace
database, which can be queried at any time by the developer
to retrieve clones of an asset quickly and accurately. The
developer can later propagate changes between the original
asset and its clone (PropagateToAsset) or integrate
changes between the assets (either manually or using a tool)
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Level 2: clone&own 
with features
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Level 4: clone&own 
with a feature model
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^

Fig. 2: Spectrum between the extremes ad hoc clone & own and a fully integrated platform (see Fig. 1 for both), illustrated
with cloned variants: BasicCalculator (BC), ScientificCalculator (SC), GraphingCalculator (GC), and FinancialCalculator (FC).

by exploiting the continuously recorded meta-data.

Problem 2: What is in my cloned variants? With more
variants, despite provenance information, the problem arises
that developers lose overview. To understand what is in the
variants, we need a more abstract representation of assets.
For cloning, this is also necessary to select an existing variant
closest to the desired one in terms of the desired features.
Furthermore, our organization finds the feature exponent
developed in ScientificCalculator to be useful for other cloned
variants. To clone it, the developer needs to know which
implementation assets belong to the feature.

Solution 2: Clone & own with features (Fig. 2, Level 2).
Adding feature meta-data adds perspective and allows
functional decomposition. It also allows representing assets
in terms of features, to reuse and clone features across
projects. Lastly, including feature-related information allows
going past the efforts and inaccuracies of feature location
(recovering where a feature is implemented), making feature
reuse and maintenance more effective [64]. The virtual
platform offers operators to add features conveniently (which
then automatically map the related assets to the features).

The developer maps related assets to features by using
the operator MapAssetToFeature. She can later query the
virtual platform to find the location of the features using the
operator GetMappedAssets, and also to clone assets along
with feature mappings (CloneAsset).

Problem 3: How to reduce redundancy? Even though there
are features, which help maintaining variants, substantial
redundancy still exists.

Solution 3: Clone & own with configuration (Fig. 2, Level
3). To reduce redundancy, our organization starts to
incorporate configuration mechanisms. These allow to
enable or disable features, such as SmallDisplay, which
control variation points. This reduces redundancy and
maximizes reuse. So, the organization maintains a list of
features and uses a configurator tool. The virtual platform
supports this solution with a simple operator.

Over time, the developer adds features by invoking
the operator AddFeature. She can map the assets to fea-
tures using MapAssetToFeature and clone features using
CloneFeature. She can also make features optional by in-
voking MakeFeatureOptional. Variants can be configured
by cloning the repository (CloneAsset) with assets mapped

to only the selected features (GetMappedAssets).
Problem 4: How to keep an overview over the features?
The more features and variation points the organization
incorporates, the more it loses overview over the features and
their relationships, including feature dependencies (acciden-
tally ignoring those can lead to invalid variants). Maintaining
such information would also help scoping variants.
Solution 4: Clone & own with a feature model (Fig. 2,
Level 4). Our organization introduces a feature model, which
captures features and their constraints, also as input to the
configurator. Feature models are very intuitive and simple
models, which provide deep insights without much addi-
tional tool support. They also foster communication among
stakeholders and validate feature configurations. With this
solution, consistency between features and clones is high,
since developers can also exploit the clone traces and use
the virtual platform for feature-based change propagation.

The developer adds a feature model to the repository
with the operator AddFeatureModelToAsset. She can
change the feature model by adding and deleting features
at any time. She can map assets to features from the
feature model (MapAssetToFeature), clone features
across projects (CloneFeature), and propagate changes in
features to their clones (PropagateToFeature).

Problem 5: How to keep consistency, improve quality,
and further reduce redundancy? Our organization needs
to further scale the development with an ever-increasing
number of variants (due to rapidly changing market
needs), while it has problems maintaining consistency and
propagating changes, despite some redundancy already
being reduced with Solution 3. It is also likely that eventually,
there will be some projects with a configuration mechanism
and some without.
Solution 5: Integrated platform with clone & own (Fig. 2,
Level 5). Our organization integrates the projects into a
consolidated platform. Conveniently, it can exploit meta-data
about clone traceability (provenance) and features with their
locations in assets. The virtual platform provides support
for this kind of information, easing the integration of cloned
variants into a platform. Of course, developers might have
forgotten to record all that information, then it is natural
to recover it. As long as some information is recorded, a
benefit arises in terms of saved feature identification, feature
location and clone-detection effort.
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3 RELATED WORK

We now present the existing frameworks for clone-
management and product-line-migration that informed the
virtual platform’s design (cf. Sec. 5). We also present the
related techniques on product-line migration and evolution.

3.1 Related Frameworks and Detailed Differences
We identified seven relevant works on clone management
and product-line migration using our experience and knowl-
edge of literature. Rubin et al.’s product-line migration frame-
work [65], [66] offers operators that support the narrative that
a mechanization—i.e., an operator-based perspective—leads
to more efficient implementation and support. They propose
abstract operators for mining the metadata pertaining to fea-
tures, their dependencies, and their implementation in assets,
which is used to create a tentative architecture and feature
model. Fischer et al.’s [67] framework and tool ECCO relies
on heuristics to identify commonalities and allows compos-
ing new product variants using reusable assets. Martinez et
al.’s tool BUT4Reuse [68] is also a heuristic-based extraction
technique for product-line migration, including support for
feature-model synthesis. Pfofe et al.’s tool VariantSync [69]
supports clone management by easing the synchronization
of assets among cloned variants. Their tool is the only other
work that relies on proactively added metadata about fea-
tures and their implementation. Montalvillo et al.’s operators
and branching models for clone management in version-
control systems [70] allow isolated variant development with
change propagation. König et al. [71] provide a heuristic-
based technique for automated change propagation in asset
clones across two dimensions: intra-clone (clones withing
variants) and inter-clone (clones across variants). Schmorleiz
and Lämmel [72] present a process for handling the similarity
between different cloned variants of any software system,
and automatically propagating changes between them.

Notably, virtual platform, like Rubin et al’s frame-
work [65], [66], also offers an operator-based perspective.
However, in contrast to their framework, it provides concrete
operators that can be invoked by developers to perform
various tasks. Additionally, all frameworks for product-
line migration [65], [66], [67], [68] rely on heuristics (e.g.,
code similarity) for identifying clones and locating features.
Virtual platform is the first framework to rely on proactively
recorded metadata pertaining to clone traceability and
feature-to-asset traceability to achieve better accuracy and
consistency. Pfofe et al.’s tool VariantSync [69], although
uses the notion of features and feature-to-asset mapping
for change propagation (a.k.a variant synchronization), it
only caters for code-level assets. Virtual platform allows
mappings and change propagation in assets at higher level
of granularity, such as repository, folder, and files. Lastly, each
of the studied change propagation frameworks [70], [71], [72],
while accurate, do not cater for features, and therefore do
not allow feature change propagation, a common occurrence
in feature-oriented software development.

For a deeper comparison, we extracted activities sup-
ported by the above-mentioned frameworks for supporting
clone management or migration of cloned variants to an
integrated platform (a.k.a. product-line migration). For
brevity, we only briefly summarize the identified activities

TABLE 1: Comparison of virtual platform with activities from
clone-management and product-line migration frameworks

Feature identification → abstract operator [66], specified in the
beginning [67], [69], [68], specified any time in virtual platform
Feature location→ abstract operator [66], extracted [67], [68], code-
level tagging [69], code- and non-code-level tagging in virtual platform
Feature dependency management→ abstract operator [66], statically
mined [68], specified in the beginning [69], specified any time in virtual
platform
Feature model creation → multiple abstract operators [66], activity
[68], specified in the beginning [69], dynamically grows in virtual
platform
Feature-to-asset mapping → abstract operator [66], extracted [67],
[68], specified at any time in [69] and virtual platform
Clone detection → textual diff tools [66], feature expression com-
parison [69], git clone points to source [70], heuristic-based AST
similarity [71], [72], not needed in virtual platform
Feature cloning→ supported by virtual platform
Change propagation → multiple abstract operators [66], variant
synchronization [69], using Git merge [70], revision-based and model-
based [71], automated in [72] and virtual platform
Reusable assets creation→ abstract & incremental [66], reuse existing
variants [67], reusable core assets[68], [70], reusable assets and features
in virtual platform
Product derivation → abstract [66], customizing after cherry-
picking [70], composition [67], [68], preprocessor-like in [69] and vir-
tual platform
Integration → abstract operator using meta-data [66], not specified
in [69], Git merge [70], manual or tool-based, guided by meta-data in
the virtual platform
Variant synchronization→ Git diff [70], AST comparison [71], code
comparison [67], [68], not needed in virtual platform

here. Detailed descriptions are in our online appendix [51].
In total, we extracted 12 activities we found to be common
across most, if not all, existing techniques. We evaluated the
frameworks based on their ability to support the scenarios
from Sec. 2 which are captured in the 12 activities we
extracted. Details are in the appendix [51].

Table 1 shows if and how an activity related to either
clone management or product-line migration is supported
by an existing framework, as well as the virtual platform.
The activities are: feature identification (features defined in
a variant), feature location (recovering traceability between
features and assets), feature dependency management (man-
aging constraints among features), feature model creation
(creating and evolving a feature model), storing feature-to-
asset mappings, clone detection (identifying assets which
are clones of one another), feature cloning (ability to clone
features), change propagation (replicating changes made in
an asset to its clone), creation of reusable assets (which can be
used to derive variants), product derivation (ability to derive
a partial or complete product given a configuration), variant
integration (merging assets/variants by taking variability
into account), and variant comparison (comparison of assets
to find commonalities and variabilities).

In summary, the existing frameworks define their ac-
tivities either abstractly or using heuristics (e.g., for feature
location). In contrast, the virtual platform includes exact spec-
ifications and implementations of operators, which allows
addressing a broad range of evolution scenarios rather than
just the “big bang” scenario of platform migration. Addition-
ally, the virtual platform is the first framework that is fully
committed to recording traceability at all levels of granularity
(repository, folder, file, code) instead of recovering it later.
This traceability has a cost to developers; however, at the
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same time, it can significantly reduce cost when complex
evolution activities are performed, as shown in Sec. 9. Virtual
platform is also the first framework to provide support for
both variant management and product-line migration. Lastly,
the existing methods have not been applied to real project
revision histories as part of their evaluation, and instead,
only explain that they support migration scenarios described
before. More details can be found in our online appendix [51].

3.2 Product-Line Evolution and Migration

We now discuss further related work on product-line
migration and integrated-platform evolution. The idea of au-
tomatically handling variation points, as the virtual platform
does, is not new. In fact, going back to the 1970s, researchers
have built so-called variation-control systems [73], [74],
which never made it into the practice of software engineering.
These systems have been realized upon different back- and
front-ends (e.g., version-control systems [75], [76] or a text
editor [77]), but before effective and scalable concepts from
SPLE research for managing variability have been established.
The virtual platform can be seen as a variation control system.

The large majority of product-line migration techniques
focuses on detecting and analyzing commonalities and
variabilities of the cloned variants, together with feature
identification and location, as shown in Assuncao et al.’s
recent mapping study based on 119 papers [78]. Case
studies of manual migration [62], [32], [34], [79], [80], [31]
also exist. These illustrate the difficulties and huge efforts
of recovering important information (features and clone
relationships) that was never recorded during clone & own,
supporting our approach of recording such information
early. Finally, many works focus on migrating a single system
into a configurable, product-line platform [81], [80], [79], [82],
typically proposing refactoring techniques. Wille et al. [83]
use variability mining to generate transformational rules for
creating delta-oriented product lines.

Others focus on evolving software platforms. Liebig et
al. [84] present variability-aware sound refactorings (rename
identifier, extract function, inline function) for evolving a
platform by preserving the variants. Rabiser et al. [85] present
an approach for managing clones at product, component,
and feature, and define 5 consistency levels to monitor
co-evolving clones. Ignaim et al. [86] present an extractive
approach to engineer cloned variants into systematic reuse.
Neves et al. [87] propose a set of operators for safe platform
evolution. In contrast to our operationally defined operators,
these operators are defined on an abstract level, based on
their pre- and post-conditions; implementing them is left to
the user. Incorporating safe evolution or Morpheus’ refacting
in the virtual platform is a valuable future work.

4 VIRTUAL PLATFORM OVERVIEW

Our framework relies on conceptual structures and
operators that modify those conceptual structures. The
conceptual structures abstractly represent software assets
at various levels of granularity—from whole repositories
to blocks of code—and can be adapted to specific asset
languages (explained shortly in Sec. 6). In addition, they
maintain information about variability, specifically feature

Fig. 3: Overview of developers’ interaction with the virtual
platform and the framework’s inner working (dashed boxes
represent optional parts)

information, feature-to-asset mappings, and clone traces.
On top of these, the virtual platform provides dedicated
functionality for managing features. Operators can be
either traditional, meaning they are concerned with asset
management, or feature-oriented, meaning they are devoted
to features and their locations in assets. In contrast to
traditional development workflows, the use of dedicated
feature-oriented operators incurs a certain cost, but promises
benefits to developers. In Sec. 9, we study this trade-off.

The virtual platform extends other development tools,
specifically, IDEs and version control systems. Fig. 3 illus-
trates interactions and internal workings of the virtual
platform. Developers can interact with it directly or indirectly.
The former is enabled via extensions and hooks of existing
tools. Specifically, traditional IDE commands such as “Create
File” and version-control commands such as “Add File” are
linked to the traditional, asset-oriented operators of the
virtual platform (e.g., “Create Asset”) and do not impose addi-
tional effort for developers. Feature-oriented operators can be
implemented by new, feature-oriented IDE commands (e.g.,

“Create Feature”). Direct interaction is enabled via a command-
line interface (CLI in Fig. 3), where developers can call
feature-oriented operations such as “Create Feature” directly.

