
Model-Based Security Analysis of Feature-Oriented
Software Product Lines

Sven Peldszus
University of Koblenz-Landau

Germany
speldszus@uni-koblenz.de

Daniel Strüber
University of Koblenz-Landau

Germany
strueber@uni-koblenz.de

Jan Jürjens
University of Koblenz-Landau

Germany
juerjens@uni-koblenz.de

Abstract
Today’s software systems are too complex to ensure security
after the fact – security has to be built into systems by design.
To this end, model-based techniques such as UMLsec sup-
port the design-time specification and analysis of security
requirements by providing custom model annotations and
checks. Yet, a particularly challenging type of complexity
arises from the variability of software product lines. Ana-
lyzing the security of all products separately is generally
infeasible. In this work, we propose SecPL, a methodology
for ensuring security in a software product line. SecPL al-
lows developers to annotate the system design model with
product-line variability and security requirements. To keep
the exponentially large configuration space tractable during
security checks, SecPL provides a family-based security anal-
ysis. In our experiments, this analysis outperforms the naive
strategy of checking all products individually. Finally, we
present the results of a user study that indicates the usability
of our overall methodology.

CCS Concepts • Security and privacy → Software se-
curity engineering; • Software and its engineering →
Abstraction, modeling and modularity; Unified Mod-
eling Language (UML);

Keywords Security, Software Product Lines, OCL, UML

ACM Reference Format:
Sven Peldszus, Daniel Strüber, and Jan Jürjens. 2018. Model-Based
Security Analysis of Feature-Oriented Software Product Lines. In
Proceedings of the 17th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences (GPCE ’18), No-
vember 5–6, 2018, Boston, MA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3278122.3278126

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6045-6/18/11. . . $15.00
https://doi.org/10.1145/3278122.3278126

1 Introduction
The omnipresence of software systems has made our every-
day lives considerably easier, and yet it gives rise to a rapidly
growing multitude of security threats. Security is a business-
critical factor in enterprises, since each security issue implies
a potential loss of control over internal data and resources,
with severe financial and reputation consequences. A recent
developer study pinpoints security as the number-one con-
cern to be addressed by future software analysis tools [12].

The paradigm of security by design emphasizes that secu-
rity cannot be addressed merely retroactively, by identifying
and fixing security loopholes; security has to be considered
as a first-class citizen from the early development stages. A
methodology to address security early in the development
process is offered by model-based security approaches such
as UMLsec [27]. UMLsec can be used to specify security
requirements and security-related assumptions in design
models, and to analyse the resulting models with regard to
security goals based on a predefined threat model. UMLsec
has been practically applied in distributed systems [6], mo-
bile communications [30], and protocol engineering [5].
Security becomes yet more challenging during the de-

velopment of software product lines (SPLs, [4]). An SPL is
a family of software products sharing a set of core assets
and differing in a set of features, that is, increments of func-
tionality only present in some of the products. Since SPLs
are useful for tailoring products to diverse customer needs,
companies such as Bosch, HP, and GM develop business-
critical software as SPLs [4]. However, developing an SPL is
challenging due to the complexity arising from variability:
an SPL with n features can include 2n individual products.
In domains like automotive engineering, where SPLs have
thousands of features [62], the resulting problems during
software engineering tasks, in particular those related to
security, are of astronomical scale.
In many cases, practical solutions involve trade-offs be-

tween precision and tractability. I.e., during the testing of
SPLs, developers rely on sampling [51], in which a selec-
tion of all products is considered to uncover implementation
defects. However, in the case of security, sampling is problem-
atic: a vulnerability affecting any of the products represents
a potential leakage of secrets and, therefore, a business risk.
Worse, focusing on a selection of all products for security
engineering might actually be harmful: security measures

93

https://doi.org/10.1145/3278122.3278126
https://doi.org/10.1145/3278122.3278126

GPCE ’18, November 5–6, 2018, Boston, MA, USA Sven Peldszus, Daniel Strüber, and Jan Jürjens

Java
Source
Code

V1
V2

V3

Feature
Model

UMLsec
Models

V1
V2

V3

reverse
engineering

family-based
security analysis

(fast)

product-wise
security analysis

(slow)

Variability Annotations
<<ConditionalElement>>
{presenceCondition={TCB}}

Security Annotations
<<secrecy>>

Variability Annotations
//#if TCB
…
//#endif

Security Annotations
@Critical(secrecy={“m():void“})
class Clazz{...}

generate
products

generate
products

Java SPL
Source Code

SecPL
UML Model

1

2
3

SecPL
profile

Figure 1. Overview of SecPL.
implemented in a subset of all products can be used by at-
tackers to automatically generate exploits for the remaining
products [47]. This calls for an efficient way to specify and
analyze the security requirements of all products in an SPL.

In this paper, we present SecPL, a methodology for manag-
ing security requirements in SPLs systematically. Specifically,
as shown in Fig. 1, we make the following contributions:
(1) The SecPL profile (Sec. 4), allowing users to specify se-

curity requirements and product-line variability in UML
models. SecPL uses UMLsec’s stereotypes for the spec-
ification of security requirements and security-related
assumptions. To annotate structural and behavioral el-
ements that only exist in some of the products, model
elements can have presence conditions, that is, proposi-
tional expressions over a given set of features. The set of
features is defined using a feature model, a standard SPL
representation.

(2) A family-based security analysis (Sec. 5) for efficient se-
curity checks. Our analysis assumes an encoding of the
security check at hand as an OCL constraint. We pro-
vide such encodings for the most prominent UMLsec
checks; additional ones may be created by experts. For a
given model, our analysis evaluates the constraint using
a method called template interpretation [15], which re-
sults in an propositional formula that describes feature
combinations which lead to a security violation. This
propositional formula is fed to a SAT solver to obtain ei-
ther a counterexample, that is, a subset of features giving
rise to an insecure product, or a proof that all products
are secure. By relying on efficient SAT solvers, we avoid
the combinatorial explosion arising if each product is
generated and analysed separately.

(3) A reverse engineering mechanism (Sec. 6) for extracting
SecPL models from variability- and security-annotated
code, making our analysis applicable to legacy SPLs.

(4) An evaluation (Sec. 7), demonstrating the usability of
our methodology based on user feedback, and the perfor-
mance of our analysis when applied to realistic models.
To our knowledge, our work is the first to support a model-

based security analysis of all products in a software product
line.While our analysis relies on template interpretation [15],
one of our key contributions is provide suitable encodings
of security constraints that we feed as input to template

Professional

Radio

Standard

Modem

Business

Legend:

Professional => Combox Business => TCBConnectedDrive => Modem

Optional

Abstract
Concrete

Alternative

Root

Combox TCB

ConnectedDrive

Figure 2. Feature model of an in-car system

interpretation, similar to other analysis techniques that rely
on a backend SAT solver. Moreover, to the best of our knowl-
edge, our evaluation is the first to assess the benefit of a
template-interpretation-based technique on a set of realistic
models. We discuss related work in Sect. 8.

