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ABSTRACT
Configuring feature-oriented variability-rich systems is complex

because of the large number of features and, potentially, the lack of

visibility of the implications on quality attributes when selecting

certain features. We present Acapulco as an alternative to the exist-

ing tools for automating the configuration process with a focus on

mono- and multi-criteria optimization. The soundness of the tool

has been proven in a previous publication comparing it to SATI-

BEA and MODAGAME. The main advantage was obtained through

consistency-preserving configuration operators (CPCOs) that guar-

antee the validity of the configurations during the IBEA genetic

algorithm evolution process. We present a new version of Acapulco
built on top of FeatureIDE, extensible through the easy integration

of objective functions, providing pre-defined reusable objectives,

and being able to handle complex feature model constraints.

CCS CONCEPTS
• Software and its engineering → Software product lines.
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1 INTRODUCTION
Feature modelling is a widely spread formalism to represent config-

uration spaces within variability-rich systems, including Software

Product Lines (SPLs) [5]. Given a feature model, it is desired to find

the optimal configuration for an objective or for multiple objectives

simultaneously[12]. This task is challenging when the number of
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features is large (usually the case for industrial configurable sys-

tems), when only partial knowledge of the features is available (it

is difficult that stakeholders are experts in all features), when there

exist complex cross-tree constraints [6] (i.e., arbitrary relationships

in propositional logic), or when it is accepted that feature inter-

actions can make error-prone a manual estimation of the fitness

of the configurations. Although several tools exist to address the

optimization challenge to some extent [3] such as SATIBEA [2],

MODAGAME [10], SPL Conqueror [13], ClaferMoo [9], and SPL

Config [11], some of them tend to generate invalid configurations

that need to be repaired during the optimization process, others

have limitations regarding extensibility of the objective functions,

or cannot be seamlessly integrated with other SPL-focused tools.

We present a new tool named Acapulco which is a search-based

optimization tool for feature models, and SPLs in general, that in-

stantiates the IBEA algorithm (Indicator-based Evolutionary Algo-

rithm) [2] and improves it through the use of consistency-preserving
configuration operators (CPCOs) [4]. The tool name was inspired

by the acronym CPCO (ACaPulCO). CPCOs are special mutation

operators that guarantee the validity of the configurations during

the search by bundling coherent sets of changes (i.e., the activation

or deactivation of a particular feature with other changes that are

needed to preserve validity) without relying on SAT solvers. The

benefits of Acapulco were shown against two state-of-the-art tools

[2, 10] outperforming both in speed and solution quality.

We report on a new version of the tool, making the previous

research pipeline [4] more usable, resulting in a user friendly tool

built on top of FeatureIDE [15]. A key challenge in solving the

optimal-configuration problem is the significant diversity of ob-

jectives to guide the search [12] and technological stacks needed

for their calculation (e.g., tools to measure derived variants). Aca-
pulco, thus, required extensibility capabilities to easily adapt to

domain-specific objectives. A set of predefined generic objectives

are included, and an extension point with dedicated interfaces is

provided. This addresses a limitation for the uptake of other tools

which are only based on feature attributes (e.g., [2, 9–11]), or even

predefine the number and type of attributes (e.g., [2, 10, 11]).

The target users of Acapulco are domain or application

engineers dealing with variability-rich systems with complex

configuration optimization needs, as well as researchers that

want to build on, improve, or benchmark the tool to advance

the SPL optimization field.

Tool: https://github.com/acapulco-spl/acapulco
Video: https://youtu.be/WPAJT9kVHe4
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This paper is structured as follows. Section 2 presents back-

ground information. Section 3 details Acapulco functionality and

architecture. Section 4 summarizes our previous experience with

real-world SPLs. Section 5 concludes and outlines future work.

2 BACKGROUND AND MOTIVATION
Principle-guided CPCO generation. In our recent paper [4],

we present an algorithm for automatically generating a suite of

CPCOs. The generated suite provides for each real-optional feature

two operators, one for activation and one for deactivation. The

generation of these operators is guided by a notion of principles,
rules that avoid one particular constraint violation from arising, in

response to the (de)activation of a feature involved in a constraint.