5 METHODOLOGY

We followed a design-science-like strategy [88] to iteratively
define the conceptual structures, the operators, and to
evaluate them using unit tests representing common
scenarios. Specifically, for the structures and operators, we
aimed at maximizing the support for different scenarios from
the literature [89], [90] and our own professional experience.
The main challenge was to define adequate structures that,
while programming-language-independent, can be mapped
to many of the different asset types of real-world software
projects, as well as to design the operators to be able to
operate on the structures.
Initial Design. We started by analyzing clone-management
and platform-migration frameworks proposed in the
literature [66], [67], [68], [69], [70], [71], [72], from which we
extracted development activities that should be supported
by the virtual platform. We also had a series of discussions
among the authors, one from industry and four from
academia. Two authors have over ten years of research
experience in variability management and SPLE. We also
created ad hoc examples in the discussion meetings. From
these sources, we identified an initial set of data structures
and operators, and implemented them in Scala.
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Continuous Evaluation. Once every operator was
implemented, we tested it with unit tests based on scenarios
from the literature and our own experiences. We ensured that
the operators assured the well-formedness of the conceptual
structures by prohibiting illegal actions, e.g., limiting asset
addition to scopes that can host an asset of the given type.
Qualitative and Quantitative Evaluation. We evaluated
the virtual platform qualitatively by comparing it against
the existing frameworks discussed above, from which
we had extracted activities supported by techniques
for supporting clone & own or the migration of cloned
variants to an integrated platform. We evaluated the virtual
platform quantitatively in a cost-benefit calculation based
on simulating the development of a real open-source system
developed using clone & own.
User Study Having received promising cost and benefit
analysis results, we conducted a user study to assess: (i) the
correctness and efficiency of performing routine developer
tasks, with and without using the virtual platform; and (ii)
the virtual platform’s usability. As a prerequisite for our user
study, we extended the virtual platform to allow developer
interaction by implementing a command-line interface on
top of our framework. We also integrated virtual platform
with the file system so it can work with projects in real-time.
The results of our user study are reported in Sec. 10.

6 CONCEPTUAL STRUCTURES

The virtual platform’s conceptual structures form the basis
for its operators, which we formulated as functions with side
effects (in-place transformations) that modify the structures.
Fig. 4 illustrates the main structures and their relationships.
We define them abstractly, but also provide a concrete imple-
mentation for handling assets within a file system and special
support for textual files that follow a hierarchical structure
(e.g., with nested classes, methods or code blocks; cf. Sec. 8).
Asset Tree (AT ) is our main conceptual structure and
abstractly represents a hierarchy of assets, such as the folder
hierarchy, but also the containment structures within source
code files. In Fig. 4, the AT is represented implicitly in the
form of assets with their sub-asset relationships. The idea
of AT is inspired by feature structure trees (FSTs, [91]),
which represent source code files. In our case, we define
the AT as a hierarchical, non-cyclic tree structure of nodes.
It has a synthetic root node (root) and then represents a
hierarchy that can start with repositories as the top-level
nodes, followed by folders and files, and can then go into the
nesting structure of elements of hierarchical code files (e.g.,
classes, methods, and code blocks). Every node represents
an asset related to the project, such as a folder, a file (e.g.,
image, source code file, model or requirements document),
or text. Every asset has a name , a type (AssetType), and a
version (a simple means to identify changes). An asset can
have any number of sub-assets . It also owns a parent pointer
p, which should define a tree, with a virtual root node (asset
of type VPRootType) denoted as root. The AssetType is used
to capture the role of the asset in the project, and can be one
of the following: VPRootType , RepositoryType , FolderType ,
FileType , ClassType , MethodType , and BlockType . Notably,
not every language comprises assets of each AssetType ;
some languages might only require a sub-set of these types.

Fig. 4: Conceptual structures: asset tree, features, mappings,
and clone traces

The type VPRootType is only used once in the AT , to specify
the synthetic root node. The purpose of this root node is
to hold different variants of the software system virtual
platform is managing. Virtual platform is designed to use
the root when it loads the variants in the AT .

Traditional SPLE architectures typically have one feature
model per project, which can be difficult to maintain and
evolve in large systems (e.g., Linux kernel [22]). We provide
a more flexible structure by including an optional feature
model as part of every asset (see composition of feature
model in asset in Fig. 4). This helps prevent having very
large feature models at higher levels of granularity (e.g.,
RepositoryType or FolderType), while still allowing assets
at deeper levels of granularity to have fine-grained features
in their respective feature models.
Well-Formedness Criteria We define a partial order of
valid containment over the types of assets in a check
function containable : asset × asset → B that validates
the containment based on the asset types. For instance,
VPRootType can only be at the root, and a MethodType
can be contained in a FileType , but not the other way
around. Operators are implemented with consideration of
well-formedness criteria, to ensure that the tree structure of
AT is retained. If an operator violates the well-formedness
criteria, an error message is displayed stating the operator
failed to execute as it does not result in a valid containment.
Features and Feature Models A feature has a name and
two Boolean parameters: optional and incomplete . The
field optional specifies whether the feature is mandatory
or optional; incomplete captures information about the
completeness of the feature’s implementation. If the feature
was cloned from another feature model scope, it is true
if the new scope containing the feature also contains all
the assets to which the feature is mapped; otherwise it is
always false. Every feature has an optional parent , and
any number of sub-features . Features can have dependencies
to each other. Features, like Assets, are also versioned. A
feature model (FM ) has a root feature and a mandatory
feature called unAssigned, which contains all features that
are added to the model as a result of asset cloning. That is, if
any feature mapped to the asset is not present in the target
feature model already, it is mounted under unAssigned (and
requires developer intervention to move it to the desired
location in the model). Feature models also hold a pointer
to their containing asset (see the composition of asset in
feature model in Fig. 4). This is to facilitate developers when
locating where a feature is implemented (i.e., in which asset).
Asset-To-Feature Mappings, in practice, can have two se-
mantics. They can be simple mapping relationships, indicat-
ing that asset realizes a feature [92]. They can also indicate
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variability [93], where the asset is included in a concrete
variant if the feature is selected (interestingly, if an asset is
optional based on a feature , then the asset also realizes it, but
not necessarily all assets realizing a feature are optional). The
SPLE community usually focused on the variability relation-
ship, and the feature-location community on traceability. For
the virtual platform, we unified the mechanism of mapping
assets to features. Specifically, an asset has a presence
condition (PC)—a propositional formula over features. A PC
allows conveniently mapping assets of different granularity
levels (AssetType) to entire feature expressions. Whether this
relationship to the feature represents variability or traceabil-
ity is solely determined by the feature’s optional parameter.
Versioning of Assets. Assets (and features) have a version—
a Long integer used to recognize changes in the AT (and
FM ), especially among cloned assets. We designed our
versioning strategy to align with the file system. Specifically,
we retrieve versions from the actual directories and files
captured in the AT . The version of an asset is the timestamp
of the last time the asset was modified (retrieved using
file.lastModifiedTime() in Scala). For simplicity, we
track changes at second level, implying that sub-second level
changes are considered to be one super-change occurring
in the span of one second. This is however a realistic
assumption, as most significant changes take longer that
one second (e.g., file renaming, method addition). An
illustration of retrieval and pre-processing of last modified
times is shown below:

• get last modified time→ 2022-11-02T11:54:20.709003Z
• remove unnecessary information→ 2022-11-02 11:54:20
• remove format-specific characters → 20221102115420

(asset version)

Assets at a finer level of granularity (e.g., class, method,
block) inherit the version of the immediate ancestor that has
a version . Features are versioned slightly differently. For any
feature-related change (i.e., invocation of a feature-oriented
operator), virtual platform gets the current timestamp from
the system, and assigns it to the involved feature(s). The
details of versioning for each operator are explained when
we present the operators in Sec. 7 below.

This versioning strategy replaces our previous one [52],
where we used the root’s version to increment and assign
versions to modified assets. The initial version of root was
assigned to be 1 (version = 1). With frequent updates
occurring in batches, versioning became brittle, so we shifted
to a more robust strategy.
Clone Traceability. To maintain trace links between source
assets and their clones, we define an AssetTraceDatabase—
essentially a list of AssetTraces (Fig. 4). An AssetTrace is a
triplet of the source asset , its clone , and a version at which
the source asset was cloned. Similarly, feature traces are used
to keep track of the feature clones, and they are stored in a
FeatureTraceDatabase . A FeatureTrace is also a triplet point-
ing to the source feature , its clone, and version at the time
of cloning. These traces are a core component of the virtual
platform, and have special relevance in cloning and change
propagation for both assets and features. For brevity, we
refer to both AssetTraceDatabase and FeatureTraceDatabase
as TraceDatabase in the remainder of the paper.

7 VIRTUAL PLATFORM OPERATORS

We now present the traditional, asset-oriented and the
feature-oriented operators. Their underlying algorithms and
further illustrations (supplementary to the illustrations used
here) are provided in our online appendix [51], which also
presents additional convenience operators—utility methods
that efficiently traverse the trees (AT and feature model ) to
return data that needs to be frequently accessed (e.g., assets
mapped to a feature and clones of an asset ).

7.1 Traditional/Asset-Oriented Operators

We now present our traditional, asset-oriented operators: con-
ventional activities performed by developers during ordinary
development. These operators reflect typical developer tasks
(e.g., adding a file to a folder), allowing to keep the AT in
sync with the working directory. The operators work on the
AT , which as mentioned above, represents all the assets in
the repository in a language-independent tree-like structure.
Also, the assets act as mappable components to the features,
and allow cloning and change propagation. In the following,
we introduce the asset-oriented operators with their parame-
ter types, a brief description, and sample scenarios, inspired
from our calculator example (cf. Sec. 2.1). The notation used
for visualizing various scenarios is shown in Fig. 5.
AddAsset : asset× asset→ B
Description: When a source asset (S) is added in any target
asset (T ) to a repository (e.g., a file to a folder), AddAsset
creates an asset for S and adds it to the preexisting asset T
in the AT . Additionally, it assigns the last modified times of
the assets represented by S and T (in the file system), to S
and T respectively. Notably, it is not always the case that S,
T , or both are file level assets (i.e., ClassType , MethodType ,
BlockType). In those cases, the assets inherit the version of
the closest ancestor asset that has a version. For example if a
class MyClass is added to a file MyClass.java, since we can
not use the file system to get the last modified time of the
class MyClass, the version of the class MyClass will be the
same as that of the file MyClass.java. AddAsset also adds
any feature mapped to S in T ’s feature model (typically
repository feature model ).
Example: Recall the BasicCalculator (BC) example. The
developer adds the implementation for the method divide
in the file Operators.js, with an annotation for the feature
DIV. Consequently, the virtual platform creates and adds the
asset divide (S) of MethodType to the asset Operators.js (T) of
FileType , and DIV to the feature model of T . The asset divide
gets the version of the file Operators.js. Fig. 6 illustrates this.
ChangeAsset : asset→ B
Description: Upon a change in an asset S in the repository,
ChangeAsset retrieves the last modified time of the asset,

Fig. 5: Notations used in operator illustrations
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Fig. 6: Illustration of AddAsset(divide,Operators.js)

and assigns it to S. Versionable changes include an asset’s
renaming, addition, removal or modification (e.g., removal
of lines of code).
RemoveAsset : asset→ B
Description: If an asset is deleted from a parent asset T ,
RemoveAsset removes its corresponding asset S in the AT ,
along with all its sub-assets. It also gets the last modified
time of the parent asset, and assigns it to T . Additionally,
any feature mapped to S is also removed from the feature
model of S if S the only asset mapped to it. This enforces
that if all assets mapped to a feature are deleted, the feature
is also deleted.
MoveAsset : asset× asset→ B
Description: If an asset is moved from one location to another,
MoveAsset clones the corresponding asset S (with its sub-
assets) to the new target asset T (using CloneAsset), and
removes the asset S from the sub-assets of its previous parent
(using RemoveAsset).
Thus far, the operators we presented serve two purposes:
keeping the AT synchronized with the project, and keeping
track of changes through versioning. The following operators
serve two additional purposes: storing feature-oriented data,
and recording traceability among clones. The exploitation of
these meta-data are the essence of our framework.
MapAssetToFeature : asset× feature→ B
Description: Upon addition of a feature mapping by a
developer, MapAssetToFeature checks if the feature exists
in the feature model of the asset . If not, it creates a feature
F (with the name used by the developer), maps it to
S (corresponding asset in the AT ), and adds F to the
unAssigned feature in the feature model of S. If F already
exists, it simply maps F to S. For mapping, it adds F
to the presencecondition of S with a logical disjunction.
Interestingly, the versioning of this operator is slightly
different than that of the previous operators. This is because
mappings can be added to an asset in different ways. Features
can be embedded internally [94], [92] to the assets, or they
can be added externally to the assets [95]. For the latter, the
asset itself is not modified, i.e., the last modified time of
the asset remains unchanged. So, for MapAssetToFeature,
we get the current timestamp from the system itself (using
LocalDateTime.now() in Java), and use it to set the
version of the mapped asset. Additionally, the feature also
takes the same version (timestamp of when it was added).
In fact, for all feature-oriented operators, the versioning
of features relies on the local time and date of the system
(explained in Sec. 7.2 below).
Example: Assume that the developer adds a method multiply
to BC, with a feature annotation for the feature MULT.
MapAssetToFeature creates this mapping in the AT . The
presencecondition of the method becomes “MULT | true.”

Fig. 7: Illustration of CloneAsset(divide, Arithmetic.js)

CloneAsset : asset× asset→ B
Description: CloneAsset imitates the actual clone & own
strategy; when an asset is cloned to another location by a
developer, CloneAsset creates a deep clone of the source
asset and adds it to the target asset in the AT , provided it
is containable. Additionally, if the cloned asset (or its sub-
assets) is mapped to any features, they are also cloned, added
to the target feature model , and mapped to the asset clone.
The clone retains the version of the original asset, however,
since the target asset is modified (addition of sub-asset), we
get the last modified time of the asset from the file system,
and assign it to the asset. We also store the trace links by
creating traces for both asset and feature clones and adding
them to the TraceDatabase.
Example: Starting from Fig. 6, the developer copies the
method divide in Arithmetic.js; a file in another project, Scien-
tificCalculator (SC). CloneAsset clones divide to Arithmetic.js,
an asset of FileType in SC, as well as the mapped feature DIV
in the feature model of SC. Traces for both divide and DIV
are added to the TraceDatabase. Fig. 7 illustrates the scenario.
For brevity, we remove the versions from the illustration,
and write V instead. The versions of the cloned assets are
however depicted in the TraceDatabase .
PropagateToAsset : asset× asset→ B
Description: PropagateToAsset takes two assets, checks
if one is the clone of the other, and propagates changes in
source, after cloning, to its clone. To determine if source was
changed, it compares the version of source to its version
when it was cloned (versionAt from the TraceDatabase). If
it is ahead of the version it was cloned at, the changes are
propagated to the clone. Changes performed in the clone
are retained. Propagation, like cloning, includes added and
modified sub-assets, added mappings, and renaming. After
propagation, a trace with source and clone is added to the
TraceDatabase , the versionAt of which is the version of
the source. The version of the target asset is modified and
assigned to the asset itself.
Example: Assume that the method divide method in BC
during cloning did not include the check for division by

Fig. 8: Illustration of PropagateToAsset(divide, divide)
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Fig. 9: Illustration of AddFeature(EXP, BC)

zero. After adding the check (ChangeAsset), divide in the
source (Operators.js) is ahead (in version) of the divide in the
target (Arithmetic.js). By invoking PropagateToAsset, the
changes are propagated automatically. Fig. 8 demonstrates
this; for brevity, feature mappings and versions are omitted.