Our methodology uses UML-based system models for cap-
turing the system design and annotating it with security re-
quirements. In industry, system models are used for various
purposes, including informal communication, documenta-
tion, learning, and code generation; UML is the most widely
applied modeling language in many software domains [59].
We rely on an existing approach called UMLsec and com-
bine it with feature-based variability engineering. However,
our approach is not limited to UML, but can be adapted to
modeling languages with similar diagram types as well, for
example, SysML [50] for automation systems.

2 Background
In this section, we introduce the background of our approach:
model-based security analysis with UMLsec, and variability
engineering.

UMLsec provides a UML profile that allows developers to
annotate system models with security requirements and
security-related assumptions. Based on a variety of provided
stereotypes, UMLsec supports various security checks, in-
cluding the analysis of security policies, secure information
flow, and secure communication in protocols. Stereotypes
are one of three extension mechanisms of UML and allow
to extend it with domain specific language elements and
to annotate UML model elements with those [49]. Similar
to classifiers, stereotypes can have properties, which are
called tagged values. UMLsec operates at the level of class
diagrams, deployment diagrams, activity diagrams, sequence
diagrams, and component diagrams. In the past, UMLsec has
been applied for security analyses in diverse contexts such
as protocol engineering [5], distributed information systems
[6], and mobile communications [30].

Variability engineering is concerned with variability in
systems. An important concept are features, units of func-
tionality that can be configured, that is, switched on or off [4].
In standard SPL approaches, the set of features and their re-
lations are specified in feature models [31]. Fig. 2 shows a
particular feature model that we explain in the upcoming
section. To establish traceability, features can be mapped di-
rectly to code and to design models: Preprocessor directives
can be used to annotate feature-specific code portions, and
the entire codebase can be divided into modules [4]. Design

94

Model-Based Security Analysis of Feature-Oriented Software . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

In-car system <<secure links>>

Car <<encrypted>>

<<internet>>

Backend

Modem

CentralCU

Phone

<<artifact>>
ModemFirmware

<<artifact>>
CarFirmware

deployment

<<artifact>>
CCUFirmware

deployment

<<artifact>>
MobileApp

deployment

<<artifact>>
DBSoftware

<<artifact>>
ServerSoftware

<<Conditional>>
{pc={“TCB or Combox”}}

<<call,
integrity>>

<<call,
integrity>>

<<internet>><<wire>>

<<call, integrity>>

<<call,
integrity>>

deployment

<<call, secrecy, integrity>>

deployment

deployment

<<call,
integrity>>

Figure 3. In-car system deployment diagram.

models can be annotated with presence conditions over a set
of features [14].

3 Running Example
Modern cars are highly configurable software-intensive sys-
tems, made up of a magnitude of reusable hardware and
software components. For example, consider an SPL of in-
car systems for modern cars. An in-car system comprises
traditional components such as the radio, but it may also
furnish the driver with services such as traffic information,
news playback, and a remote-control app, e.g., to unlock
the driver’s door using a mobile phone. The functionality
available in a specific car can be expressed using features.
Fig. 2 shows an excerpt of a feature model for an in-car

system, based on typical features of BMW cars. Customers
can select between three kinds of radios; the radio selection
determines which modem, if any, is built into the car, and if
BMW’s ConnectedDrive services can be used in this car.

Consider the following twist. In May 2015, an IT magazine
demonstrated that ConnectedDrive was vulnerable to a secu-
rity threat allowing the attacker to unlock the car doors [58].
The following root causes of the threat were revealed: (i) In
its authentication protocol, the access protocol component
relied on the secrecy of the vehicle identification number
(VIN), while another component revealed the VIN with one
of its error messages. (ii) Some versions of the software used
DES, an encryption algorithm that was declared insecure in
2005. ConnectedDrive was launched in 2011. (iii) The compo-
nent was prone to replay attacks, where the attacker could
capture and replay a legitimate unlock message.
Each of these issues could have been avoided with an

appropriate security mechanism in place. To capture this
situation, in the following, we show an excerpt of a design
model for an in-car system, focusing on the threats (i) and
(iii). The used encryption algorithms can be specified in
system models as well, using deployment diagrams in a sim-
ilar way as presented here. The design model is annotated
with SecPL’s security-specific and variability stereotypes
and tagged values. However, to introduce the example in a
general way, let us temporarily ignore these annotations.

Door

unlock()

Car

- vin: String
- posLat : long
- posLong: long

+ getVIN () : String

RemoteServices

- enabled: boolean

+ performTask(String)
+ enable(Key)

<<Interface>>
Modem

+ receiveMessage()
+ requestInstructions()
+ sendErrorMessage()

TCB

+ receiveMessage()
+ requestInstructions()
+ sendErrorMessage()

Combox

+ receiveMessage()
+ requestInstructions()
+ sendErrorMessage()

<<call, secrecy>>

<<critical>>
{secrecy={

”getVIN():String”,
”posLat:long“,

”posLong:long“}}

<<call,
secrecy>>

<<call, secrecy>>

<<critical>>
{secrecy={

”getVIN():String”},
integrity={

“performTask(String)”}}

<<critical>>
{integrity={“,

“performTask(String)”}}

<<Conditional>>
{pc={“Combox”}}

<<Conditional>>
{pc={“TCB”}}

<<critical>>
{integrity={“performTask(String)”}}

In-car system <<secure dependencies>>

<<Conditional>>
{pc={“ConnectedDrive”}}

<<call>>
<<Conditional_Critical>>

{integrity={”posLat:long“, ”posLong:long“},
pc={“Business”, “Business”}}

<<call, secrecy>>

Figure 4. In-car system class diagram.
According to the deployment diagram shown in Fig. 3, the

in-car system incorporates three types of devices: the car, a
mobile phone, and back-end servers. These devices and their
sub-devices are connected via physical communication paths
based on Internet connections. In addition, the car’s subsys-
tems are related via physical communication path as well,
based on wire. Moreover, the deployment diagram shows
implementation artifacts with their logical dependencies and
their deployment onto the included devices. For example,
the CCUFirmware deployed onto the Central Computing Unit
(CCU) can call the CarFirmware to unlock the driver’s door.

In our example, we focus on the subsystem deployed onto
the car. Specifically, Fig. 4 shows a class diagram containing
the relevant parts for the example. The class Car stores the
car’s VIN and position, a class Door provides the function-
ality to unlock the car doors, a Modem such as Combox or
TCB enables the communication with the mobile app and the
backend, and a class Remote Services represents the following
functionality: (1) enabling the remote services provided by
ConnectedDrive, and (2) processing the commands received
from the mobile app and the backend. The information if
remote services are enabled is stored in a property enabled
that can be set using the operation enable(Key). Modems use
the short-message service [57] for receiving text messages,
to obtain instructions from the back-end over an Internet
connection, and to respond error text-messages. The instruc-
tions obtained from the back-end such as unlocking the door
are processed by the operation performTask(String) of the
RemoteServices class.

Opening the driver’s door via the mobile app involves the
following actions in the car subsystem:
1. The modem receives a requestInstructions text message, es-

tablishes a connection to the Internet and requests detailed
instructions from the back-end over a http-get request.