The starting point for the generation of an operator is one feature,

together with the choice to either activate or deactivate it. From

there, the principles are considered recursively, as long as one of

them is applicable. We now list the set of activation principles,

that is, principles that are applied in response to the activation

of a feature (in analogy, a set of deactivation principles exists [4],

omitted for space reasons):

Activation principles. Given a feature 𝑓 to be activated:

(1) ActMand: Activate all mandatory children of 𝑓 .

(2) ActPar: If 𝑔 is 𝑓 ’s parent feature and 𝑔 is not a core feature, activate 𝑔.

(3) ActReq: If 𝑓 requires another feature 𝑔 (via a requires relation) and 𝑔 is

not a core feature, activate 𝑔.

(4) ActGroup: If 𝑓 is an “or” or “xor” group, activate one of 𝑓 ’s children.

(5) ActXor: If 𝑓 is a feature in an “xor” group, deactivate all of 𝑓 ’s siblings.

(6) ActExc: If 𝑓 excludes or is excluded by a feature 𝑔, deactivate 𝑔.

Fig. 1 shows an example of a feature model and the CPCO gen-

erated to activate the feature F3. We can observe how feature F1

is activated because it is an ancestor of F3. Features F4 and F5 are

deactivated as they belong to the same “xor” group. Feature F6 is

activated because of the “requires” CTC, and F2 is activated because

it is an ancestor of F6. In this way, the CPCO is self-contained for

bringing any configuration to a valid state after activating F3. In

general, there are multiple ways of applying a principle (e.g., choos-

ing the child to activate in ActGroup), all of which can be used

to ensure validity. Our core technical contribution in paper [4] is

an efficient algorithm that avoids combinatorial effects during the

naïve application of principles, and encodes the resulting CPCO

variants in an efficient way. To this end, we introduce a new data

structure of feature activation diagrams, which can be computed

efficiently and incrementally.

Figure 1: Illustrative example of a feature model (left) and a
concrete CPCO to activate the feature F3 (right).

Complex cross-tree constraints in feature models. The hi-

erarchy of the feature model and the definition of optional and

mandatory features, “or” and “xor” groups, already define certain

constraints for configurations. In addition, cross-tree constraints

(CTCs) such as a feature requiring, or mutually excluding another

feature can be defined. CPCOs [4] assumes this basic feature model

dialect (i.e., FODA [5]), and thus, the generation of the CPCOs will

only be possible in this case. In other approaches (e.g., SATIBEA),

complex CTCs are less problematic because they rely on SAT solvers.

To address this limitation of CPCOs, in this tool we add support

for the transformation method proposed by Knüppel et al. [6]. The

method automatically transforms complex and pseudo-complex

constraints into basic “requires” and “excludes” constraints. Pseudo-

complex constraints are those that can be transformed directly,

whereas complex constraints require the addition of additional fea-

tures and feature groups to the feature model to represent the same

configuration space. Acapulco reuses the implementation of this

method already available in FeatureIDE.

Flexible optimisation objectives in feature configuration. A
traditional evolution objective is driven by extended feature mod-
els [1] where each feature has an associated value for a non-functional
attribute, and the minimization or maximization objective is based

on adding the values of the selected features in a given config-

uration. For instance, MODAGAME considers the floating-point

attributes “usability”, “battery consumption” and “memory foot-

print”. SATIBEA uses the attributes “used before” (boolean), “known

defects” (float) and “cost” (float). These attributes are fixed in these

tools, making it difficult to use the tools in other contexts that re-

quire different attributes. A systematic literature review on learning

configuration spaces [12] evidenced the large diversity of evolution

objectives that can be considered, ranging across footprint, code

complexity, different time measures, energy consumption, or even

user likeability. Also, simply adding attributes associated to indi-

vidual features is not always appropriate due to feature-interaction

effects. Thus, a tool aiming to be generic must support extensibility

on this aspect considering extended feature models and any other

objective including those requiring to analyze the variant derived

from the configuration (e.g. by running performance tests).