7.2 Feature-Oriented Operators
The feature-oriented operators add feature-related informa-
tion to the AT and enable feature reuse and maintenance.
AddFeature : feature× feature→ B
Description: When a developer adds a feature (e.g., in a text
file or a database), or an asset mapping to a feature which
does not exist in the feature model , AddFeature creates a
new feature and adds it to the feature model . It also adds
any assets mapped to the feature using AddAsset. The
added feature gets the current system time as its version.
Example: Assume that the feature model for BC is a textual
file, where features are written as individual lines, and
indentation is used to represent hierarchy (Clafer syntax [96]).
The developer adds a line “EXP” (exponent), below the line
“BC” (root feature, BC). AddFeature creates a corresponding
feature EXP, and adds it to the feature BC. The feature
EXP takes the current timestamp as its version. Fig. 9
demonstrates the scenario, with the resulting versions in
a table on the right.
AddFeatureModelToAsset: asset× feature model→ B
Description: Developers can add a feature model to an asset
in different ways, e.g., as a file or a database. The virtual
platform, upon recognizing that a feature model is added
to an asset in the repository, invokes AddFeatureModelTo-
Asset. The operator then locates the asset in the AT , creates
a feature model FM , and sets the asset’s parameter feature
model to FM . This is recognized as a change in the AT
(ChangeAsset), and as such, the asset (to which the feature
model is added) gets the current system time as its version.
Example: Consider that the feature model of BC is a separate
text file, which resides in the root folder of BC. As a result of
AddFeatureModelToAsset, the feature model (FM ) will
be loaded from the file and assigned to BC. All sub-assets
of BC can now be mapped to features from FM (using
MapAssetToFeature).
RemoveFeature : feature→ B
Description: When a feature is removed by a developer from
a repository, RemoveFeature locates the feature in the
feature model , un-maps it from all assets it maps to, and
removes the feature along with all its sub-features. Addition-
ally, any asset mapped to only the removed feature is also
removed by the operator. This is to ensure that if a feature is
deleted, all assets containing only the implementation of the
deleted feature are also deleted. However, if the developers
want to keep the asset, they can unmap the asset from
the feature (using unmap, our convenience operator), before
deleting the feature. After feature removal, RemoveFeature
assigns the timestamp of removal (system’s time) to the
parent feature of the removed feature .

ChangeFeature : feature→ B
Description: When a feature is changed, ChangeFeature lo-
cates the feature in the feature model , and assigns the current
timestamp from the system to the changed feature . Notably,
these changes are the changes except for addition and
removal of sub-features in a feature . In ChangeFeature,
we consider feature renaming, and mapping to a new asset
(MapAssetToFeature).
MoveFeature : feature× feature→ B
Description: Features can be moved in the same project as a re-
sult of refactoring, and also across projects, when developers
incorporate them into other projects. MoveFeature com-
bines two operators; CloneFeature (explained below) to
clone the feature (and its mapped assets) to its new location,
and RemoveFeature to remove it from its previous location.
MakeFeatureOptional : feature→ B
Description: Often, developers want to keep a feature’s
implementation in the AT , and decide whether to include
it or not at compile time, instead of deleting it altogether.
MakeFeatureOptional sets a feature’s boolean property
optional to true. By default, every feature is mandatory
when added to the feature model . This operator allows to
keep the feature’s implementation in the AT while allowing
developers to activate or deactivate the feature.
CloneFeature : feature× feature→ B
Description: Cloning a feature manually requires developers
to recollect its location in software assets. These assets can
be of different types (directory, document, code artifact, text
etc). Features can be scattered and therefore harder to locate.
This is where the stored (and maintained) meta-data pays
off. CloneFeature simply invokes a convenience operator;
getMappedAssets, to retrieve all assets mapped to the
feature. It then clones the feature and all its mapped assets in
the target AT and FM . The operator also stores traces for the
asset and feature clones in the TraceDatabase. The clones (of
assets and features) retain the same versions from source in
the target. However, both the parent asset and parent feature
get the current timestamp of the system as their version.
Example: After adding the feature EXP (using AddFeature),
the developer added two assets in feature BC, and later
mapped them to feature EXP. The assets are a method
“exponent” and a textual file “exp.txt” with documentation
of exponent. The developer now wants to reuse feature EXP
in SC. To clone the feature, she invokes CloneFeature,
which clones the feature EXP and its mapped assets to
SC. Additionally, traces for the feature and asset clones are
added to the TraceDatabase. This example is illustrated in
Fig. 10. For brevity, we replace the versions of the assets
with V. Note that even though Operators.js was not cloned,
the virtual platform created a clone, as the method exponent
could not be added directly to the repository. This is referred
to as tree slicing, which the virtual platform adopts to ensure
that the well-formedness of the AT is maintained.
PropagateToFeature : feature× feature→ B
Description: PropagateToFeature replicates the changes
in the feature (e.g., renaming, adding or removing sub-
features) to selected or all of its clones. It also propagates new
mappings; a new asset mapped to the feature in the source is
cloned to the target and mapped to the feature clone. Check-
ing whether the propagation is valid and necessary relies
on two conditions based on the TraceDatabase : whether one
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Fig. 10: Illustration of CloneFeature(EXP, SC)

of the features provided is a clone of the other, and whether
the feature was modified after cloning (current version >
versionAt ). Notably, a change in a feature also implies a
change in the asset(s) implementing it, and vice versa. There-
fore, PropagateToFeature invokes PropagateToAsset
(for all its mapped assets), and vice versa.

After propagating changes, it creates new traces between
the source and newly modified targets (both feature and
asset ), and adds them to the TraceDatabase.
DiffAssets : asset× asset→ List[asset]
Description: DiffAssets takes two assets as input, and
returns a list of sub-assets (from S and T ) that implement
unique features. In essence, it is an extension of the traditional
git diff, but aligned to features. Given two assets S and T ,
DiffAssets traverses their feature models to find features
which are unique to a particular asset. This is particularly
useful in the context of variants, when often, developers
want to know how close in implementation variants are (e.g.,
for deciding which variant to clone to create a new one).

8 IMPLEMENTATION

Our Scala-based implementation of the virtual platform
provides an API as the main interface to execute operators. In
the production-ready tool, this API is usable as a command
line interface with a set of predefined IDE commands
(explained below). We used the language processing
programming library kiama (github.com/inkytonik/kiama)
[97], [98] for efficient tree traversal and rewriting. After im-
plementing all operators, we created test scenarios to verify
the correctness. These test scenarios were developed using
domain knowledge acquired by experience, and also inspired
by observing scenarios from a case study of Clafer Web
Tools (detailed in Sec. 9 below). We checked correctness by
comparing the resultant state (of the AT , FM , TraceDatabase,
and mappings) after operator invocations to the expected
one. We also simulated the illustrative example presented in
Sec. 2.1 by automatically realizing all the discussed scenarios.

Once we implemented and tested our operators, we
extended the virtual platform with file-system persistency
support and a command-line interface for user interaction.
We implemented the persistence over the AssetTraceDatabase
and enabled virtual platform to write changes back to the file
system (a.k.a. serialization). We also streamlined our change-
propagation strategy to allow cloning and propagation in
assets at a finer level of granularity (specifically, code assets,
such as classes, methods, and code blocks).

8.1 TraceDatabase Persistence

We implemented persistence for the TraceDatabase in the
form of a text-based file to permanently store and refer

to the traces for invoking operators (e.g., getClones,
CloneFeature). We store one trace per line, each com-
prising the name of the source, the clone, and the version of
source when it was cloned. We use the same file for storing
both asset and feature clones. When storing asset names, we
store the path of the asset in the file system, relative to the
root asset. Continuing with our calculator example, consider
that we clone a file “Operators.js” from BC to SC. Conse-
quently, virtual platform will add a trace to the TraceDatabase
(which we call “trace-db” in the file system).

For feature traces, we only write the feature name,
appended to the variant which comprises that feature (with
special characters “::”). Extending on the same scenario
we presented in the description of CloneFeature
(where a developer cloned the feature EXP), the
following trace would be stored in the TraceDatabase :
BC::EXP;SC::EXP;20221018123425

8.2 Serialization

We defined an operator SerializeAssetTree, which,
given an asset, writes the entire AT down to its leaf nodes,
also persisting the feature-related information along the way.
The input to this operator is typically the root asset. As a first
step, SerializeAssetTree creates a root folder (if there
isn’t one already), and then, it proceeds to write the variants.
For each asset, it also checks if there is an associated feature
model with that asset. If it finds a feature model, it writes
the feature model in Clafer syntax [99]. Any new information
(e.g., added features), changed information (e.g., feature
renaming), or removed information (e.g., removed features)
that resulted from invoking any of our feature-oriented
operators, which otherwise was not materialized, is written
in serialization as well. Specifically, we follow the notation
prescribed in [100] when serializing feature-related data. The
TraceDatabase is also updated, recording traces pertaining to
new clones. When serializing code-level assets, we preserve
the indentations and line spaces we read in deserialization.

Importantly, SerializeAssetTree is not invoked ex-
plicitly. It is typically invoked as a silent operator in the
background of other operators, such as CloneFeature
and PropagateToFeature. In fact, in our command-line
integration, we serialize the AT after every command. While
presently, serialization completely overwrites the AT , it
could be made partial (to only overwrite the modified assets)
in order to optimize the performance of the tool.

8.3 Code-Level Cloning and Change Propagation

When cloning a feature (between variants), virtual platform
also clones all the assets mapped to the feature into the
target variant (i.e., using CloneFeature). In traditional
CloneAsset, if we clone a code asset, we provide a target
asset. Additionally, if the target asset is a code-asset itself
(e.g., block of code in a method, or method in a class), we
also provide a sibling asset (preexisting in the target) after
which we should insert the clone. However, when cloning
a feature, CloneAsset is invoked in the background, and
there, virtual platform needs to smartly decide where to
clone the code asset in the target asset. Following, we present
how we tackle this issue.

https://github.com/inkytonik/kiama
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For blocks of code, if we are cloning them to a file
(implying they are not inside any class), we check if they
are library imports. If so, we add the block (block_i) before
the first class in the file. If they are not import statements
(e.g., code comments), we either retain their order (from the
source) in the target, or, we clone them at the end of the file.
The former is possible if the target file is large enough such
that the order of block_i in source <= number of sub-assets in
target. If we are cloning the block into a class, we add them
to the start of the class. This is to mirror traditional Java
code style, where the blocks (e.g., variable names) precede
methods in a class. If we are cloning into a method, we
attempt to find an existing code block in the same method
that is mapped to the same feature. If we find one, we clone
the block of code after that preexisting block. If there is no
existing block of code implementing the same feature, we
clone the block of code right at the end of the method.

When cloning methods into classes, we try to find a
preexisting method that is mapped to the same feature. If
we find such a method, we clone the method (we wanted
to clone) right after the preexisting method. Otherwise, we
clone the method at the end of the class. When cloning classes
into files, we always add the class at the end of the file.

8.4 Command-Line Interface
We implemented a command-line interface for the virtual
platform. We relied on the library picocli (picocli.info),
which offers a concise way of writing commands with
minimal code, in a one-file-per-command format. We
implemented every command together with its parameters
and defined a short description of what the command
does. We first created commands for operators that allowed
adding or removing feature-related data. These included
AddFeatureModelToAsset (command name addfm),
AddFeature (command name add), and RemoveFeature
(command name remove). Next, we added the capability
of mapping assets to features (command name map). Next,
imitating the interactivity of Git, we defined an init command
which is used to initialize the virtual platform on a given
root. init (i.e., vp init) command loads the assets into the AT ,
delegating to the right parser based on the programming
language used to implement the project. The command init
also loads the feature models and feature mappings. Lastly, it
loads traces from the file trace-db into the TraceDatabase .

We then defined the exploratory commands, which are
commands that query the metadata and return the queried
information. The command getmapped retrieves and displays
all assets mapped to a feature, and requires a feature as pa-
rameter (e.g., vp getmapped BC::EXP). Similarly, getclones takes
an asset (or a feature), and returns its clones from all variants.
The command gettrace gets the last trace between a given
asset (or feature) and its clone (e.g., vp gettrace BC/Operators.js
SC/Operators.js). The gettrace command also returns the last
timestamp at which these clones were synchronized. Lastly,
diff gets the difference between an asset and its clone, in terms
of the unique features they implement (e.g., vp diff BC SC).

Lastly, we implemented commands for cloning and
propagation. The command clone is used for cloning both
assets and features e.g., vp clone SC::EXP BC), whereas
propagate is used to automatically propagate changes
between clones (e.g., vp propagate SC::EXP BC::EXP).

9 SIMULATION STUDY

We prototyped and evaluated the virtual platform quantita-
tively using a simulation study based on revision histories
from clone & own-based system. Details of our implementa-
tion and evaluation are available in the online appendix [51].
We used an open-source system called Clafer Web Tools
(CWT, [101]) that was evolved using clone & own in
three cloned variants (ClaferMooVisualizer, ClaferConfigurator,
ClaferIDE) towards an integrated platform (ClaferUICommon-
Platform), including many feature clonings across the variants.
We evaluated the virtual platform’s efficiency by simulating
the evolution of CWT, retrofitting our operators to achieve
the original evolution, and studying the costs and benefits.

We used a dataset by Ji et al. [92] that augments the
original codebase with feature information, as if it had been
developed in a feature-oriented way. It comprises a full
revision history for the four sub-systems, with source code
from the original developers, and feature information manu-
ally added by researchers. Feature information is contained
in three types of artifacts: feature models, feature-to-asset
mapping files, and embedded feature annotations in code.
We provide details about the dataset in our appendix [51].

9.1 Performing the Simulation

We retrofitted CWT’s full revision history to our operators
to extract a sequence of (high-level) operator applications
that accurately capture the changes previously expressed by
the history of (low-level) file-based commits. We analyzed
each pair of successive commits to extract a set of operator
applications that produces the delta between the commits.
Replaying the operator applications in the given order
creates and updates the AT.

9.2 Cost & Benefit

As costs, we measure the additional effort imposed on
developers by the virtual platform. Our traditional, asset-
oriented operators (left-hand column of Table 2) do not lead
to additional cost, because these tasks are performed in tradi-
tional development as well. Cost arises from two components,
both related to our feature-oriented operators (right-hand
column of Table 2): one called Cfeat for maintaining features,
one called Cmiss for dealing with omissions during feature
maintenance. The latter arises if the developer forgets to
invoke a feature-oriented operator and then later the feature
information is missing for a relevant feature-oriented activity.