2. If the back-end provided a non-empty set of instructions,
the modem calls RemoteServiceswith the instructions. Oth-
erwise, it sends an error text-message to the app.

3. If there have been valid instructions the RemoteServices
processes those and performs the assigned tasks like open-
ing the door or enabling the RemoteServices otherwise
the Modem is called to send an error message.

95

GPCE ’18, November 5–6, 2018, Boston, MA, USA Sven Peldszus, Daniel Strüber, and Jan Jürjens

<<Metaclass>>
Element

<<Metaclass>>
Class

<<Metaclass>>
Component

<<Metaclass>>
Dependency

UML

+ secrecy: String [*]
+ integrity: String [*]

<<Stereotype>>
critical

<<Stereotype>>
Secrecy

UMLsec

+ presenceConditon: String

<<Stereotype>>
Conditional

+ presenceConditon: String [*]

<<Stereotype>>
ConditionalCritical

+ presenceConditon: String

<<Stereotype>>
ConditionalSecrecy

SecPL

Figure 5. Excerpt from the SecPL UML Profile.

At the first glance, this procedure seems safe and secure.
However, in the details, the aforementioned issues manifest
themselves.
First, step 1 lacks an authorization of the get instructions

request. Anyone capable of faking a GSM basestation—to this
end, femtocells, a type of fully-featured short-range bases-
tation, can be used—can send the required text message to
the car and provide any instructions. This problem can be
handled by enforcing encryption on the communication path
between the car and the phone. To this end, we will use an
extended form of UMLsec’s secure links check.
Second, one may at least assume that disabling the re-

mote services is an effective way of shielding the system
against unauthorized access. Unfortunately, in the original
setting [47], this is not the case for all products of the SPL:
An issue in the implementation of the Combox firmware
allows any third person to enable the remote services in
products containing this modem: The key required for en-
abling the remote services is the VIN of the car. However,
for identification reasons, error reports sent by the Combox
always include the VIN! Attackers can exploit this behavior
by opening a femtocell and sending text messages to perform
invalid instructions. As a result, they receive an error report
containing the VIN.
A possible explanation for this glaring, but nonetheless

real security issue is the lack of a shared mental model of the
system and its security requirements: The developer respon-
sible for programming the Combox appears to have been
unaware of the use of the VIN as a key for RemoveServices
by another developer, leading to a data breach. In order to de-
tect such breaches automatically, we present a methodology
that supports the explicit specification of a system’s security
requirements as part of the system model. In the concrete
example, to verify whether data declared as sensitive are
treated accordingly, we use an extended form of UMLsec’s
secure dependencies check, as explained in the next section.

4 Security and Variability Profiles
We provide a UML extension to support the specification
of security requirements and product-line variability. The
SecPL profile extends UML with 17 security-specific and vari-
ability stereotypes and tagged values. The security-specific
concepts of SecPL are built atop of those of UMLsec [27];

annotating elements with variability-specific presence con-
ditions is inspired by solutions such as model templates [14].

4.1 UMLsec Security Checks
UMLsec provides an UML profile for annotating UMLmodels
with security requirements and various checks for checking
those security requirements. In what follows, we introduce
two of those checks that are particularly interesting for the
design of a secure system, as they cover the security require-
ments of data on both the logical and physical levels of the
system: secure dependencies and secure links.
Secure dependencies is a check concerning the static struc-
ture of the system. It ensures that call and send dependencies
between objects respect the security requirements on the
data that may be communicated along them. Secure dependen-
cies can be thought as a contract between calling and called
objects. The following definition adapted from [27] addresses
secrecy; the integrity case is entirely analogous. We assume
that objects have a set of members, that is, operations and
properties, and a list of secrecy-stereotyped members, as can
be specified using tagged values of the «critical» stereotype
as specified in the center of Fig. 5. To be more precise every
Class or Component in an UML diagram can be stereotyped
with «critical» and the set of secrecy-stereotyped members
is given as a List of signatures in the tagged value secrecy.

Definition 1 (Secure dependencies). A subsystem fulfills
secure dependencies iff for all «call» or «send» dependencies d
from an object C to an object D the following conditions hold:
(i) for all s ∈ D.members: s ∈ C .secrecy ⇔ s ∈ D.secrecy,
(ii) for all s ∈ D.members: s ∈ C .secrecy ⇒ d is stereotyped
«secrecy», where s refers to the signature of a member.

For instance, for the class diagram in Fig. 6, secure depen-
dencies is not fulfilled: Car specifies secrecy for the signature
getVIN(). However, since Combox does not specify secrecy
for getVIN() as well, and the «call» dependency relating
both classes does not contain the «secrecy» stereotype, prop-
erties (i) and (ii) are violated.
Secure links is a check concerning the physical deploy-
ment of a system. It analyses whether the network of nodes
with their communication paths respects the user-specified
security requirements wrt. a given attacker model.
Attacker Model. The check is formulated relative to a given
attacker type, such as default or insider attackers, with dis-
tinct capabilities of compromising the system [28, p. 59]. For
each pair of an attacker and communication path type, a set
of threats is known. In this section, we focus on the threats
posed by the default attacker, which represents an outsider
adversary with modest capability. This kind of attacker can
read, modify, and delete messages sent over a plain Internet
connection, whereas in the case of an encrypted connection,
they can only deletemessages (e.g., using a fake GSM basesta-
tion). However, a default attacker would not be able to read

96

Model-Based Security Analysis of Feature-Oriented Software . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

In-car system <<secure links>>

Car
<<encrypted>>

<<internet>>

Backend

Modem

CentralCU

Phone

<<artifact>>
ModemFirmware

<<artifact>>
CarFirmware

deployment

<<artifact>>
CCUFirmware

deployment

<<artifact>>
MobileApp

deployment

<<artifact>>
DBSoftware

<<artifact>>
ServerSoftware

<<call,
integrity>>

<<call,
integrity>>

<<internet>><<wire>>

<<call, integrity>>

<<call,
integrity>>

deployment

<<call, secrecy, integrity>>

deployment

deployment

<<call,
integrity>>

Car

- vin: String
- posLat : long
- posLong: long

+ getVIN () : String

RemoteServices

- enabled: boolean

+ performTask(String)
+ enable(Key)

<<Interface>>
Modem

+ receiveSMS()
+ requestInstructions()
+ sendErrorSMS()

Combox

+ receiveSMS()
+ requestInstructions()
+ sendErrorSMS()

<<call, secrecy>>

<<critical>>
{secrecy={”getVIN():String”,

”posLat:long“, ”posLong:long“}}

<<call,
secrecy>>

<<call, secrecy>>
<<critical>>
{secrecy={

”getVIN():String”},
integrity={

“performTask(String)”}}

In-car system <<secure dependencies>>

Door

unlock()

<<call>>

<<critical>>
{integrity={“,

“performTask(String)”}}

Figure 6. Deployment and class diagram of the product ob-
tained for the configuration {ConnectedDrive, Professional,
Combox}.

the plaintext messages or insert messages encrypted with
the right key. Of course, this assumes that the encryption is
set up in a way such that the adversary does not get hold of
the secret key. The default attacker is assumed not to have
direct access to the local area network (LAN) and therefore
not to be able to eavesdrop on those connections, nor on
wires connecting security-critical devices (e.g. a smart-card
reader).