3 FUNCTIONALITY AND ARCHITECTURE
Main characteristics and functionalities:
• Built on top of FeatureIDE, enabling the use of a single envi-
ronment when dealing with the management of the SPL or con-

figurable system. In particular, Acapulco brings multi-objective

optimization capabilities to FeatureIDE users.

• Visual UI for user-defined parameters. Fig. 2 shows the

launch dialog of Acapulco with its configurable functionality.

The stopping condition for the search can be configured with a

number of evolutions or a timeout in milliseconds (both values

to be defined in the “Stopping value” field). This is followed by

standard genetic algorithms’ parameters (i.e., population size,

mutation, and crossover probability). Finally, the objectives are

specified. In the example in Fig. 2, three objective were added

and configured (i.e., maximize usability, minimize battery con-

sumption, and minimize memory footprint).

• Standard formats for the output.
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Figure 2: Launch Dialog of Acapulco.

Figure 3: Visualization of the Pareto-front generated by Aca-
pulco in an optimization problem with two objectives.

– Pareto-front results are FeatureIDE configuration files.

– CSV file with data of all configurations in the final pareto-front.

Notably, the measure of each objective per configuration.

– CSV file with data for each evolution including elapsed time

and current population and approximation set results.

– HTML file with a JavaScript-based visualization is generated

in case of multi-objective optimization (see Fig. 3).

• Automatic generation of CPCOs and their usage during
the search. CPCOs guaranteeing the validity of configurations

are automatically generated by Acapulco. CPCOs (two for each

feature—for activation and deactivation) can be manually in-

spected. They use a simplified textual variant of the Eclipse Hen-

shin notation [14], a rule-based model transformation language

that is highly human-readable (see CPCO example in Fig. 1).

• Support for complex cross-tree constraints. Currently, CP-
COs can only be created with basic FODA feature models. To

solve this limitation, Acapulco uses the Knüppel et al. method [6]

to convert complex constraints into simple constraints. This step

is transparent to the user in the case of basic CTCs or pseudo-

complex CTCs. The user receives a warning in case of complex

CTCs allowing the user to decide between applying the Knüppel

et al. method or removing the complex constraints.

• Objectives can be freely combined to specify the multi-
objective problem at hand. Users can choose from:

– A set of predefined, parametrisable, generic objectives:

∗ Extended Feature Models data based on feature attributes in
CSV files. The user selects a CSV file and the target attribute.

∗ Minimize or maximize the number of features.
∗ Number of derived files or lines of code. Files can be filtered

by extension (e.g., only counting java files for Java SPLs, or
cpp and h for C++ SPLs).

∗ Configuration validity. When not using the Knüppel et al.

method [6], the search may produce invalid configurations.

The objective helps to minimise invalid configurations.

– Domain-specific objectives. An extension point is provided to

add other types of (potentially further configurable) objectives.

This way, Acapulco is not limited to extended feature models

or other predefined objective calculations. As an example, Aca-
pulco includes a set of objective definitions for the FeatureIDE
Images composer. These objectives are used for product lines

of images, composing pictures from partial images depending

on features selected. The first two objectives are related to

finding the images that are closest to a user-defined colour,

or to a given image provided by the user. The third objective

illustrates the use of Acapulco for Interactive Genetic Algo-

rithms (IGA) where, contrary to fully automatic calculations,

humans provide the score of each individual (e.g., Likert scales

for paintings [7] or usability test results in UI design [8]).

– Analysis of implementation artifacts. As a special type of

domain-specific objective, Acapulco offers an abstract imple-

mentation for objectives that require a specific variant product

to be derived. The objectives to minimize or maximize the

number of derived files or lines make use of this abstract class.

Architecture. Figure 4 illustrates, at the bottom, how Acapulco is a
layer on top of the FeatureIDE layer, which is on top of the Eclipse

IDE. Acapulco currently consists of only one plugin implementing

all the functionality. It exposes the acapulco.objective extension

point. Extensionsmust implement the IObjective interfacewhere the
most important method is evaluate, returning a number for a given

list of features
1
. For instance, the “Number of features” objective

returns the size of the feature list. Figure 4 also shows an abstract

class AbstractPostDerivationObjective that implements IObjective.
This class will ask FeatureIDE to derive the variant independently

of the composer used in the SPL (e.g., annotative or compositional),

so the developer will only need to implement evaluateDerivation()
where the path to the derived variant is provided as parameter.