As benefits, we consider the saved cost in two dimensions:
feature location and clone detection. Feature location cost
Cloc is saved on invocations of certain operators that rely on
previously specified mappings. Clone detection cost Cclone is
saved on invocations of one certain operator for propagating
changes along clones from our clone database.

We study these costs and benefits in four dedicated
research questions. We first discuss the observed costs
(in RQ1 and RQ2) and benefits (in RQ3 and RQ4) before
weighing them off to estimate the total benefit in Section 9.3.

RQ1: What are the costs of maintaining features using
feature-oriented operators?

https://picocli.info
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TABLE 2: Operator invocations in simulation study: asset-
oriented and feature-oriented operators

Operator Freq. Operator Freq.

AddAsset 3,527 AddFeature 229
ChangeAsset 1,191 AddFeatureModelToAsset 4
RemoveAsset 1,060 MapAssetToFeature 368
MoveAsset 303 RemoveFeature 40
CloneAsset 48 MoveFeature 22
PropagateToAsset 8 CloneFeature 54

PropagateToFeature 7

The overall cost Cfeat arises from accumulating the cost of
applying feature-oriented operators. Each feature-oriented
operator op has a cost Cfeat(op)= #invoc(op) ∗ costabs(op),
which depends on the number of invocations of op, and the
absolute cost of each invocation of op. Based on Table 2, there
are 724 invocations of feature-oriented operators in total.
Two operators contribute the bulk to this number, namely
MapAssetToFeature (368) and AddFeature (229). The
absolute cost per invocation can be assumed to be low (in
the order of seconds) because it mostly amounts to picking
the feature name, when it is fresh in the developer’s mind.
An exception are situations where the developer has to deal
with earlier omissions (see RQ2).

RQ2: What percentage of feature maintenance operations
require additional feature location effort?

The omission-related cost Cmiss arises from the number
of late invocations of MapAssetToFeature, representing
situations where the developer missed to specify an asset-
to-feature mapping when the asset was added. This number
is to be multiplied by the absolute cost for these invocations,
which is generally higher than a regular invocation. Our
operators CloneFeature, and PropagateToFeature
rely on a complete mapping from a feature to its assets. A
third relevant operator is AddFeature which adds feature
information to source code added earlier. In absence of a
recorded mapping, each operator requires an expensive
manual feature location step, which is not required in our
approach (see RQ3). We counted the number mappings
that were added before or after one of these operators was
invoked, which indicates that the researcher preparing the
original dataset noticed an omission. We determined 14
relevant mappings for CloneFeature (2 relevant invoca-
tions, 3.7% of all invocations), and 25 relevant mappings
for AddFeature (12 relevant invocations, 4.0% of all
invocations). We did not discover any relevant mappings for
PropagateToFeature, yielding 39 late invocations in total.

RQ3: To what extent can feature location costs be avoided
when using feature-oriented operators?

The operators CloneFeature and PropagateFeature
rely on previously specified mappings. Conversely to
RQ2, we can assume that each invocation of one of these
operators avoided manual feature location when it did not
require any fixing of omitted annotations. So, we define
Cloc to rely on the number of feature location steps saved
by an invocation of one of our operators. We count 54
invocations of CloneFeature, and 7 relevant invocations
of PropagateToFeature, leading to a final value of 61.

This number is to be multiplied with the absolute cost of
feature location, which can be assumed to be high (earlier
work [92] gives an estimate of 15 minutes per feature),
based a strong reliance on the developers’ memory, and an
understanding of how cross-cutting features are scattered.

RQ4: To what extent can clone detection costs be avoided
when using feature-oriented operators?

Since the propagation of changes along clones requires a
complete specification of the clones at hand, we can assume
that every application of PropagateToFeature saves one
application of clone detection (either manual or using a
tool). In our subject system, we identified 7 invocations of
PropagateToFeature. To obtain the value of Cclone, this
number of is to be multiple with the absolute cost for clone
detection. Manual clone detection is a tedious and error-
prone task, and known to be infeasible for larger systems
[102]. Tool-based clone detection requires manual verification
and postprocessing, since even the most advanced clone
detection tools have imperfect precision and recall [103].

9.3 Discussion

Break-Even Point. We can now weigh off the costs observed
in RQ1+2 against the benefits from RQ3+4. Consider the fol-
lowing formula, which specifies the total benefit of using the
virtual platform: Btotal = -(Cfeat + Cmiss) + (Cloc + Cclone).
If this formula yields a positive value, the virtual platform
surpasses the break-even point and leads to a net benefit.

The value of Btotal depends on the absolute costs for
operator invocations, feature location, and clone detection,
which are unavailable. However, we can approximate based
on plausible estimates: (1) For the cost of feature location,
we rely on the earlier literature estimate [92] of 15 minutes
per instance. (2) We assume clone detection to have the same
cost as feature location. (3) We assume the cost for adding
an omitted annotation to be 10 times as high as a regular
operator invocation. Based on these three assumptions, we
break even if invoking a feature-oriented operator takes 54 seconds
or less on average. In practice, the benefit can be assumed to
be larger, since invoking a feature-oriented operator mostly
entails picking a feature name (while the feature is still fresh
in the developer’s mind), a matter of a few seconds.

This calculation shows promising results in terms of
saved effort and time. By simulating the development of the
case study with feature-oriented information, we can reuse as
much as 20 features from one project (ClaferMooVisualizer) by
cloning them. We envision greater accuracy and efficiency lev-
els when the virtual platform is used alongside development.
Representativeness. Our case represents most systems of
comparable size (i.e., 54.7K lines of text) and number of
variants (four). Many product-line migrations of comparable-
sized cases are reported in the catalogue in [104]. For larger
systems, the representativeness still holds, as our case
undergoes all evolution activities typical in most software
systems, which are also supported by other frameworks
(detailed comparison in [51]). Still, the virtual platform is
evaluated much more thoroughly.
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9.4 Threats to Validity

A threat to external validity is that our operators do not com-
pletely capture the real-world scenarios developers encounter
when dealing with variant-rich systems. We mitigate this
threat with our evaluation that simulates a real system. There
is a general lack of available systems for benchmarking on
realistic revision histories with available feature information,
a problem that we aim to address as part of our ongoing
benchmarking initiative [105], [106], [107].

There are two main threats to internal validity. First, our
calculation of Cmisscould be incomplete: there might be po-
tential omissions not fixed by a later commit. This situation is
comparable to other research that relies on potentially imper-
fect datasets (e.g., in software defect prediction [108], [109]).
While our analysis focuses on omissions that later required
fixing, these omissions are arguably the most relevant ones in
practice. Second, there could be implementation errors; after
retrofitting our operations to the development process given
by the commit revision, the AT might be in an incorrect
state. To mitigate this threat, one author, not involved in
the simulation, manually inspected a random sample of 25
commits by comparing the git diff with the AT resulting
from operator invocations. The AT was always consistent.

10 USER STUDY

Aiming to evaluate the virtual platform with actual users, we
conducted a user study. It comprised an experiment to inves-
tigate the correctness and efficiency of the virtual platform
for routine developer tasks. Figure 11 shows a high-level
overview. Specifically, we conducted a one-factor crossover
experiment with 12 participants where the treatment was the
mode of work (i.e., ‘manual mode of work’ versus ‘using VP’).
We used manual mode of work as a baseline for our com-
parison for several reasons. First, none of the closely related
frameworks (cf. Sec. 3) offered support for all the different
tasks in our experiment. Second, we aimed to compare our
framework against the current practice, which is the ‘manual
mode of work.’ Developers often resort to manual effort for
performing tasks such as feature location and clone detection.
Third, some activities supported by other frameworks (and
virtual platform), such as platform migration (which are also
not very common in practice) were deemed too complex and
out of the scope for our evaluation due to time constraints.
Lastly, it is customary in software engineering tool experi-
ments to use the ‘manual mode of work’ as a baseline [110],
[111], [112], [113], [114]. At the end of the experiment,
we asked the participants to assess the virtual platform’s
usability on a five-point Likert scale and articulate on their
choices in free-text format. Finally, following our experiment,
we conducted a one-to-one interview session with each
participant. We treated the interview responses as additional
qualitative data to our qualitative responses (received via
our questionnaire, detailed under “Supplementary Material”).

10.1 Experimental Setup

Research Questions. Our goal was to compare the
correctness and efficiency of performing the tasks manually

Fig. 11: Overview of our experiment (VP: Virtual Platform)

versus using the virtual platform. We formulated three
research questions as follows.

RQ5: How does using virtual platform affect the cor-
rectness and efficiency of routine developer tasks
compared to the manual mode of work?

We investigated whether using the virtual platform
improves task correctness and efficiency while performing
routine developer activities as follows: We evaluated the par-
ticipants’ responses and assigned them a numeric score for
each task and each mode of work (i.e., metrics values for cor-
rectness and efficiency, explained below). We then compared
the obtained numeric scores from performing the tasks manu-
ally with those from performing them with virtual platform.

Next, we investigated the participants’ subjective assess-
ments about the two modes of work with the tasks.

RQ6: How are the modes of work perceived during the
various tasks?

We elicited these assessments on a five-point Likert scale.
Specifically, we asked about the understandability of virtual
platform and the difficulty of performing each task, both
manually and using virtual platform.

Next, we asked about preferences regarding the mode of
work for each task with the following research question.

RQ7: How are participant preferences for mode of work
distributed over different tasks?

We gathered both qualitative and quantitative data about
participants’ preferences by asking them for their preferred
mode of work and the intuition behind choosing it.
Experimental Design and Implementation. We opted for a
crossover trial [115], which is a variant of the within-subjects
design [116], in which all participants receive the treatment
(modes of work) at both levels (manual and using virtual plat-
form). We chose the crossover design since it requires fewer
participants than parallel (e.g., between-subject) designs to
achieve similar statistical power. The design is less sensitive
to variation among participants (e.g., concerning participants’
programming expertise). However, a crossover design poses
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the risk of learning effects; participants can transfer the experi-
ence gained from one task to its subsequent tasks. To mitigate
such a risk, we randomly allotted half of the participants to
first perform the tasks manually and then using the virtual
platform, and the other half to perform the tasks in reverse
order. Precisely, for two subject systems (DART and AERO,
presented below), and two modes of work (manual and using
virtual platform), half of the participants followed path 1, and
the remaining half followed path 2 as follows:

• Path 1: DART manual→ AERO using virtual platform
• Path 2: DART using virtual platform→ AERO manual

Each participant experimented with each subject system
and each work mode only once. Following our one-factor
crossover design, we kept the order of subject systems consis-
tent between the groups, to avoid any biases that may arise
due to the complexity of the systems. We asked participants
to take a 15-minute break between both treatments.
Participants. We recruited 12 participants, comprising seven
Ph.D. students, three M.Sc. students, two B.Sc. students, and
one practitioner. We predominantly employed students as
participants due to their suitability as stand-ins for practition-
ers [117]; students can perform comparable to practitioners
for experiments involving unfamiliar software engineering
tools. The students were recruited from Chalmers & Uni-
versity of Gothenburg in Sweden, and Ruhr University of
Bochum in Germany. All participants had passed program-
ming courses with hands-on experience in Java. No partic-
ipant had any experience with variant management. We in-
formed each participant before the experiment that participa-
tion was entirely voluntary, and that the data would be saved
anonymously. Nine participants completed the experiment
on a designated computer; three used their own computer.
Preliminary Assessment. In the beginning of the
questionnaire, we asked participants to self-assess their
programming expertise on a five-point Likert scale. The
five-point Likert scale comprised positive integers from 1–5
(1 lowest, 5 highest level of expertise). Participants rated
their programming expertise as an average of 3.33 (mean)
± 0.62 (standard deviation).
Supplementary Material. Our participants received six
supplementary material documents in the form of handouts,
which can all be found online in our replication package [51].
First, the tutorial slides (“VirtualPlatformIntroduction.pptx”)
described the general idea of virtual platform, introduced
virtual platform’s operators, and showed how to invoke
its commands through examples. Additionally, since our
participants did not have any experience with variant
management, we illustrated the concepts (e.g., change
propagation and feature cloning) intuitively using examples
to demonstrate the typical tasks in variant management.
We also gave our participants a soft copy of the slides
and asked them to view the slides in slideshow mode to
have the full effect of animations, which we employed to
simplify the visualizations. Second, to help participants
acclimatize with the subject systems, we provided a
handout that comprised details of the subject systems
(“SubjectSystemsIntroduction.pdf”). Specifically, for each
subject system, we presented a feature model and provided
each feature’s brief description. These feature descriptions
were also supplemented with concrete feature locations,

TABLE 3: Overview of the subject systems

DART AERO

Variant Lines Features Variant Lines Features

DartBasic 1332 14 AEROAlpha 666 14
DartPlus 1449 16 AEROBeta 728 16
DartPro 1512 16 AEROGamma 854 17

Mean 1431 15 749 16

down to the file level. The rationale was to make sure that
participants’ performances were not compromised due to
the time required to locate features in code. Both subject
systems had three variants each, all of them differing in
terms of some unique features. We introduced the variants
at a high level and explained each variant’s unique features.
Third, we created a separate handout (“OperatorsUsage.pdf”)
that explained the commands, the format to invoke them,
and the format for specifying assets and features. As a fourth
document, we shared an installation guide (“VPInstalla-
tionGuide.txt”) with participants who could not participate
in-person (on account of them being in another country) and
were therefore required to follow it before the experiment.

All handouts mentioned above were shared with the par-
ticipants before the experiment, both as a soft-copy as well as
printouts. Right before starting the experiment, we provided
participants with instructions to follow for conducting the
experiment. Both groups received different instructions as the
order of treatments was reversed between groups. Addition-
ally, participants who conducted the experiment on our des-
ignated machine (“InstructionsDesignatedPC.txt”) received
different instructions than the participants conducting the ex-
periment on their own machines (“InstructionsOwnPC.txt”).
Lastly, we implemented our experiment design in the form of
an online questionnaire that was provided to the participants
right before the experiment. To facilitate the participants and
to minimize the effort it takes to switch between screens, we
also provided participants with printouts of the question-
naire, so they only need to fill the online questionnaire at the
end. The design and flow of the experiment as implemented
in the form of an online questionnaire is shared in Fig. 12.

Subject Systems. We chose subject systems that were intu-
itive enough to be understood easily. Both were implemented
in Java. Table 3 shows descriptive statistics of them.