We recall a definition [27] for the security requirement «in-
tegrity». A corresponding definition for «secrecy» is obtained
by replacing the considered threat with read.

Definition 2 (Secure links). A subsystem fulfills secure links
iff for all «integrity» dependencies d between objects on dif-
ferent nodes n,m, ∃ communication path p between n andm
with a stereotype s s.t.write < Threats(s), where Threats(s) is
a set of threats posed by an outside attacker to s-stereotyped
communication paths.

For example, in the deployment diagram in Fig. 3, secure
links holds under the condition that the communication path
between Car and Backend is stereotyped with «encrypted».
Due to the «integrity»-stereotype dependency between CCU-
Firmware and ServerSoftware, secure links does not hold
when only a «Internet» communication path is available, be-
cause outsider attackers can perform a man-in-the-middle-
attack to compromise integrity.

4.2 SecPL Profile
To support variabilitywe extended the stereotypes of UMLsec
with presence conditions. Fig. 5 shows an excerpt with three

of SecPL’s stereotypes and their relationship to UML and
UMLsec. The stereotype «Conditional» extends the UML
meta-class Element, whereas the stereotypes «Condition-
alCritical» and «ConditionalSecrecy» generalize their non-
conditional counterparts from UMLsec. All in all the SecPL
profile consists out of 17 stereotypes similar to the presented
ones and includes validation rules for the well-formedness
of the presence conditions.
«Conditional» can be added to all UML elements to specify
variability on the model level. The tagged value presence-
Condtion specifies the condition under which the annotated
element is present in products of the SPL. We support propo-
sitional formulas with negations, conjunctions, and disjunc-
tions over the set of features. For instance, the Modem node
in Fig. 3 is present if either feature TCB or Combox is selected.
«ConditionalCritical» generalizes UMLsec’s «critical» in
order to specify security requirements. In this work we
mainly focus on the security requirements of protection
from unauthorized view access (secrecy) and unauthorized
modification (integrity). However, we also cover the other se-
curity requirements provided by the UMLsec profile. To this
end, «ConditionalCritical» inherits «critical»’s tagged values
for these requirement kinds. Each of these tagged values
stores a list of operation signatures and property signatures.
Variability of security requirements is specified using a list of
presence conditions, which are mapped to the corresponding
signatures based on their position in the list. For example, in
Fig. 4, the position of the car requires additional to treatment
with secrecy treatment with integrity when the business
radio has been selected by the customer. Multiple require-
ments on the same element are supported by leaving certain
positions in the lists of the tagged values empty, so that each
presence condition is mapped to precisely one entry. While
the process of managing presence conditions can be com-
plicated, adequate tool support is a promising strategy to
support users during such tasks [32].

«ConditionalSecrecy» controls the existence of a «se-
crecy» stereotype in products of the SPL.
In the following sections we are focusing on the «Con-

ditional» stereotype. The introduced methodology can be
applied to the other stereotypes in the same way.
Deriving Products. Products of the SPL are derived by con-
figuring the features, that is, selecting a specific subset of fea-
tures. As a result, model elements and security requirements
whose presence conditions evaluate to false are removed
from the model, yielding a regular UMLsec model. Fig. 6
shows the result of deriving a product of our example SPL.
Inactive elements such as the class TCB have been removed.
Adaptation to Domain-Specific Languages. Our profile
can be applied in combination with domain-specific lan-
guages that are based on UML profiles.

For example, a central diagram type in SysML models are
block diagrams. The blocks in block diagrams are elements

97

GPCE ’18, November 5–6, 2018, Boston, MA, USA Sven Peldszus, Daniel Strüber, and Jan Jürjens

of the UML type Class with the stereotype «Block». Accord-
ingly SysML blocks can own properties, just like like classes
in class diagrams can do. The properties in SysML are more
fine-grained, reflected in additional SysML-specific stereo-
types such as «AdjunctProperty» or «DistributedProperty».
Since the categorization of properties in these stereotypes
is orthogonal to the included security requirements, the Se-
cure Dependency check can be applied to block diagrams
straightforwardly, by applying both the SysML and the SecPL
stereotypes to the underlying UML model.

5 Family-based Security Analysis
A prime benefit of model-based security approaches is the
possibility to perform a security analysis on design models.
For example, using the secure dependencies check, we can
determine if objects in the system respect the security re-
quirements of the data they send and receive. In the product
line setting addressed by SecPL, performing such analysis
on each product of a SPL separately is infeasible since the
number of products can grow exponentially with the number
of features. Therefore, we propose a family-based security
analysis, which lifts checks such as secure dependencies from
the level of individual products to the entire SPL.

Our analysis assumes an encoding of the to-be-performed
check as an OCL constraint. We provide such encodings for
the most prominent and important UMLsec checks; addi-
tional ones may be provided by an expert user. To evaluate
this constraint against the design model at hand, we use a
method called template interpretation [15]. Template interpre-
tation was originally designed for checking well-formedness
properties, such as “each association has at least two mem-
ber ends”, in unstereotyped UML models with variability. To
address our security setting, our OCL constraints also take
stereotypes into account. Template interpretation generates
a certain propositional formula which can be evaluated us-
ing a SAT solver. In the formula, features are represented as
variables. If the formula is satisfiable, the SAT solver returns
a satisfying example, that is, a subset of features giving rise
to an insecure product. Else, we have proof that the security
property is fulfilled in each product.
In the remainder of this section, we present our security

checks with their OCL encodings, we illustrate the genera-
tion of a certain formula via template interpretation, and we
wrap up.

5.1 UMLsec Checks as OCL Constraints
We focus on UMLsec’s secure links and secure dependencies
checks [27]. In combination, these checks support an analysis
of security requirements on the physical and logical system
levels. We consider the security requirements secrecy and
integrity from Sect. 4.
We specified an OCL version of the secure dependencies

check. For brevity, the illustration in Fig. 7 focuses on an

1 c on t e x t Model inv :
2 l e t c a l l S e n d R e l a t i o n s = s e l f . a l lOwnedElements ()→
3 s e l e c t (e | e→o c l I sK i n dO f (Package) and

(e . has (s e cu r ed ep enden c i e s) or
s e l f . has (s e cu r e d ep enden c i e s)))→