Eclipse

FeatureIDE

Acapulco

IObjective
+ getName() returns String
+ getDefaultMinimizeOrMaximize() returns int
+ isConfigurable() returns boolean
+ configure()
+ evaluate(List<String> features) returns double
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with attributes CSV files

Configuration validity Number of derived files or lines

Figure 4: Layers and extensibility for objectives.

1
Feature names are unique in FeatureIDE
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Acapulco Prepare

Acapulco Launch

Feature model

CPCOs

Feature model‘

Objectives and evaluation 
implementation

Genetic algorithm parameters
Objectives evaluation configuration

FM 
Configuration 

files

CSV with FM 
configurations 

data

Visualization

Solutions

CSV with 
evolution data

Figure 5: Two steps for the user: Preparation and Launching.

User perspective. Figure 5 illustrates the process consisting of

two steps, namely, preparation and launching. For the preparation,

the input is only the feature model in any format supported by

FeatureIDE. The output are the CPCOs and eventually, in the case of

complex or pseudo-complex constraints, a modified feature model

is created as a separate file. If there are no modifications in the

feature model, this step only needs to be conducted once, and the

output is reused for as manyAcapulco launches as desired (e.g., with
different objective functions). The inputs for launching are the user-

defined genetic algorithm parameters where the default values can

be changed, and the selection of objectives and the user-defined

configuration of each of them. Obviously, to use the objectives,

they must be registered through the mentioned extension point.

Otherwise, the objective and its evaluation implementation must

be created. As mentioned before, the results of this step are the

configuration files of the Pareto-front, a CSV file with data about

each of those configurations, and an HTML file with a visualization

of the Pareto-front for the case of multi-objective optimization.

4 EXPERIENCEWITH REAL-WORLD SPL
In [4], we report on experimental evaluation of Acapulco on a set

of software product lines. These include small-scale product lines

like MobileMedia, but also large industrial product lines, such as

the Linux and Automotive product lines often used for experimen-

tal evaluations in the SPL literature. Our evaluation shows that

Acapulco scales to these large-scale product lines and improves

over state-of-the-art tools like MODAGAME [10] and SATIBEA [2].

Once the product line has been prepared for use with Acapulco
(including the generation of the CPCOs), Acapulco finds better so-
lutions faster than both tools, as can be seen in Fig. 6 for the Linux

2.6 feature model [6]. In this case with large number of features

and constraints, MODAGAME did not return any valid solutions.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3171404, IEEE
Transactions on Software Engineering
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sided alternative hypothesis (“greater”, “less”). Therefore,
our alternative hypothesis is that the values of aCaPulCO
exceed the values of the other tools in case of the HV metric,
and that the values of aCaPulCO are lower than the other
tools in case of the runtime metric. We report p-values, where
a value below 0.05 means that the comparison is statistically
significant at the 95% confidence level. We also assessed
the effect size of our comparisons by using the A12 score
(calculated using the R package effsize), following Vargha
and Delaney’s original interpretation [26]: A12≈0.56 = small;
A12≈0.64 = medium; and A12&0.71 = large.

6.2 Results

Table 2 gives an overview of the results of our experimental
evaluation. The table shows the results on HV and time
for the full run of 50 evolutions, providing the median
values over 30 runs, the standard deviation, as well as p-
values for the comparison between the tools. Figures 8–10
provide a more detailed analysis of the search process for
three exemplary cases—all other cases are similar to at least
one of the selected ones. Detailed data for the other cases
are available in the online materials [13]. Sub-figures (a)
contrast how the different tools converge to solutions over
multiple evolutions, while sub-figures (b) contrast the wall-
clock execution time required by the tool to compute this
number of evolutions. The diagrams show median values
calculated over the 30 runs.