DART is a desktop application for a rental store, allowing
customers to browse items (video games and songs),
rent them, and pay for them when returning. DART was
implemented by a group of undergraduate students (separate
from the students participating in the experiment) at the
University of Gothenburg as a term project. It can also used
by store managers and store employees. Managers use it to
oversee item sales and manage employees. Employees use it
for inventory management, customer management, and sales
monitoring. DART has three variants: DARTBasic, DARTPlus,
and DARTPro. DARTBasic has all the functionalities detailed
above. DARTPlus was created by cloning DARTBasic,
but it also allows users to message each other (feature

“Messaging”). Additionally, DARTPlus has enhanced Security
in that it automatically generates unique passwords for
customers rather than prompting the employees to create
them. Lastly, DARTPro was also cloned from DARTBasic,
but was enhanced to allow employees to import and export
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Fig. 12: Design and flow of our experiment

data from and to files, respectively. Notably, the system
DART system has more lines of code than the system
AERO—understandably because of more stakeholders (i.e.,
employees, manager, and customers), different classes of
customers (i.e., silver, gold, and platinum, skipped due to
irrelevance), and elaborate exception handling. However, to
minimize the effort it takes to understand and navigate the
codebase, as mentioned above (in supplementary material),
we provided the locations of features in a handout (“Sub-
jectSystemsIntroduction.pdf”). We also deliberately kept the
number of features in both subject systems to be comparable.

AERO* is also a desktop application. It is an open-source
project intended to be used by an airline reservation company.
Employees use it to manage flights and schedule them on
specified days, while customers reserve flights. AERO has
three variants: AEROAlpha, AEROBeta, and AEROGamma.
AEROAlpha has all the functionalities described above.
AEROBeta was created by cloning AEROAlpha, but it also
allows employees of the airline reservation company to
customize the appearance of their interface. It also has the
ability to generate and save tickets to a separate directory.
AEROGamma was also created by cloning AEROAlpha, how-
ever, it allows users (airline companies, customers) to provide
feedback. Additionally, it allows managers to view feedback
(comments and ratings). Lastly, it allows employees to load
data about various trips and scheduled flights from files.
Tasks. We designed our tasks by taking inspiration from the
literature and our own experience [92], [118]. We aimed for
representativeness with our four tasks. Our first two tasks are
exploratory in that they do not require making any changes
in the code base. The last two tasks are however hands-on;
participants are required to change the code base when per-
forming those tasks. Below, we discuss our tasks, providing a
rationale for each, and giving concrete examples representing
each task. For each task, we specified if participants needed
to perform it manually or using the virtual platform.

Task 1 (“Getting mapped assets of a feature”) required
participants to traverse the code base of a variant, and find
all assets that implement the given feature. This task is an
instance of feature location, which is a typical and frequent
developer task [119]. Feature location is often performed as a
lead up to some other task, such as feature enhancement [118].
An example of this kind of task is: “Find all the assets in
AEROBeta that are mapped to the feature Customize.”

*https://github.com/CSEMN/AirlineReservationSystem

Task 2 (“Finding differences between two variants in terms
of features”) required participants to find how two variants
differed in terms of the unique features. This difference could
be new assets added to implement a unique feature (only
in one variant), or existing assets modified to implement
the unique feature. Developers often need to differentiate
variants in terms of features to, for instance, determine
which variant to clone to create a new variant. While
the traditional diff is adequate for returning code-level
differences, developers still need to manually dissect those
line-oriented diffs to determine whether they correspond
to a unique feature, or whether they are simple refactorings
(e.g., as done in our prior work [118]). An example of this
task kind is: “How do the variants DartBasic and DartPlus differ
in terms of functionality?” We asked participants to find assets
of all kinds, down to code-level, that differ on account of
unique features. For both Task 1 and 2, we also specified a
response format. For instance, for assets that were not blocks
of code, participants could simply write the name of the asset
(e.g., customize()). For blocks of code, they needed to mention
the containing file, and copy and paste the lines of code.

Task 3 (“Cloning a feature”) required participants to clone a
feature (and all assets which implement it) from one variant
into another. This feature was different than the feature
they found in Task 1. Feature cloning is a typical developer
task (feature propagation in [49]†); developers often clone
features that are well-received to other variants. In this task,
participants had to traverse the codebase, find all locations of
the feature (mapped assets), and copy each asset in the target
variant. The goal was to have a running code base with the
cloned feature working in the target. An example of this kind
of task is: “Clone the feature Messaging from DARTPlus back
into DARTBasic. Please note that Messaging is a scattered feature
and as such, assets of different types (classes, methods, blocks) need
to be cloned. Your goal is to have an error-free code at the end of the
cloning. After finishing, log the ending time in the widget below.”

Task 4 (“Propagating change in a feature”) required partici-
pants to replicate changes in a cloned feature, to the clone of
that feature. The changes to the original feature occurred
after the feature was cloned, leading to inconsistencies
in the feature and its clone requiring synchronization via
propagation. Features often undergo evolution [120], e.g., in

†In the paper, the authors refer to feature cloning as feature propaga-
tion, not to be confused with propagation in our paper, which refers to
change propagation after cloning
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TABLE 4: Oracle for Task 1 and Task 2

Subject system
Task DART AERO

1 Feature ViewCatalogue Customize
# of assets 6 5

2 Variants DARTBasic, AEROAlpha
DARTPlus AEROGamma

# of assets 25 12

the form of maintenance or enhancement. If the changes work
well (e.g., after alpha or beta testing), they are propagated to
other variants too. In this task, we gave a description of the
change, and asked participants to locate the change in the
codebase, and propagate it to a specified variant. An example
of this task is: “AEROBeta enhances the feature Book_Flight so the
system automatically generates a ticket against each reservation
and stores it in a folder "Tickets" (automatically created). As
such, this is a change in the feature Book_Flight. Your task is
to propagate this change from AEROBeta back into the original
variant AEROAlpha using virtual platform. Once you finish the
task and you see that the message that the feature was propagated
successfully, please log the time in the widget underneath.”
Task Metrics. To address RQ5, we elicited several task met-
rics. Specifically, we used precision, recall, binary correctness
score (COR), and time taken to measure the correctness and
efficiency respectively. For the exploratory tasks (Task 1 and
2), we measured precision and recall, as these tasks required
participants to retrieve a number of assets from the codebase
(mapped assets for Task 1 and assets implementing unique
features for Task 2). Table 4 shows the oracle for Task 1 and 2;
the total number of mapped assets to the specified features
for both subject systems and the number of assets implement-
ing unique features in the specified variants, respectively.
Notably, the oracle was established as a result of recurrent
discussions between the first and second author, and verified
by the other authors. For Task 1, we measured the correctly
identified mapped assets in proportion to the total number of
retrieved mapped assets (precision) and assets implementing
the given feature (recall). A response was scored between 0
and 1, and represented the precision and recall ratios. For
instance, for Task 1 in DART, if the participant retrieved 3
out of 6 actual mapped assets, their recall was 0.50. For Task
2, we also measured precision and recall. We calculated the
number of correctly identified assets implementing unique features
in proportion to the total number of such retrieved assets
(precision) and the actual number of assets implementing
unique features (recall). Responses for Task 2 were also
scored between 0 and 1, e.g., for Task 2 in AERO, if the
participant retrieved 10 assets implementing unique features,
6 of which were correct, their precision was 0.60.

For the hands-on tasks (Task 3 and 4), we calculated a
binary correctness score (COR). The goal of both tasks was
to obtain a running code base with the cloned or propa-
gated feature working in the target variant. We measured
correctness on a binary scale: if the feature operated properly
in the target variant, the task response got a score of 1,
otherwise 0. For both subject systems, the features to clone
(Task 3) and propagate (Task 4) allowed testing by interacting
with the system after the task was performed. For instance,
for DART, participants were required to clone the feature
“Messaging”, allowing users to send messages to each other.

We validated if the feature worked properly by checking that
a) the feature was present in the menu options, and b) the
feature worked as intended upon interaction with it (e.g.,
sending a message and reading it for the feature “Messaging”).
Our rationale for using a binary score was as follows: even
subtle implementation mistakes can lead to extensive extra
effort (e.g., extensive debugging or static analysis) to be
detected and fixed. Consequently, an almost-correct solution
could be as problematic as a fully incorrect one. Notably, for
Task 3, we do not measure completeness, and only measure
the correctness (on a binary scale as explained above). This is
because in our supplementary materials for subject systems’
introduction (“SubjectSystemsIntroduction.pdf”), we point to
the locations of the files containing the feature implementa-
tions, enabling the participants to find the locations of the
features easily. With known feature locations, there is little
possibility that participants would miss any assets mapped
to the feature. Similarly, for Task 4, we deliberately kept the
task easy, requiring participants to simply replace the imple-
mentation of a method with the updated implementation
from the original variant. Since there was only one method,
we did not use the completeness metric for this task as well,
only opting for the correctness score.

Finally, to measure task efficiency, participants were
asked to log task start and end times in the questionnaire.
Subjective Metrics. For RQ6, we asked participants about
the understandability of the virtual platform and the difficulty
of performing each task both manually and using the virtual
platform. Specifically:
(S1) How easy did you understand the virtual platform?
(S2) How difficult was it to perform Task 1 (getting mapped
assets of a feature) manually and using virtual platform?
(S3) How difficult was it to perform Task 2 (variant diffing)
manually and using virtual platform?
(S4) How difficult was it to perform Task 3 (feature cloning)
manually and using virtual platform?
(S5) How difficult was it to perform Task 4 (change propaga-
tion) manually and using virtual platform?

Following the common convention used for subjective
assessment, we elicited the responses on a five-point Likert
scale. We used consistent labels over the Likert scales in the
questions, stating explicitly for each question that 1 means
“very easy” and 5 means “very difficult”. The questions were
also followed by text-fields asking participants to elaborate
on their choices. Notably, we did not have two Likert scales
for S1, as we expected each participant to fully understand
what manual mode of work means. For S2-S5, we put two
Likert scales per question, one for each mode of work.
With our subjective assessments regarding difficulty (S2-
S5), we sought to investigate the following hypothesis: while
performing all four tasks, participants experienced same amount of
difficulty with both modes of work. To this end, we conducted
a statistical analysis to compare the difficulty of performing
each task manually and using virtual platform.

For RQ7, we asked participants to specify their preferred
mode of work for each task. To gain a deeper insight into the
intuition behind their choice, and to augment the quantitative
data with qualitative information, we also asked to elaborate
on their rationale. We formulated the following questions:
(S6) How do you prefer to perform each of the tasks?
(S7) Can you explain your subjective preferences intuitively?
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For S6, we used two literals (manually, using virtual
platform) for each task. We kept S7 open-ended (with long-
paragraph format) to allow participants to write descriptively.
We share an analysis over the qualitative responses we
received for S1–S7 in Sec. 10.4.4.

Lastly, as mentioned, to gather more insights about
the experiment, we conducted one-to-one interviews with
each participant. The interviews took place right after the
participants submitted the questionnaire. Participation was
voluntary: we asked each participant if they would like
to have a brief interview regarding their experience in the
experiment. We also asked if they needed a break before
participating in the interview. In all cases, the participant
chose to have the interview right away. The interview was
semi-structured to allow participants to think more freely
and consequently enable us to retrieve richer and more
diverse data. Each interview took roughly 10 minutes. The
interview was led by the primary author, who took notes
during the interview, also rephrasing participants’ responses
back to them to ensure that she understood their responses.
Specifically, the interview featured a combination of the
following questions, posed in no specific order:
(I1) What mode of work did you prefer and why?
(I2) What command does the virtual platform shine the most
in your opinion? What command does it fall short in?
(I3) How difficult is the virtual platform to learn?
(I4) If virtual platform was taken to the industry, would it be
accepted?
(I5) Are there any suggestions for improvement?

We treated the participant responses to I1–I5 as qualita-
tive feedback, the analysis of which is shared in Sec. 10.4.5.
Pilot Study. Prior to conducting the user study, we per-
formed a pilot study with one participant. The goal was to
recognize potential problems with the design of the exper-
iment and its materials, including the questionnaire design
and the interaction with the tool. In line with what we en-
tailed above, we shared the supplementary materials with the
participant before the experiment. Moreover, we shared the
subject systems and the questionnaire with the participant
right before he started the experiment. Once the participant
carried out the experiment, we conducted a one-to-one
interview with him to gain insights about his experience.

Based on participants’ responses in questionnaire and
follow-up interview, we resolved three issues. First, after
the participant mentioned that the output of commands
included redundant information, we significantly trimmed
down the output of the relevant commands. Second, we
fixed a NullPointerException when trying to access the
TraceDatabase . Third, the the formulation of some tasks was
misleading in that it was difficult to understand which mode
of work the participants were required to use to perform it. So
we made the mode of work more explicit in the descriptions.

10.2 Analysis

Following the convention for statistical analysis, we initiated
our analysis by establishing the normality of our distri-
butions. To this end, we employed the Shapiro-Wilk test
for normality [121] for our dependent variables that were
numeric (precision and recall for Task 1 and 2, and time
taken for all tasks). Notably, Task 3 and 4 were evaluated on

a binary scale (COR), and hence, did not require establishing
normality. Notably, the precision, recall, and COR of all tasks
using virtual platform was always 1 (the maximum), also
verified after a post-experiment analysis of the variants on
which virtual platform was used. For the results with the
manual mode of work, we observed that the distribution of
precision of Task 1 was homogeneous (p-value = 0.31) and that
of Task 2 was skewed (p-value < 0.001). Additionally, both dis-
tributions for recall (Task 1 and 2) were homogeneous (Task
1: p-value = 0.68, Task 2: p-value = 0.23). Despite observing
some homogeneous distributions, due to the skewness in the
responses using virtual platform, we used non-parametric
tests to determine if there was a significant difference
between the dependent variables using both modes of work.

For hypothesis testing for Task 1 and 2 (RQ5), we used
Wilcoxon rank sum test [122], a standard non-parametric test
for comparing two related samples. We used the standard
significance threshold of 0.05. For quantifying the difference
(i.e., effect size), we employed the A12 measure, which is
a standard non-parametric effect size measure suggested
by best practices for statistical testing [123], [124] when all
samples are not normally distributed, which was the case
in our experiment. We followed the Vargha and Delaney’s
original three interpretations [125]: A12 ≈ 0.56 = small;
A12≈ 0.64 = medium; and A12≈ 0.71 = large. For hypoth-
esis testing for Task 3 and 4 (RQ5), we employed Fisher’s
Exact Test [126], since the COR values are categorical data,
taking values of 0 and 1 for incorrect and correct responses
respectively. We used the A12 measure for quantifying the
magnitude of difference in responses for Task 3 and 4.

For comparing the time taken using each mode of work
(RQ5), we first checked the normality of the distributions.
We observed that for Task 1 (manual: p-value = 0.032, using
virtual platform: p-value = 0.003) and Task 2 (manual: p-
value = 0.92, using virtual platform: p-value = 0.002), either
or both of the distributions were skewed. In contrast, time
distributions for Task 3 and 4 using both modes of work
were homogeneous (Task 3: 0.32 vs 0.06, Task 4: 0.08 vs
0.07). Consequently, we used the Wilcoxon rank sum test to
compare the samples for Task 1 and 2, and the parametric t-
test [127] for comparing the samples for Task 3 and 4. We also
employed the A12 measure for quantifying the difference.