4 s e l e c t (p | p . a l lOwnedElements ()→
5 s e l e c t (d | d→o c l I sK i n dO f (Dependency)) and (d . has (c a l l)

or d . has (send))) i n
6 c a l l S e n d R e l a t i o n s→ f o r A l l (c s |
7 ((c s . t a r g e t→ f o r A l l (t r g | t r g→o c l I sK i n dO f (I n t e r f a c e)
8 or (t r g→o c l I sK i n dO f (C l a s s) and t r g . has (c r i t i c a l))))
9 and cs . s ou r c e→ f o r A l l (s r c |

s r c . g e t S t e r e o t y p eAp p l i c a t i o n s (c r i t i c a l)→
10 f o r A l l (s r c C r i t i c a l | s r c C r i t i c a l . g e t S e c r e c y ()→
11 f o r A l l (s r c S e c r e c y | c s . has (s e c r e c y) and
12 c s . t a r g e t→ s e l e c t (t r g | t r g→o c l I sK i n dO f (C l a s s))→
13 f o r A l l (t r g | t r g . getMembers ()→
14 f o r A l l (mem | mem . getName () <> s r c S e c r e c y) or
15 t r g . g e t S t e r e o t y p eAp p l i c a t i o n s (c r i t i c a l)→
16 e x i s t s (t r g C r i t i c a l | t r g C r i t i c a l . g e t S e c r e c y ()→
17 e x i s t s (t r g S e c r e c y | t r g S e c r e c y = s r c S e c r e c y)))
18)))))

Figure 7. Secure dependencies («secrecy» case, excerpt)

excerpt, capturing the “⇒” direction of property (i) and the
full property (ii) of the secure dependency check. In the
full constraint, the opposite direction and the integrity case
are considered analogously. Dependencies representing a
potential d are aggregated on lines 1–5. On lines 1–3, we
consider both models and packages, since both concepts may
represent subsystems. On lines 7–8, we check whether the
dependency’s target class has a «critical» stereotype, so that
the set of secrecy members exists. Note that we use the func-
tion has as a shortcut to check if an element has a particular
stereotype. Interfaces do not need to have this stereotype,
since their implementing classes do. On lines 9–17, we iterate
over the secrecy-stereotyped members of the source class to
check if the dependency has the required «secrecy» stereo-
type (line 11), and if the operation in question is tagged with
secrecy in the «critical» stereotype of the target class, in case
it exists. As a simplification of the shown OCL constraint we
show instead of iterating over both getOperations() and
getProperties() a method getMembers().

Similar to the secure dependencies check, we encoded the
secure links check as an OCL constraint.

5.2 Template Interpretation
Template interpretation [15] supports the evaluation of OCL
constraints on models in which model elements are anno-
tated with presence conditions (such models are calledmodel
templates in [15]). The key idea is to replace the standard OCL
semantics with a variability-aware one: The result of evaluat-
ing a constraint is not a plain value, but a set of value-formula
pairs, where the formulas specify the condition under which
each of the values occurs. This condition, in turn, depends
on the presence condition of model elements. Based on this
set, to find out if a particular value can actually occur, we
combine its formula with the constraints specified in the fea-
ture model. We feed the result to a SAT solver to efficiently

98

Model-Based Security Analysis of Feature-Oriented Software . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

check whether the formula can be satisfied. Since our aim is
to establish if a particular constraint—representing a security
check—holds in all configuration, we feed the negation of
the condition under which it evaluates to true to the SAT
solver. Note that we do not translate OCL constraints into
SAT problems, but calculate all possible outcomes of the OCL
constraint execution and the conditions under which they
can occur in respect to the feature model.
For instance, to check if a particular class is stereotyped

with the stereotype «critical», we can evaluate the constraint
class.has(critical) on the class. Assuming standardOCL
semantics, the result of this check is true or false. But with
template interpretation, we take presence conditions into
account. For the class TCB in Fig. 4, the following result is ob-
tained: {(true, TCB), (false, ¬TCB)}. The paper [15]
explains how to generate such sets of value-formula pairs
for arbitrary OCL constraints, including those with complex
operators such as forAll() and size().
We need to answer the question if a OCL constraint c

representing a security check sec, such as secure links, on
an element e holds in all products of a considered SPL. This
question can be represented as the following SAT problem:

s = f ∧ (p∗(e) ⇒ ¬ctrue) (1)

Here, f is the conjunction of the feature constraints in the
feature model, p∗(e) is e’s extended presence condition, and
ctrue is the condition under which c evaluates to true . The
feature constraints are taken into account because they deter-
mine the allowed set of configurations. E.g., considering the
constraint self.getImplementations()→size()>0 for the
interface Modem in Fig. 4, we would obtain that ctrue =
TCB ∨Combox . However, in a version of the feature model
where Modem is a mandatory feature, either TCB or Combox
is always selected as well, and consequently, s should yield
true . The implication allows to neglect irrelevant configu-
rations in which e is absent and thus, cannot violate the
constraint. The extended presence condition p∗(e) accounts
for the containment hierarchy: the presence of an element
depends on the presence of its container objects. Therefore,
p∗(e) is obtained via the conjunction of e ′s presence condi-
tion with the presence conditions of its container elements.

The output of evaluating s with a SAT solver is either the
result that c is true in all configurations, that is, sec holds in
e for all products, or awitness, that is, a configuration leading
to a product in which sec is not fulfilled in e .

5.3 Discussion
Performance. The performance of the overall security anal-
ysis depends on the generation of the formula as well as the
SAT check. As argued in [15], the generation procedure has
polynomial complexity in relation to the size of the input
model. For most of OCL’s operators, the generation is lin-
ear; however, in the case of size, it requires quadratic time,
since it considers the cross product of model elements. SAT

solving is NP complete in general, but state-of-the-art SAT
solvers can handle a million of variables and several millions
of constraints efficiently [20], which is more than sufficient
for typical product line scenarios.
Tool Support. The analysis is implemented as a prototyp-
ical plugin for the Eclipse IDE. Since our OCL constraints
are formulated in a rather coarse-grained fashion, based on
the model- and package-level, determining the root cause
of a failed check can be a non-trivial task. However, for de-
bugging purposes, users can use the produced witnesses to
inspect a single product where the issue occurs, rather than
the full SPL representation. During this task, he can use full-
fledged tool support as e.g. provided by CARiSMA [11] for
the analysis of the detected insecure product.
Correctness. The correctness of template interpretation re-
lies on the argumentation in [15]. The correctness of our im-
plementation, including the OCL constraints, was studied by
systematic testing. Specifically, we systematically extended
the test cases of the existing implementation with variabil-
ity: We considered all possible combinations of annotating
the involved elements with variability. The resulting test
suite comprises 54 test cases. As test oracle, we used the
existing Java-based implementation of UMLsec’s checks in
CARiSMA, the standard implementation of UMLsec. For a
given SecPL-based test model, we enumerated all products,
producing a set of UMLsec models on which we performed
the CARiSMA check. The results of the variability-aware
security check and the single CARiSMA checks were equiv-
alent in all cases, yielding confidence in the correctness of
our analysis.
Extensibility. We provide OCL encodings for the most im-
portant UMLsec checks: secure links and secure dependencies.
As illustrated in the example, in combination, these checks
aim to protect secrecy and integrity on the physical and
the logical level. Our solution is extensible in the sense that
expert users can define additional checks by providing ad-
ditional stereotypes with a corresponding OCL encoding.
These checks can be used by end-users for annotating and
checking UML models transparently, without using or un-
derstanding OCL.