Solution quality. As shown by the HV data in Table 2, aCa-
PulCO generally finds better solutions than MODAGAME
and SATIBEA. In the three smallest cases, the median quality
of the solutions found is similar to those of MODAGAME.
In the larger cases, it appears that aCaPulCO is able to cover
a larger part of the objective space than the other tools.
The difference in HV becomes greater as the search space
of the feature model grows in size, as occurs for WeaFQAs
(Fig. 9): 0.38 covered by aCaPulCO against 0.24 covered by
MODAGAME and by SATIBEA (45% of difference); and
for Linux (Fig. 10): 0.33 covered by aCaPulCO against 0.29
covered by SATIBEA (13% of difference). MODAGAME is
unable to find and report any solution for the Linux feature
model. In the case of Automotive 2.1, SATIBEA only reports 3%
valid solutions and a substantially lower HV than aCaPulCO.

All three tools show small standard deviations between
solutions, indicating a high robustness [27]. That is, the
variance between the solutions found in different runs is
small—an important criterion for practical use where it is
not feasible to execute many runs and select the best results.

The observed quality differences are statistically signif-
icant, with the exception of the smallest case Wget. The
differences between the tools are particularly pronounced in
terms of effect sizes. Except for case Wget, every comparison
between aCaPulCO and one of the compared tools exhibits a
large effect size (0.86 ≤ A12 ≤ 1.0, see Appendix D).

To ensure that the observed difference does not come from
a conveniently chosen termination criterion, we performed
additional experiments in which all tools were executed
with 20,000 instead of 5,000 evolutions (see Appendix E).
Yet, in these new experiments, the solutions found by
MODAGAME and SATIBEA are still outperformed by the
solutions found by aCaPulCO. We conclude that aCaPulCO
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Fig. 8: Results for Mobile Media feature model.
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Fig. 9: Results for WeaFQAs feature model.
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Fig. 10: Results for Linux 2.6 feature model.

produced improved solutions in terms of quality, even more
so for larger feature models.
Convergence speed. Figures 8–10 allow us to compare
the convergence behavior of the three tools. We see that
aCaPulCO generally converges faster than SATIBEA. The
initial advantage can be explained because even at the
beginning, all solutions reported by aCaPulCO are valid,
giving a greater HV than SATIBEA’s HV with partially
invalid solutions. The same applies for MODAGAME, which
behaves almost identically to aCaPulCO in the smallest
case, MobileMedia. On the two larger cases, the drawbacks
of MODAGAME’s strategy become more manifest, as it
stagnates close to the initial HV for the case of WeaFQAs,
and cannot find any solutions for Linux 2.6.

Our tool aCaPulCO never produces an invalid configu-
ration. As a result, it can start exploring the search space
rather than spend time repairing the candidate solutions in its
population, as MODAGAME and SATIBEA have to. Similarly,
aCaPulCO has good potential for moving out of local optima
because its mutation and crossover operators contain self-
contained sets of changes that inherently lead to other valid
solutions. Overall, we observe improved convergence for
aCaPulCO especially for large feature models.
Execution time. aCaPulCO statistically significantly yields
the best execution times of all three tools for almost all
cases. The only exceptions are Wget and CDL ea2468,
where MODAGAME and SATIBEA, respectively, are faster.

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on June 09,2022 at 09:39:25 UTC from IEEE Xplore.  Restrictions apply. 

Figure 6: Convergence of solutions (a) and performance (b)
of Acapulco compared to SATIBEA for the Linux 2.6 feature
model (extracted from [4]).

5 CONCLUSIONS
Acapulco is a tool that provides mono- and multi-criteria optimiza-

tion functionalities in FeatureIDE. It guarantees the validity of the

obtained configurations when there are no complex constraints. In

addition, Acapulco supports transformation of complex constraints

based on an existing method. Acapulco allows the flexible contribu-
tion of objective functions, opening the door to its usage in very

diverse application domains.

From a user perspective, it might be difficult to adjust the param-

eters of the genetic algorithm. Empirical research can be performed

to provide certain guidelines or automatically recommended values

in this regard. Also, for recommendation, once the Pareto-front is

obtained, functionality to make the final decision could be included.
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