For the subjective assessments (RQ6), as previously
mentioned, we retrieved two kinds of data: the difficulty
ratings and the qualitative responses. For the former, we
conducted normality tests for each task using the Shapiro-
Wilk test. For Task 1 and 2, the distributions for the samples
using manual mode of work were homogeneous (Task 1:
0.12, Task 2: 0.05). The sample distributions of Task 1 and 2
using the virtual platform were both skewed (Task 1 < 0.001,
Task 2 < 0.001). For Task 3 and 4, the distributions of samples
using manual mode of work were also homogeneous (Task 3:
0.06, Task 4: 0.06), however, the test could not work on the
distributions of Task 3 and 4 using virtual platform, because
all values were identical (very skewed). We opted for the
Wilcoxon rank sum test for comparing the difficulty ratings
of all tasks, and the A12 measure for quantifying the degree
of difference between the ratings.

For the qualitative assessments, one of the authors
performed inductive coding to tag the participant’s comments
with keywords. Once the process was completed, the other
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TABLE 5: Precision (Prec) and recall (Rec) of Tasks 1 and 2 manually and using virtual platform (T1inc: number of incorrectly
identified mapped assets in Task 1, T2inc: number of incorrectly identified assets mapping unique features in Task 2)

Manually Using virtual platform

Task 1 Task 2 Task 3 Task 4 Task 1 Task 1 Task 3 Task 4

Participants Prec Rec T1inc Prec Rec T2inc CORm3 CORm4 Prec Rec Prec Rec CORv3 CORv4

Participant 1 0.29 0.83 12 0.95 0.80 1 1 1 1 1 1 1 1 1
Participant 2 0.80 0.80 1 0.88 0.67 1 1 1 1 1 1 1 1 1
Participant 3 1.00 1.00 0 0.93 0.56 1 1 1 1 1 1 1 1 1
Participant 4 0.25 0.40 6 0.92 1.00 1 0 1 1 1 1 1 1 1
Participant 5 0.71 0.83 2 0.43 0.28 9 0 1 1 1 1 1 1 1
Participant 6 0.50 0.20 1 1.00 0.58 0 0 0 1 1 1 1 1 1
Participant 7 0.75 0.50 1 0.86 1.00 4 1 1 1 1 1 1 1 1
Participant 8 1.00 0.60 0 1.00 0.92 0 1 1 1 1 1 1 1 1
Participant 9 0.50 0.17 1 0.95 0.76 1 1 1 1 1 1 1 1 1
Participant 10 0.60 0.60 2 1.00 0.58 0 0 1 1 1 1 1 1 1
Participant 11 1.00 0.50 0 0.75 0.13 1 1 1 1 1 1 1 1 1
Participant 12 0.75 0.60 1 1.00 0.08 0 1 0 1 1 1 1 1 1

Mean 0.67 0.58 2.25 0.89 0.61 1.58 0.66 0.83 1 1 1 1 1 1
Std dev. 0.24 0.25 3.30 0.15 0.30 2.46 0.50 0.40 0 0 0 0 1 1

authors verified if the keywords accurately captured the
gist of the responses. If there was a disagreement, the
authors were able to reach a consensus via discussion. The
tags assisted in identifying the pertinent aspects, and their
frequency helped determine the redundant concerns. We
used R for running our quantitative analysis. The analysis
scripts can be found in our replication package [51].

10.3 Ethical Considerations

We carefully discussed ethical considerations in the team of
authors. Importantly, our study does not have problematic
ethical implications for the involved participants, as we did
not expose our study participants to threats to their physical
or psychological well-being, did not process protected
personal data, and explicitly asked them for their consent
to participate in the study. Formally, we addressed the
relevant local regulations at the institutions where the
study was performed and where it was analysed. The study
was performed in universities in Sweden and Germany. In
Sweden, the relevant regulation is the Ethical Review Act
(Etikprövningslagen EPL, SFS 2003:460), whose paragraph
4 describes the criteria under which research performed in
Sweden requires an ethical review by a review board. Our
research does not fall under these criteria. In particular, we
did not perform any physical or psychological interventions
that lead to potential harms to humans—our target of
investigation was participant behavior in relation to software-
engineering activities. Germany does not have a comparable
national-level regulation, except for specific fields such
as medical devices and drugs, which are not related to
our study. Institutional regulations and the corresponding
review boards are at the level of individual faculties, most
commonly in medicine. At the faculty where the study
was performed, no relevant regulation exists. Beyond the
execution of the experiment, authors from other institutions
were involved with analysis of the produced data; however,
they worked with fully anonymized versions of the data.

10.4 Results

We now present the results of our user study.

Fig. 13: Task metrics for Task 1 - 4 (Prec: precision Rec: Recall)

10.4.1 RQ5: Correctness and Efficiency
For RQ5, we measured precision, recall, COR, and time taken
for each task using both modes of work. Precision and recall
are marked on a scale from 0 to 1, COR is a binary value (0 or
1), and time is measured in minutes. Table 5 provides a high-
level overview of the results we discuss in the following.
Precision and Recall. Figure 13 shows the average precision
and recall scores for Task 1 and 2.

In Task 1 (getting mapped assets of a feature),
participants performed better with the virtual platform
(mean precision and recall = 1.0) than manually (mean
precision = 0.67, mean recall = 0.58). The difference is
statistically significant for precision (p-value < 0.001) and
recall (p-value = 0.003), with a high-ranged effect size
for both (A12 = 0.87 and 0.95, respectively). This implies
that developer tasks that rely on feature location (e.g.,
feature enhancement, feature cloning) are highly prone to
inaccuracies if the feature is identified manually.

Moreover, we observed that participants also retrieved
false positives (assets that were not mapped to the given
feature, but were perceived to be), depicted by T1inc in
Table 5. This resulted in lower precision values, which
implies that developers can apply unwarranted changes
to assets not mapped to a feature, incorrectly assuming
they are mapped to that feature, during routine activities,
e.g., feature evolution. A low recall indicates that relying



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

on manual feature location can lead to partially complete
results, for instance, partially cloning a feature or changing
only a partial set of assets mapped to the feature.

In Task 2 (getting differences between variants in terms
of the unique features), participants also performed better
using virtual platform (mean precision and recall = 1.0) than
using the manual mode of work (mean precision = 0.89, mean
recall = 0.61). The difference in precision (p-value < 0.001) and
recall (p-value < 0.001) was statistically significant, and also
the effect size were high for both (A12 = 0.83 and 0.92 respec-
tively). This implies that manually differentiating variants,
e.g., for determining which variant to clone for creating a new
one, can lead to inaccuracies. Additionally, we noticed that
participants retrieved some false positives (assets that were
common between variants, but participants thought they
were not), demonstrated by T2inc in Table 5. This resulted in
lower precision values, indicating that for routine developer
tasks, e.g., performing a commonality and variability analysis
for extractive adoption [47], developers can potentially inte-
grate features that are not shared into one (merged) feature.
A low recall implies that developers can miss integrating
some features, thinking they are not shared between variants
when in fact they are (false negatives, i.e., missed assets).

Finding 1. Virtual platform outperformed the manual mode
of work for both exploratory tasks, obtaining statistically
significant results. In addition to missing some correct
responses, participants also retrieved some incorrect ones,
indicating that the manual mode of work lacks reliability,
and might introduce inaccuracies and inconsistencies for
activities that follow exploratory tasks e.g., feature cloning.

Binary Correctness Score (COR). Figure 13 (right bars)
represents the average values of COR for Task 3 and 4.
Considering Task 3 (cloning a feature), participants on
average performed better using the virtual platform than
performing the task manually (mean COR = 1.00 vs 0.66). The
difference was however not statistically significant (p-value
= 0.09), with a medium-ranged effect size (A12 = 0.66). The
medium-ranged effect size is possibly because participants
were required to have the code running, and the feature
operational, and they could use the compiler to determine if
they had cloned the feature correctly. Still, one-thirds of our
participants could not clone the feature, and stopped after
running into errors. Specifically, the participants either failed
to clone the new import statements (e.g., for the feature “Mes-
saging,” all the classes representing users, i.e., different types
of customers needed to import the class “Message.java,”)
or they failed to update the existing methods (e.g., for the
feature “Messaging,” the class constructors also changed
to require setting an empty inbox when the customer was
created). This implies that copying a feature from one
variant to another manually can be error-prone, and lead
to inconsistencies in the code base (e.g., partial cloning of
a feature). While we chose the size and complexity of the
subject systems to align with the scope of our experiment,
we believe that the inconsistencies associated with feature
cloning will be escalated for larger, more complex systems.
For Task 4 (propagating changes in a feature), participants
performed better on average, albeit unnoticeably, using the
virtual platform than propagating the changes manually

(mean COR = 1.00 vs 0.83). The difference was not statistically
significant (p-value = 0.47), with a small-ranged effect size
(A12 = 0.58). This could be because participants gained signif-
icant familiarity with the subject system after performing the
preceding tasks. Additionally, the feature locations provided
in the supplementary material bypassed the effort and time
required to locate features manually in code. Lastly, to aim
for simplicity, we designed the task at method-level instead
of line-level, so participants only needed to copy paste the
entire content of the method (implementing the change in
the feature) in the target variant. Still, two participants could
not locate the change manually, or stopped after running into
errors. We believe that the challenges would be amplified
for assets at finer levels of granularity (e.g., blocks and lines
of code), and complex systems with many scattered features.

Finding 2. Virtual platform outperformed for both hands-
on tasks. The differences were not statistically significant.
However, multiple participants ceased to perform both
feature cloning and feature change propagation on account
of errors (e.g., package dependencies, order of methods) after
unsuccessfully trying to solve them manually.

Time. Table 6 presents an overview of the completion times
of participants when performing all four tasks of our ex-
periment. For all tasks, participants were faster when using
the virtual platform than performing the tasks manually.
The total time of the tasks using the manual mode of work
(Tmanual) was also always greater than the time taken by the
same participant using the virtual platform (TV P ). Figure 14
shows a visual representation of the comparison between
times taken using both modes of work for all four tasks.

In Task 1, participants performed notably faster on
average using the virtual platform than with the manual
mode of work (mean = 4.91 vs 9.41). The difference was also
statistically significant (p-value = 0.03), with a large-ranged
effect size (A12 = 0.75).

In Task 2, the differences were far more pronounced.
On average, participants performed remarkably better
using the virtual platform than finding the feature-oriented
differences manually (mean = 4.75 vs. 18.41). The difference
was also statistically significant (p-value = 0.002), with a
high-ranged effect size (A12 = 0.93). These findings also
align with the correctness scores above, where participants
performed worse using the manual mode of work. This is
still surprising, considering we provided the information of
unique features and (at an abstract level,) where they were
implemented. We speculate that the differences would be
even more prominent for larger, more complex systems.

In Task 3, we noticed a similar pattern; participants
performed notably faster when using the virtual platform
than cloning the feature manually (mean = 14.58 vs 2.66).
The difference was also statistically significant (p-value =
0.002), with a high-ranged effect size (A12 = 0.98). The
average time with the manual mode of work also validates
previous research [92], where the average time taken to
manually locate one feature was estimated to be 15 minutes.

In Task 4, participants also took less time on average
using the virtual platform, albeit not very prominently,
than with the manual mode of work (mean = 3.66 vs 5.58).
Hypothesis testing did not reveal any significance in the
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Fig. 14: Times taken for Task 1 - 4 manually and using the virtual platform (VP: virtual platform)

TABLE 6: Time taken (in minutes) for tasks 1, 2, 3, and 4, manually and using virtual platform (Tmanual: Total time using
manual mode of work, TV P : Total time using the virtual platform, TT: Total time of the experiment)

Manually Using virtual platform Total

Participants Task 1 Task 2 Task 3 Task 4 Tmanual Task 1 Task 2 Task 3 Task 4 TV P TT

Participant 1 10 17 14 7 48 13 15 2 4 38 86
Participant 2 7 17 7 5 36 11 4 2 4 25 61
Participant 3 25 24 34 4 87 9 5 3 6 23 110
Participant 4 4 28 6 8 46 4 10 5 3 22 68
Participant 5 8 27 14 3 52 3 2 2 3 10 62
Participant 6 8 21 22 9 60 8 3 2 3 16 76
Participant 7 15 32 16 3 66 2 3 1 4 10 76
Participant 8 3 10 4 4 21 2 2 1 2 7 28
Participant 9 15 10 23 4 52 2 2 5 6 15 67
Participant 10 8 16 6 7 37 1 7 3 4 15 52
Participant 11 7 16 17 3 43 2 2 3 2 9 52
Participant 12 3 3 12 10 28 2 2 3 3 10 38

Mean 9.41 18.41 14.58 5.58 48 4.91 4.75 2.66 3.66 16.66 64.66
Std dev. 6.02 8.07 8.34 2.39 16.94 2.39 5.25 3.89 1.24 8.58 20.77

difference (p-value = 0.06), however, the difference was still
large-ranged (A12 = 0.73). Participants being relatively faster
in this task could be explained by the learning effect; they
were more acclimatized to the subject system by the time
they performed this task. We noticed a similar pattern with
virtual platform; the average times taken for the latter two
tasks are less than those for the first two tasks.

Finding 3. Participants were faster in performing their
tasks using virtual platform on average than when using
the manual mode of work with statistically significant
results for Task 1, Task 2 and Task 3. Effect sizes for all
tasks were high-ranged.

10.4.2 RQ6: Subjective Perception
Regarding understandability, participants rated the virtual
platform to have a mean score of 1.83 (lower scores indicating
better understandability) on the Likert scale. 10 participants
gave a rating less than or equal to 2, whereas two participants
gave a rating of 4. However, when explaining their reasoning
behind the provided rating, both participants wrote positive
reviews: “The commands fit well to the description. Though
terminology in the field might differ, e.g. propagate is maybe called
merge. Steps [were] clear which feature to work on.” We therefore
speculate that those participants misunderstood the scale,
thinking a higher rating reflected better understandability
(despite labels being collocated with the ratings to indicate
what they meant). We now present the results for the
subjective ratings regarding difficulty.

Table 7 presents a summary of our difficulty ratings for
performing all four tasks using both modes of work. The rat-
ings were gathered in response to the assessment questions
(S2-S5) in the questionnaire. The responses were gathered
on a five-point Likert scale, with lower scores indicating less
difficulty. Fig. 15 shows a comparison of average difficulty
ratings using both modes of work for different tasks.