6 Reverse Engineering of SecPL Models
Despite our primary intention to support security by design,
in practice, security concerns often need to be addressed
in codebases long after they were initially deployed. Apart
from poor planning, a root cause are migration scenarios
where the original application was developed for an offline
context [17]. In this section, we study the application of our
methodology to situations where the goal is to harden an
existing system. To this end, we provide a mechanism for the
reverse engineering of SecPLmodels from existing codebases.
Our mechanism extends the state-of-the-art methodology
formodel-based reverse engineering, which is concerned with

99

GPCE ’18, November 5–6, 2018, Boston, MA, USA Sven Peldszus, Daniel Strüber, and Jan Jürjens

Java SPL
SourceCode

Variability Annotations
//#if TCB
…
//#endif

SecPL UML
Model

security reverse
engineering

variability reverse
engineering

UML reverse
engineering

UML

Variability Annotations
<<ConditionalElement>>
{presenceCondition={TCB}}

Security Annotations
<<secrecy>>

Feature Model

Security Annotations
@Critical(secrecy={m():void})
class Clazz{...}

Figure 8. Reverse engineering mechanism.

the process of obtaining useful higher-level representations
of legacy systems [7].
The key idea is to let the developers annotate security-

critical parts of the source code of the input SPL. We can then
generate a SecPL class model which is amenable to the anal-
ysis capabilities introduced in Sect. 5. We assume that the
input SPL was originally developed using Antenna, a widely-
spread preprocessor mechanism for annotating Java code
with variability [53]. However, other preprocessor mech-
anisms with similar annotations could be potentially sup-
ported without much additional effort. On top of that, the
developer uses custom annotations such as @Secrecy to spec-
ify security requirements and security-related assumptions
on fields and methods that will be extracted and added to
the output model.

Fig. 8 gives an overview of our mechanism’s internal work-
ings. We use the reverse engineering tool MoDisco [9] to
extract a UML model from the existing Java codebase. In
addition, we parse the Antenna preprocessor annotations
from the code to add corresponding «Conditional» stereo-
types in the UML model. Finally, we parse the UMLsec Java
annotations and combine them with the variability informa-
tion. Annotations being nested into an Antenna condition
become conditional stereotypes from our SecPL profile. Other
annotations become regular UMLsec stereotypes.

In the following, we show some of the regular expressions
used during our parsing process, which simultaneously act as
a light-weight specification of possible annotations. Ifdef di-
rectives respecting the following expression are represented
as presence conditions of elements in the class diagram.

//\s ∗ #i f (de f)?. ∗ (n |r) (2)

This expression matches every line comment starting from
the beginning specified by the // to the end of the line which
has the keyword if or ifdef directly after the start charac-
ters, ignoring white space. The rest of the line contains the
presence condition.

The following kind of annotations are required to produce
SecPL and UMLsec annotations:

@((Inteдrity)|(Secrecy)|(Hiдh)|(Critical(\(. ∗ \))?)) (3)

We match the combinations of the@-symbol with which ev-
ery Java-annotation starts with the names of our annotations.

To obtain the tagged values of the «critical» we match every-
thing with the parentheses of the @Critical and analyze
this group of the regular expression in a subsequent step.
Listing 1 shows a code excerpt illustrating the use of our

annotations. The first regular expression matches lines 1
and 5. Based on the position of those matches in the source
code and the positions of the endif directives we can calculate
which Java elements are covered by such an annotation. The
second regular expression matches line 2 of the example.
Again we can assign the annotated Java elements based on
the position of the match.

1 / / # i f d e f ConnectedDr ive
2 @Cr i t i c a l (s e c r e c y = { " getVIN () : S t r i n g " } ,

i n t e g r i t y = { " per formTask (S t r i n g) " })
3 pu b l i c c l a s s RemoteSe rv i c e s {
4 . . .
5 / / # i f Bu s i n e s s
6 . . . / / # e n d i f
7 } / / # e n d i f

Listing 1. Source code with Antenna and SecPL annotations

In our evaluation, we applied our reverse engineering
mechanism to multiple large open-source projects.

7 Evaluation
We designed a methodology for specifying and analyzing se-
curity requirements in software product lines. In this section,
we evaluate the following aspects of our methodology:
• RQ1: Efficiency To what extent does our family-based
analysis improve the efficiency of the security analysis?

• RQ2: Scalability How does our analysis scale to product
lines with large feature models and domain models?

• RQ3: Usefulness Is our methodology easily understand-
able, usable and applicable to realistic software engineer-
ing projects?
For this evaluation we implemented the SecPL analysis

in a prototypical version as plugin for the Eclipse IDE using
the Papyrus UML editor for creating and annotating UML
models. During the task of annotating UML models the user
is supported with well-formedness checks of presence con-
ditions, an overview of feature usages in the UML model as
well as the option to execute our check on all products. If
a product with security violations is detected, the standard
UMLsec check is executed on this product to generate de-
tailed error messages, using the standard implementation of
UMLsec by the CARiSMA tool.

We performed all experiments on a Windows 10 PC with
an Intel i5-3570K, 8 GB of RAM and Oracle JDK 8 inside of
an Eclipse Neon.3 instance which was allowed to allocate up
to 6 GB memory.

7.1 RQ1: Efficiency
To evaluate our methodology based on realistic subjects, we
collected a suite of models suitable for our security- and
variability-oriented setting. The collection was performed

100

Model-Based Security Analysis of Feature-Oriented Software . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

Table 1. Subjects

Project name Input artifacts #Elements #Call #Features #Products

BMW Magazine article 116 13 16 54
E2E UMLsec models 130 14 7 94
BCMS UML models 3,034 4 8 254
JSSE Java 24,077 28 6 64
Notepad Java + Antenna 252 4 13 512
MobilePhoto Java + Antenna 4,069 35 13 3,072
Lampiro Java + Antenna 29,045 24 20 5,892

based on convenience sampling, in most cases by reusing
evaluation samples from the existing literature on software
product lines and model-based security. We give an overview
of our subjects in Table 1 with relevant information, in-
cluding the number of dependencies with «call» and «send»
stereotypes, since they are a key part in both considered
checks. The models stem from a variety of sources that can
be divided into two groups.
The first group represents original modeling examples.

First, we created a model based on the BMW running ex-
ample introduced in Sect. 3. Second, we used an UMLsec
scenario obtained from the CARiSMA developers from their
prior collaboration with an industry partner and extended
it with variability: EndToEndEncryption (E2E) is based on a
set of system models specifying different versions of Munich
Re’s IT infrastructure [54]. For our evaluation, we refactored
those models into a product line. Third, the Barbados Car
Crash Management System (bCMS) [10] is based on a require-
ments specification of car crash management system SPL.
For our evaluation, we used an available UML implementa-
tion in the form of enumerated products [60] and manually
refactored it into a SecPL model. While the bCMS model
is relatively large, only a small part of the model required
security annotations, resulting in four relevant calls.
The second group is made up of projects from the open-

source Java context. We produced SecPL models by applying
our reverse engineering mechanism to the available code-
bases. While most projects featured Antenna annotations
specifying variability on the source code level, this was not
the case for OpenJDK’s [3] implementation of the Java Secure
Socket Extension (JSSE), a particularly interesting security-
critical scenario. We extended JSSE’s codebase with vari-
ability, by assigning features to the different supported pro-
tocols, and security annotations based on security critical
keywords like “keystore”. Notepad [16] is a text editor in
which the opening and writing of files are security-critical.
For example many iOS apps have been infected by a cor-
rupted editor [23]. MobilePhoto [44] is a mobile multi-media
platform supporting for sharing media over an Internet con-
nection. Lampiro [38] is an instant messaging client which
has been naively developed as software product line. In these
cases, we added security annotations to the codebasis. Our
Lampiro model is the largest one considered, comprising
29K elements, including classes, dependencies, and opera-
tions. MobilePhoto and Lampiro have already been subject
to earlier SPL research [34].