Considering Task 1, the manual mode of work was
considered more difficult than virtual platform on average
(mean = 1.5 vs 3.3). The difference was also statistically
significant (p-value = 0.01), with a high-ranged effect size
(A12 = 0.90). For Task 2, we noticed the same trend occurring
more notably. Participants perceived manual mode of work
to be much more difficult than using virtual platform (mean
= 3.7 vs 1.5). The difference was also statistically significant
(p-value = 0.002), with a high-ranged effect size (A12 = 0.97).
For Task 3, we observed a similar pattern. Participants
found that cloning the feature manually was much more
difficult than cloning it using virtual platform (mean = 3.2 vs
1.0). The difference was also statistically significant (p-value
= 0.002), with a very high-ranged effect size (A12 = 1.0).
For Task 4, participants again found the manual mode of
work to be notably more difficult than using virtual platform
for propagating changes in a feature (mean = 2.5 vs 1.0).
Hypothesis testing revealed significance in the difference
(p-value = 0.005), with a high-ranged effect size (A12 = 0.91).
Interestingly, all participants selected the minimum rating
(1.00: very easy) for both Task 3 and Task 4. The results align
well with the correctness scores and the times taken in RQ5.
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Finding 4. The participants perceived the manual mode to
be more difficult on average for performing all tasks. The
differences were statistically significant for all tasks, with
high-ranged effect sizes. For Task 3 (feature cloning) and
Task 4 (feature change propagation), all participants chose
the minimum difficulty rating (1) for the virtual platform.

10.4.3 RQ7: Subjective Preferences
We report on the distribution of participant preferences over
both modes of work for the four tasks based on S6 in our
questionnaire. In S6, we asked participants to state their
preferred mode of work for every task (quantitative data).
Following, we present an analysis of the distribution of
participants’ preferences per task.

Table 8 shows a summary of participant preferences for
our tasks. Evidently, virtual platform was preferred over
the manual mode of work for all four tasks. The preferences
were all increasingly skewed, with all participants preferring
virtual platform over the manual mode of work for the
hand-on tasks (Task 3 and Task 4). This indicates trust;
developers when performing invasive tasks can get wary
of the potential side effects their changes could have
on the system. With more participants favoring virtual
platform over the manual mode of work, it is evident that
they consider it to be a more reliable solution. At least 80
percent of the participants preferred virtual platform over
the manual mode of work for each task. Intuitively, the
observed proportions are not surprising. Virtual platform,
as we showed in Sec. 10.4.1, is a more efficient and effective
solution. It is also easier to use, as observed in Sec. 10.4.2.

Finding 5. Participants preferred virtual platform over the
manual mode of work for majority of the cases for all four
tasks. The distribution was at least 83.3% participants for
each task. In line with the difficulty ratings, all participants
preferred virtual platform over the manual mode of work
for Task 3 and Task 4.

10.4.4 Rationale for Subjective Preferences
In S7, we asked participants to provide their intuition behind
preferring one mode of work over the other. We conducted a
manual analysis of each participant comment, and extracted

Fig. 15: Difficulty ratings (Task 1–4)

the key concerns referred to in it. Subsequently, we gathered
aspects that were recurrently deemed important by our par-
ticipants. Following, we present our analysis over the qualita-
tive data. Our findings can help guide developers on when to
use virtual platform over the manual mode of work, what to
expect from the tool, and what kind of interaction it provides.
Conciseness. Participants found virtual platform’s com-
mands to be concise, remarking that they only needed to
write a single line to perform a particular task: “Performing
the tasks with VP only requires a line of code, compared against the
manual approach which requires deeper study and navigation of the
code.” However, some participants found the output of the
virtual platform to be cluttered: “For the exploration the virtual
platform took me a while to understand the structure of the output,
but once that is completed it gets a lot easier compared to searching
all relevant files for single lines of code that could be relevant.”
Ease. Participants remarked that it was easy to use virtual
platform: “Once [the concepts of cloning, propagation and
mapping] are mastered, the syntax of the virtual platform
commands [is] really easy to understand and use.” On the
contrary, participants found the manual mode of work to be
intensive: “The command line tool was just me tying a command
and looking at the results. On the other hand manually looking
into the files was quite cumbersome.” Additionally, participants
also mentioned experiencing difficulty using the manual
mode of work: “Manually, [variant diffing] was extremely
difficult, as the assets were much more scattered through multiple
classes. Using the tool made it very clear what the differences are.”
Understandability. Participants deemed virtual platform to
be easy to understand as well: “The commands are easily
understandable, given the documentation.” They also remarked
that the commands aligned well with the tool’s intent:
“The commands are only a handful, self explanatory for easy
understanding, and map very well with the tool’s purpose.” The
concepts are also deemed simple by the participants: “The
operators in the virtual platform are quite simple to understand, the
introduction slides and the document containing the operators help
understanding it better.” In contrast, manual mode of work
was pronounced to be a complex solution: “Performing the
tasks with VP only requires a line of code, compared against the
manual approach which requires deeper study and navigation of
the code, building the source code to ensure nothing breaks, and
more. All the required manual steps highlights the complexity of

TABLE 7: Difficulty ratings for Task 1-4, manually and using
the virtual platform (Std dev.: Standard deviation)

Task Manually Using virtual platform

Mean Std dev. Mean Std dev.

Task 1 3.3 1.1 1.5 1.2
Task 2 3.7 1.0 1.2 0.5
Task 3 3.2 1.0 1.0 0
Task 4 2.5 1.1 1.0 0

TABLE 8: Distribution of participant preferences over the
two modes of work for performing various tasks

Task Manually Using virtual platform

Task 1 16.67% 83.33%
Task 2 8.33% 91.66%
Task 3 0% 100%
Task 4 0% 100%
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manual approach over VP.” Additionally, we observed that the
supplementary material was well-received: “Going through the
concrete examples in the slide helped me understand the concepts of
assets, and features.” Most participants found the terminology
in the supplementary material and command-line interface
intuitive, however, some of them found the term “propagate”
to be ambiguous: “In general the commands were intuitive. Al-
though propagate could be a term that [is not] used by practitioner.”
Time. Many participants favored the virtual platform over
the manual mode of work owing to its efficiency: “Cloning
involved a lot of copy-pasting, which is error-prone. Even though
I think I did everything correctly, it was a time-consuming task.”
In contrast, participants favored virtual platform because it
was a more efficient solution, as demonstrated in Sec. 10.4.1:
“I would say that I prefer the VP since it takes less time, manually
doing these tasks also is very fragile and error prone.” One
participant remarked that the slow execution time of the
virtual platform was a hindrance in the experiment: “One
small annoyance is the long execution time for each command.”
For most experiments however, this was not reported as
a concern, so we assume that the slow execution time
could be because of factors such as memory overload by
another heavy program, or multiple programs in parallel.
Trial runs on our PC (16.0 GB memory, Core i5-8350U CPU,
64-bit operating system, x64-based processor) show that the
command execution times for all tasks were under three
seconds (mean time for: Task 1 = 2.1 seconds, Task 2 = 2.2
seconds, Task 3 = 2.9 seconds, and Task 4 = 2.5 seconds), the
first response coming in the first second of execution. These
times comply well with the thresholds defined by Miller [128],
who said: “Although the user should be informed by the system
within four seconds that it has understood and can interpret the
command, its execution and final confirmation to the user that the
command has been executed may have long and variable delays
of minutes.” Still, investigating into ways in which virtual
platform can be made even faster could be fruitful.
Error-proneness. Participants also mentioned that the
manual mode of work was prone to inaccuracies and
inconsistencies: “It is much easier to get something missed if we
don’t have an automatic tool like [virtual platform]”. In line with
this, participants commented that virtual platform can help
avoid inaccuracies and inconsistencies: “I also think that using
the virtual platform is less susceptible to errors than performing
the tasks manually.”
Certainty. Many participants reported feeling uncertain

Fig. 16: Participant preferences (Task 1 - 4)

about the completeness of their task responses when using
the manual mode of work: “Propagating features manually is
very hard. One is always unsure whether something is missing.
This doesn’t happen with virtual platform.” Contrarily, partic-
ipants demonstrated trust when using the virtual platform:
“You do not have to worry that you forgot something anywhere
and you can be sure that a feature will be cloned/propagated in
its entirety.” Interestingly, two participants also highlighted
the issue of mistrust associated with the virtual platform,
especially in the context of exploratory tasks: “VP makes
[each task a] black-box operation. The outcome is therefore less
predictable and requires trust in the correct mapping of the feature.
Testing and potentially code review is required in both cases.”

Usability. Participants found the command-line tool
to exhibit good usability: “Subcommands are labeled
conveniently (based on my perception based on common naming
schemes). Furthermore, dynamic parameters are clearly labeled—
Version::Feature is uniquely identifiable. Overall, the platform
makes an “easy to use and configure” appearance.”

Task-specific. We observed that participant preferences
also vary between tasks and contexts. For instance, a
participant favored the manual mode of work over virtual
platform when propagating changes. They also mentioned
that this could possibly be because the changed feature to
be propagated was implemented in an isolated method:
“Manually, I found it pretty easy to propagate the feature, since
the feature was not scattered along multiple class files. [...] it could
be way harder if it was scattered even more. The virtual platform
made it a bit easier, as it was way faster.”

Other aspects. Some participants preferred the virtual
platform because of the level-of-detail of the output: “Using
the tool [makes it] very clear what the differences are [in variant
diffing]. It also provides the actual location of the differences.” One
participant remarked that having knowledge of the codebase
made it easier to clone features, albeit slowly: “If you know
what differences you need to copy over it is not a problem even
manually, but it takes more time.” Participants also speculated
that virtual platform will be more scalable when performing
the tasks in larger, more complex systems: “Manually, [feature
propagation] was not too difficult, but I think this is partly because
there wasn’t much code to copy over. I can imagine that an even
more scattered feature will take much more time and also is more
error prone.” Extending on this, many participants reported
that the scatteredness of features was a hindrance when
performing tasks such as feature cloning: “Again, it is much
easier to using a single command to clone compared to manually
coping methods, and ensuring all the reference to copied symbols
are also cloned. The manual approach is prone to error and requires
more time to ensure completeness.” Moreover, confirming
our speculation, participants found the error highlighting
provided by the compiler to be helpful: “[...] during the
manual exploration I overlooked some relevant parts of the code.
The error highlighting in IntelliJ was helpful to guide me to the
missing parts.” We also received comments suggesting that
implementing command assistance over the command-line
interface could be useful: “For some of the vp commands it was
not immediately recognizable if you have made a typing [mistake],
especially when specifying the parameters.”
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Finding 6. Participants reported a multitude of reasons for
favoring virtual platform over the manual mode, including
the conciseness of input and ease of use. They remarked that
the tool was easy to understand with the documentation,
and it exhibited more time efficiency. Contrary to this, they
remarked that the manual mode was error-prone, leading to
uncertainty. Other factors behind the participants’ choices
included usability, familiarity with the codebase, scalability,
scatteredness, and the nature of the task.

10.4.5 Interview Responses
As previously mentioned, to attain validation and additional
insights about the user study, we triangulated with each
participant by conducting one-to-one interviews. We now
discuss our analysis of the responses participants provided
to the interview questions I1-I4. We provide our analysis on
the potential improvements (I5) in Sec. 10.5.
General preference of mode of work and its rationale. We
asked participants (in I1) about their general preferred mode
of work, which was the virtual platform in all cases, as
observed in the subjective preferences above (Sec. 10.4.3).
The reasoning behind participant choices was multi-fold.
In addition to the factors mentioned above (Sec. 10.4.4),
participants mentioned that one factor for preferring virtual
platform was its uniqueness: “I know [from my own experience]
that there are very few tools for feature location and also very
less focus on that area. I think VP would be really useful to the
industry.” One participant liked the fact that the modality
of virtual platform resembled that of Git: “[I like it because
it] feels like Git, [the] style of [specifying] commands is like Git.”
Most participants remarked that the commands of virtual
platform, including how parameters are specified, was easy
to grasp: “[I was] pretty happy especially with wording of [the]
commands. A lot of softwares try to establish their own terminology
which is sometimes very counter-intuitive and does not make
much sense. [However, virtual platform] commands were very
easy to comprehend.” Participants also reaffirmed that time
was a factor in determining their preferred mode of work:
“Aside from the time it took to setup initially, [I] was pretty happy
with the speed and accuracy of the tasks.” Other factors that
participants mentioned were detrimental in their choice were
ease, comprehensibility of documentation, understandability,
conciseness, simplicity, and command-relevance.
Virtual platform: strong and weak suits. Aligned with
the subjective assessments and qualitative responses, most
participants considered both hands-on tasks to be the
strongest suits of the virtual platform: “virtual platform
would be better [than manual work] especially for cloning and
propagation.” The most frequently mentioned task that virtual
platform excelled at was feature change propagation: “All
four [tasks] are not far apart [in terms of how good is virtual
platform in handling them]. Propagate was the feature I liked
the most. If I would do it myself especially for a lot of changes,
it [would] probably not [be] easy.” Two participants mentioned
that feature-oriented variant diffing is the task that virtual
platform falls short in. Subsequently, we investigated
participants about the reason for their judgment. One
participant mentioned that the output was un-structured:
“The output was a bit cluttered. Adding more structure would help. I

could still see the changes.” The other participant remarked that
he did not understand the usefulness of the command. Upon
explaining the potential use cases of feature-oriented variant
diffing (e.g., variability analysis for extractive adoption and
finding the most suitable variant to clone to create a newly
requested one), the participant agreed that it was a quite
useful command, also remarking that it was interesting.
Learnability. Participants generally felt that virtual platform
was easy to learn. One participant also factored the fact that
they were unfamiliar with command-line mode of interaction:
“The command-line interface was very easy [to use] considering
I never used command-line interface before.” Participants also
remarked that virtual platform would be easier to learn if
developers had adequate knowledge of concepts pertaining
to software product-line engineering: “ [The concept was]
pretty easy [to understand], if you know feature models, you will
have no problems understanding [the] virtual platform.” One
participant also commented on the estimated time it would
take for a developer to learn to use virtual platform using
a command-line interface: “I think it would take half a day to
one [full] day to learn the virtual platform.” Interestingly, two
participants remarked that as they got acclimatized to the
command-line interface, interacting with the virtual platform
became easier: “Specifying parameters [assets and features in
the commands] in the beginning is difficult. After some time, I
felt comfortable quickly” and “In the beginning the commands
were difficult. Once I understood them, I got a hold of them.”
Acceptance. In general, participants believed that virtual
platform would be easily accepted in the industry. Adding
their intuitions, one participant remarked: “[Even] if the
company does not have a software product-line yet, they can
still use the virtual platform, [which in my opinion is] one of the
biggest pro and reason to have it. [...] I think everyone needs to
learn about the virtual platform.” Another participant remarked:
“virtual platform would be accepted easily, [as I know from my
experience that] developers [in fact] face these problems in real
life.” One participant observed that having an existing code
base would make it challenging to incorporate the virtual
platform: “If you have an existing code base, then it might be
difficult [to incorporate the virtual platform]. Then you would have
to take your time to identify features.” We provide guidelines on
how developers can integrate virtual platform in an existing
codebase at the end of Sec. 10.5. Lastly, one participant
observed: “[The] virtual platform would in general be accepted
but may be [an] IDE plugin is [received] better than [the] CLI.”

10.5 Discussion and Recommendations

Our subjective assessments and qualitative assessments pave
way for recommendations that developers can follow when
performing routine feature evolution and variant manage-
ment activities. They also hint towards potential improve-
ments that can be applied to the virtual platform. Following,
we provide a set of guidelines when choosing a mode of work
for the above-mentioned activities (which are represented by
our tasks). We also present a set of possible improvements.
For getting a quick overview, use virtual platform. Based
on the quantitative analysis and qualitative feedback, we
believe that the information from virtual platform can be an
effective starting point when acclimatizing to a variant-rich
system. For instance, virtual platform could be employed
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to attain a horizontal overview (e.g., features implemented
in a variant) as well as a vertical overview (e.g., getting
the differences between variants). Especially, owing to its
efficiency, we recommend developers to use virtual platform
when time is a concern, e.g, quickly finding a feature for
post-deployment maintenance or quickly cloning a feature
across variants for a release.
For large systems with scattered feature implementations,
use virtual platform. Virtual platform stores and exploits
recorded metadata, bypassing the need to traverse code
and locate features. For larger, complex systems, with many
features scattered across the codebase, the manual mode of
work will not scale up. In those cases, it is advisable to use
the virtual platform. However, if the system is small, and
developers know the system well, manual mode of work
can perform equally good, albeit slower. For the hands-on
tasks, if the feature is not scattered across multiple files, and
developers have prior knowledge of where the feature is
implemented, they can use the manual mode of work (e.g.,
for cloning a feature or propagating changes in a feature).
Use virtual platform for risky scenarios. Often times,
developers are dealing with time-sensitive, safety-critical
systems (e.g., medical devices, aircraft control systems). In
those cases, using manual mode of work can increase the
risk (of breaking the code at compile-time or run-time) due
to its error-proneness. In those cases, virtual platform can
be relied upon as a dependable system.
Plan activities to build trust in the virtual platform. As
inception, it is crucial that developers develop a sense of trust
with the virtual platform. To this end, it is recommended
to organize training sessions where developers interact with
the virtual platform by using it on simpler cases, e.g., a
simpler variant or a slice of the system. Additionally, based
on the feedback, the output of the virtual platform can be
further streamlined to show only the relevant information,
with user-friendly outputs such as success messages.

In our follow-up interviews, we realized that some
participants were unsure about the usefulness of a command,
especially when they were unaware of the contexts in which
it could be useful. Upon explanation, they seemed to agree on
the relevance of the command, even commenting that it was
an important one. We therefore believe that it is important
that during training, developers are made aware of the
problems which virtual platform solves, and the contexts
where it is applicable. Additionally, it is vital that developers
acquire foundational knowledge of concepts specific to soft-
ware product-line engineering, such as feature models and
feature-oriented software development and evolution. These
concepts are however simple and relatively easy to learn, as
commented by our participants. Lastly, it is important that de-
velopers traverse through the documentation for virtual plat-
form (e.g., user manual, tool instructions etc.), as we observed
in Sec. 10.4.4 and Sec. 10.4.5 that documentation played a sig-
nificant role in the comprehensibility of the virtual platform.
Potential improvements. Based on participants’ feedback
(from the questionnaire and in response to I5), there are a
multitude of potential improvements that can be applied on
top of the virtual platform. Generally, they fall under two
categories: suggestions that require minor fixes in the current
implementation to enhance usability, and suggestions that

require major implementation for providing other modes
of interaction in addition to the command-line interface.

Among the former, most are related to changing com-
mand names to make them more intuitive and structuring the
format of the output in a more organized manner. Regarding
the command names, the commands getmapped and propagate
were deemed confusing. Consequently, we will change the
command names to findfeature and merge respectively. For the
output format, we will further trim down the output, and
add more context to reduce the time and effort it takes to
comprehend the output of certain commands.

Among the latter, we can augment the virtual platform
with IDE support, eliminating the need for developers to
switch between tools when working on a system. The IDE
support should, in addition to the conventional developer
tasks (e.g., adding a file, removing a method), allow develop-
ers to perform different feature-oriented tasks (e.g., adding
a feature model, adding a mapping between a feature and
an asset that implements it). The IDE should also provide
support for invoking commands for performing different
exploratory as well as hands-on tasks. With a command-line
interface and IDE integration in place, a dedicated graphical
user interface could be redundant.

Finally, it would be important to guide developers on how
to approach virtual platform integration if the organization
already has a few variants in place. In that scenario, virtual
platform would not harm any existing knowledge base that
the organization has, or affect the current state of the develop-
ment. Companies would be able to reap benefits of the virtual
platform as soon as it is integrated. Still, it could be possible,
in some cases, to accurately recover metadata pertaining to
clone traceability, e.g., by examining the forking history of the
system’s variants in a version control system. Additionally,
once developers start adding features, the feature-to-asset
mappings could be used to train virtual platform to suggest
feature mappings for unmarked feature code [129], [130].

10.6 Threats to Validity

Construct validity. We followed a multi-stage design and re-
finement process to mitigate threats that could arise from the
supplementary materials. Firstly, we designed the materials
after one-on-one discussions between the first and second
authors. Two of the other authors reviewed the materials. We
later conducted a pilot study with the fifth author, who did
not participate in the development of the virtual platform
or the preparation or initial review of the materials. Finally,
based on the feedback we got at the end of the pilot study, we
refined the materials before launching the actual experiment.

We selected subject systems that are intuitive, moderately
complex, and realistic enough to mirror the interactivity of
real-world applications. While studying the impact of using
virtual platform on larger systems is worth investigating,
we believe that it would be out of the scope of a user study
due to limitations regarding the cognitive load participants
should be exposed to (before experiencing fatigue).

Our task selection was informed by our own experi-
ence and the knowledge of frequent developer activities
when dealing with variant-rich systems reported in the
literature [92]. Since we observed statistical differences in the
performance using both modes of work, we argue that the
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difficulty of our tasks is fitting; however, other tasks might
exist, e.g., deriving an entire variant or cloning an entire
feature model. Generally, a consolidated catalog of different
variant management and product-line migration tasks would
be helpful, but currently, research lacks such a classification.

Lastly, our instrument was a command-line interface—a
common mechanism for interacting with tools [131]—also
available for many other applications, such as Git.
Internal Validity. To mitigate learning effects, we used
counterbalancing: we changed the order of treatments
(modes of work) between groups while keeping the order
of subject systems and tasks. We also randomized the
assignment of participants to ensure balance in the groups.
Another threat to our internal validity is maturation due to
participant fatigue or loss of interest [132]. As a mitigation,
we asked participants to take a 15-minute break between
exposure to both treatments. Additionally, since three of our
participants experimented on their personal computers, we
cannot be certain that they experimented in the same setup
(e.g., noise level). However, we argue that developers in real
life also have to operate in various setups and environments.

We also collected qualitative data to gain insights into,
and triangulate the experimental findings. To eliminate the
effect of participant fatigue on the interview responses
(as the interview was right after the experiment), we set
the duration of each interview to 10 minutes, which is
considered short. However, the questionnaire at the end
of the experiment also contained open-ended questions.
Therefore, we could supplement data collected through
interviews with participants’ responses to the open-ended
questions in the questionnaire, to obtain qualitative data
sufficient for triangulation.

We chose subject systems that were intuitive and com-
prised comparable complexity, having an almost identical
number of features. Additionally, hypothesis testing (using
the Wilcoxon rank-sum test [122]) did not reveal any sig-
nificant differences for manual mode of work between the
performance of participants working on AERO and the per-
formance of those working on DART (in terms of precision
and recall). For the virtual platform, the performance of
the participants working on AERO, and the performance
of those working on DART, did not show a statistically
significant difference either. We also applied linear mixed-
effects models [133] to investigate whether the interaction
of mode of work (VP vs. manual) and subject system
(AERO vs. DART) affected the participants’ performance.
The results did not indicate any statistically significant
impact of the interaction on the Task 1 precision (p-value =
0.709) and recall (p-value=0.484), nor on the Task 2 precision
(p-value = 0.069) and recall (p-value = 0.792). We checked
the normality of errors with the Shapiro-Wilk test and
visually inspected the residuals’ histograms and normal QQ
plots for the linear mixed-effects models we built. We tried
transformations, including square root, arcsine, logarithmic,
and the extension of box-cox transformation to random
effect models [134]. However, the data distributions did not
satisfy the assumptions that need to hold for the linear
mixed effects models. Therefore, although some studies have
shown that linear mixed-effects models are robust in the
violation of distributional assumptions [135], our findings
need interpretation with caution.

External Validity. We believe our findings are most
representative of developers with similar levels of expertise
(3.33 ± 0.62). As we previously argued (in Sec. 10.1), students
can act as stand-ins for developers in experiments involving
a development approach (such as virtual platform) that
is new to both students and professionals [117]. While it
would be interesting to consider a more diversified range of
experience, we arguably recruit participants from a critical
population: Consider that an organization hires developers
with programming expertise comparable to our participants.
Therefore, our findings can shed light on how a poor
understanding of the system or the tasks’ nature can affect
developer productivity and pose a risk to the organization.

Our tasks mimic frequent developer activities as
explained in Sec. 2 and Sec. 10.1. While studying the impact
of using virtual platform on a broader category of tasks is
left for future work, our results presented in Sec. 10.4 yield
a promising perspective for generalizability.

Finally, a potential threat is the generalizability of our
findings to larger systems. Since the complexity of the
system increases with an increasing number (and scattering
degree) of features, we argue that the differences between
the correctness and time using virtual platform would be far
more pronounced compared to the manual mode of work,
also speculated by our participants (Sec. 10.4.4).
Statistical Conclusion Validity. Since we conducted our
experiment with 12 participants, which is relatively a few,
we used a crossover design to gather representative data
points to argue for statistically valid results. While selecting
the statistical tests to compare two modes of work, we
checked if the data complied with the tests’ assumptions.
The Shapiro-Wilk test indicated that the distribution of
correctness values for Task 1 and 2 (i.e., precision and recall)
and the efficiency values for all tasks are mostly not normal.
Moreover, subjective preferences are nominal data. We
used the Wilcoxon rank sum test to compare the precision,
recall, efficiency, and subjective preferences for two work
modes. We preferred the Wilcoxon rank sum test over
Mann-Whitney U Test as conducting our experiment with
12 participants resulted in a small sample size. Finally, we
used Fisher’s Exact Test to compare the COR values of Task
3 and 4, since the data did not comply with the assumptions
of the Chi-Squared Test due to the small sample size.

11 CONCLUSION

We designed, formalized, and prototyped the virtual
platform, a framework that exploits a spectrum between
the two extremes ad hoc clone & own and fully integrated
platform, supporting both kinds of development. Based on
the number of variants, organizations can decide to use only
a subset of all the variability concepts typically required for
an integrated platform, fostering flexibility and innovation,
starting with clone & own and incrementally scaling
the development. This realizes incremental benefits for
incremental investments and even allows to use clone & own
when a platform is already established, to support a more
agile development. Another core novelty is that, instead
of trying to expensively recover relevant meta-data (e.g.,
features, feature locations, and clone traces), the virtual
platform fosters recording it early. For instance, developers
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typically know the feature they are implementing, but
usually do not record it. The virtual platform records such
meta-data and exploits it for the transition, providing
operators that developers can use to handle variability.

Our evaluation shows that the additional costs are low
compared to the benefits. Our user study conducted with 12
participants also leads to promising results in terms of the
correctness, efficiency, and usability of the tool. Specifically,
using virtual platform for routine developer tasks such
as locating/cloning features, distinguishing variants, and
propagating changes across variants leads to faster and better
results (in terms of precision, recall, and correctness). The tool
is generally well-received by the participants, with majority
of the participants preferring the virtual platform over the
manual mode of work. We provide guidelines on how to
incorporate and use virtual platform in Sec. 10.5.

We see several promising directions for future work. By al-
lowing developers to continuously record feature meta-data,
the virtual platform paves the way for software analyses that
rely on this data. One example is support for the safe evolu-
tion of product line platforms [87], which could be extended
to support systems in our intermediate governance levels.
Specifying our operators in the framework of software prod-
uct line transformations [136], [137], [138] would make them
amenable to conflict and dependency analysis [139], a versa-
tile formal analysis with applications in the coordination of
evolution processes. Many of the virtual platform’s operators
(e.g., those related to change propagation) lead to non-trivial
changes of the codebase. To increase developer trust and opti-
mize accuracy, an important challenge is to keep the “human
in the loop,” which we aim to address by exploring dedicated
user interfaces. By integrating the virtual platform with avail-
able annotation systems [100], [140], we could facilitate in-
spection of the available feature mappings. By integrating the
virtual platform with view-based and feature-oriented asset-
integration techniques, we could enhance the integration of
cloned assets by letting developers preview and explore dif-
ferent possible integrations [141]. Offering a “preview mode”
would allow to inspect and interact with the changes arising
from a planned operator invocation. Providing a dedicated
operator to integrate cloned features is another future direc-
tion. We plan to also enhance the evaluation of the virtual
platform by conducting a complementary expert evaluation
using practitioners with significant experience in variability
management and product-line migration. Other directions
are to support configuration of variants by selecting features,
offering views [142], [143], and providing visualizations (e.g.,
feature dashboards [94], [144], [145]). Notably, our operator-
based evolution support gives rise to intelligent recom-
mender systems, which could in the future recommend op-
erators or features to developers, to foster the use of feature-
orientation in development, for instance, building upon our
recent feature traceability recommender system [146], [147].
While the current implementation of the virtual platform
caters for textual assets, it could also be worthwhile to
extend virtual platform’s capabilities to software design
models [148], which are typically used for understanding
the system, and even for automating activities such as devel-
opment and testing. Finally, recommender systems that learn
from the meta-data and support developers handling features
and assets could further encourage using features in software

engineering [147]—or even foster further automation of our
operators with the help of large language models [149].
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“Clafer: unifying class and feature modeling,” Software & Systems
Modeling, vol. 15, no. 3, pp. 811–845, 2016.
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