BMW E2E BCMS JSSE Notepad Mobile
Photo

Lampiro
0.1

1

10

100

1000

10000

T
im

e
in

 S
ec

on
ds

(L
og

ar
ith

m
ic

 S
ca

le
)

 Product-wise check

 SecPL check

Figure 9. Execution Times for RQ1: Efficiency.

Set-up. We experimentally evaluated the efficiency of our
analysis using the models described above, using the state-
of-the-art tool, CARiSMA, as baseline. For each model, we
compared the execution time for checking the SecPL model
using our analysis (SecPL check) to the sum of the execu-
tion times for checking all products using CARiSMA, which
supports regular UMLsec checks on single products (product-
wise check). In both cases we measure the timespan from
loading a UML model with SecPL stereotypes to the delivery
of the analysis results for all products. Our analysis is more
efficient if the execution times of the SecPL implementation
are significantly lower than those of CARiSMA.

Results. The product-wise check produced a result for five
out of seven subjects, BMW, E2E, BCMS, JSSE, and Notepad.
In these cases, the SecPL checks were between one and three
orders of magnitude faster. For the subjects MobilePhoto
and Lampiro, the product-wise check terminated with a GC
overhead exception after 700 to 1,000 checked products and 3
to 5 hours of runtime, whereas the SecPL checks took below
100 seconds. On average, the product-wise check spent 91.6%
of the time generating the products, and the remaining 8.4%
performing the checks. We observed that the runtime of
the product-wise check mainly depends on the number of
products, whereas the SecPL check is mainly influenced by
the model size and the number of relevant calls. In sum,
SecPL outperformed the product-wise check constantly.

7.2 RQ2: Scalability
For our scalability evaluation, we needed to freely control the
size of our test models. To this end, we generated synthetic
models. Our rationale was to create models being represen-
tative of the realistic examples, which we address as follows.
To study the effect of the model size, we generated large

class models, being amenable to the secure dependencies
check. Based on typical cases in the security-critical portions
of the realistic examples, we incrementally added classes
with on average four operations and three dependencies. Our
initial model contained two classes with one call dependency
between them and one operation each. In each iteration, we
added a class with a «critical» stereotype and a normally
distributed number of operations, on average four, and a
normally distributed number of dependencies, on average
three. We added all member signatures of classes reachable
over a dependency to the secrecy tag the class’s «critical»
stereotype. The resulting model is potentially expensive to

101

GPCE ’18, November 5–6, 2018, Boston, MA, USA Sven Peldszus, Daniel Strüber, and Jan Jürjens

check: (i) it comprises many involved dependencies and op-
erations, and (ii) since it fulfills secure dependencies–every
class treats all relevant signatures with secrecy—, the check
does not terminate early with a counterexample.
To study the effect of the feature model size, we took a

randomly generated UML model from the model-size ex-
periment with 4K classes, incrementally added independent
features to the feature model successively, and assigned each
feature to one class in the model via a suitable «conditional»
stereotype. We checked models annotated with between zero
and 4K features, adding 50 features in each iteration.

Set-up. To experimentally evaluate scalability, we measure
the execution times of our SecPL implementation on different
synthetic models with a growing number domain model
elements and features as described above. Our analysis is
scalable if the execution time avoids exponential growth for
increasingly larger domain models and feature models.

Results. In our scalability experiment regarding model size,
the largest generated model we checked had 524K UML el-
ements, including 66K classes with an average number of
four operations and three call dependencies to other classes.
As shown in Fig. 10 the execution of this test case took 97.3
minutes. The regression function we calculated from this
measurements is second order polynomial and fits the mea-
sured data with a coefficient of determination (R2) of nearly
one (0.999985). This observation is in line with the perfor-
mance considerations for template interpretation. For our
scalability experiment regarding the number of features, we
used a randomly generated model with 4K UML classes (32K
UML elements) and successively added up to 4K independent
features (1.04 · 101233 products). The measured data points
as illustrated in Fig. 10 show a higher variance compared to
those from the previous experiment. The analysis took be-
tween 57 and 58 second up to a number of 1.7K features, and
started oscillating between 58 and 60 seconds until around
4K features. In sum, our analysis showed scalable behavior
up to thousands of features, the magnitude of large product
lines in automotive engineering [62].

7.3 RQ3: Usefulness
To evaluate the usefulness of ourmethodology, we conducted
a user experiment with participants from academia and in-
dustry.

Set-up. We recruited nine participants from academia, two
of them with a significant background in industry, and one
representative of an industry partner. The participants from
academia came from three universities and one private re-
search institute and had their focus in the security, SPL, and
modeling domains. The industry-experienced academics had
long-running backgrounds as IT freelancers. Moreover, one
of them was employed at a large steel-based technology
group at the time of the experiment. The industry partner,

0 10000 20000 30000 40000 50000 60000 70000
0

20

40

60

80

100

Number of Classes

Ti
m

e
in

 M
in

ut
es

0 500 1000 1500 2000 2500 3000 3500 4000
56

57

58

59

60

61

Number of Features

Ti
m

e
in

 S
ec

on
ds

Figure 10. RQ2: scalability regarding number of classes and
number of features.

SinnerSchrader, is Germany’s fourth-largest digital market-
ing company and cooperates with many major international
companies.

After a short introduction to SecPL, we asked the partici-
pants to perform a development task based on the example
in Section 3. The task was to extend the included model
with a new modem type by using our tool prototype, while
addressing the included security requirements. Afterwards,
the participants filled in a questionnaire in which they rated
their subjective experience in eight questions based on a
five-point Likert scale. Five questions addressed usability
concerns, such as the difficulty of specifying a new secu-
rity requirement; three questions were concerned with un-
derstandability, such as the certainty that the participant’s
understanding of the used stereotypes was correct. We pro-
vide a replication package including the task, questions, and
results together with the submission.
After the experiment, we conducted informal interviews

with all participants, in which we asked for feedback con-
cerning usability and understandability. In the interviews
with the industry-based and -experienced participants, we
additionally asked them to comment on the applicability of
our methodology to their business segments and those of
their customers.

Results: Usability and Understandability. The answers
to our questions indicate that our methodology is easily
usable and understandable. According to Fig. 11 in both
categories more than 70 percent of the answers suggest a
high or very high usability and understandability, an impres-
sion confirmed by the feedback in the interviews. On the
downside, some participants perceived the editing of anno-
tations through Papyrus’s user interface as cumbersome, as
reflected by some of the negative scores for usability. More-
over, some participants were worried that a larger model
“cluttered” with annotations may become hard to read. A
promising strategy to deal with these issues is by providing
improved tool support, for example, to support the editing

102

Model-Based Security Analysis of Feature-Oriented Software . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA
Sheet2

Page 11

Understandability

Usability

12%

3%

16%

13%

54%

40%

18%

33%10%

very low low medium high very high

Figure 11. Aggregated answers from our user study.

of large models based on custom-tailored views [8], includ-
ing views on individual products of the product line [33]. A
further question raised by participants was where to start
when annotating the model with security requirements. To
this end, approaches analyzing higher-level security speci-
fications and suggesting SecPL security annotations can be
helpful [1]. Moreover, a textual UML notation may further
help to improve the usability. Despite the mostly positive
understandability ratings, one participant reported consid-
erable problems while understanding the stereotypes. An
interactive help system may help to further improve under-
standability.

Results: Practical Applicability. According to our indus-
try partner’s representative, our notation for specification
and analysis of security requirements on product lines is an
accurate fit for their business needs. As an example for a pos-
sible application, they mentioned a current collaboration in
the automotive domain on real-time car software upgrades
based on changing customer needs. They want to dynam-
ically advertise and sell upgrades according to customers
needs by dynamically reconfiguring the car – e.g. to sell the
usage of the trailer hitch for some days when the customer
is relocating. The specification and analysis of security re-
quirements on software product lines is essential for this
concept. The participant deemed our graphical notation on
UML models as a possibility to realize the specification in a
user-friendly way.

One of the industry-experienced participants conjectured
that our approach might be very helpful for developers famil-
iar with modeling, but felt that he was not proficient enough
in this topic to really judge applicability.
The other industry-experienced participant, who is also

employed for a steel-based technology group, stated that
our methodology could be used for coordinating the devel-
opment of security-critical software in multiple distributed
teams. If the project has been planned using UML, special
trained team-members can easily annotate the models with
required and provided security properties. However, for a
direct use in industry, the tool support has to be improved;
distributed and parallel editing of UML models has to be sup-
ported. Nevertheless, he pointed out that these are general
issues with model-based development, and that they are by
no means necessarily aggravated by incorporating SecPL.

To conclude, these first impressions give a promising out-
look on the applicability of our methodology in industry.
Since we do not require any artifacts beyond those involved
in typical software development processes, our participants
found that an alignment of our methodology with these
processes seems generally possible.

7.4 Threats to Validity
External validity is threatened by our limited selection of
models that may not be representative of all realistic models.
While our suite of test subjects selected for RQ1 represents a
broad variety of use cases, we cannot generalize our findings
to arbitrary models. The models generated for our scalability
measurements in RQ2 were inspired by the realistic ones
for RQ1; their purpose was to illustrate the effect of an in-
creased model size and feature number. The model in RQ3 is
by no means representative for all possible usage contexts;
however, it was chosen as a critical example inspired by a
real case.
Regarding internal validity, a potential threat concerns

the correctness of our implementation. In Sec. 5, we argued
for the correctness of our OCL implementations of the con-
sidered UMLsec checks by using CARiSMA as a test oracle.
Since both implementations were developed independently
from another, the identical results from the test suite give us
a high level of confidence in the correctness of our implemen-
tation. For additional user-specified constraints, correctness
has to be ensured as well, for example, by providing a sim-
ilar test suite. Moreover, while we aimed to systematically
specify all security requirements in the considered exam-
ples, we cannot guarantee the completeness of our security
annotations.
With regard to conclusion validity, a more definitive ver-

dict on the practical applicability of our methodology re-
quires the involvement of a larger sample of practitioners.
To this end, we plan to conduct a broader developer survey
in the future. In particular, we did not evaluate if users can
work with our reverse-engineered models effectively, which
depends on the employed model editor’s usability during the
editing of larger models.

Regarding construct validity, our methodology is based on
existing technology, such as template interpretation and the
Papyrus UML editor, that also impact its applicability. Our
evaluation assesses the applicability of these techniques in
the domain of software security, which has not been done in
previous work. Moreover, to the best of our knowledge, we
also provide the first evaluation of a template-interpretation-
based technique on a set of realistic models.

8 Related Work
Model-Based Security Analysis. An overview of model-
based security analysis can be found in [39], which reviews
existing approaches for security analysis of model-based
object-oriented software designs, and identifiesways inwhich
these approaches can be improved and made more rigorous.
Some research addresses linking the model to the code level
within model-based security through model-driven reverse
engineering [41, 52]; similar to our work, Martínez et al. [41]
use OCL to specify security policies. Other work addresses

103

GPCE ’18, November 5–6, 2018, Boston, MA, USA Sven Peldszus, Daniel Strüber, and Jan Jürjens

the model-based use of security patterns [36, 48, 63]. Fur-
ther research makes use of aspect-oriented modeling for
model-based security [19]. [22] proposes an approach for
model-based security verification.

UMLsec [29] provides a model-based approach to develop
and analyze security critical software systems, in which secu-
rity requirements such as secrecy, integrity, and availability
are expressed in UML diagrams [49]. UMLsec is provided as
an UML profile, containing different stereotypes and tagged
values to annotate UML diagrams with security properties.
The CARiSMA tool performs the corresponding security
analysis [25]; it has been applied to various industrial appli-
cations (e.g. [26]).
While these works are relevant as foundations for our

technique, none of them addresses software product lines.

Security of Software Product Lines. Sion et al. [56] present
a research agenda towards systematically addressing security
concerns in software product lines in a way which consid-
ers security separate from other variability dimensions by
allowing to express security and its variability, select the
right solution, properly instantiate a solution, and verify
and validate it. This research agenda seems certainly rele-
vant and worthwhile, but there do not seem to be results
published to date. Myllärniemi et al. [45] propose a kind of
modeling language for specifying security and functional
variability at the architectural level of a system. Their solu-
tion allows the user to select among multiple countermea-
sures; however, a security analysis in the style of our work
is not possible in this solution, since security requirements
on the level of threats and assets are deliberately left outside
the scope of this work. Nadi and Krüger [46] use the model-
ing language Clafer, which combines feature modeling and
meta-modeling, for modeling cryptographic components. In
comparison, their work could be considered a specific prod-
uct line of security-relevant software products, whereas our
goal is to apply security concepts to harden arbitrary soft-
ware product lines. Mellado et al. [42, 43] present approaches
which deal with security requirements from the early stages
of the product line lifecycle in a systematic and intuitive
way especially adapted for product line based development.
These works do not address the system design, as we do here.
Fægri and Hallsteinsen [18] presents a software product line
reference architecture for security. This work does not use a
model-based design approach, as we do.

Analysis of Software Product Lines. Scalability issues
arising due to variability havemotivated a variety of software
analyses for SPLs; for an overview, see the comprehensive
survey by Thüm et al. [61]. A key distinction is that between
product-based approaches that operate on a selection of all
products, and family-based ones that lift the analysis to a
representation of the overall SPL. Product-based approaches
are useful in scenarios where the result does not need to be
complete, a prime example being testing.Model-based testing

of SPLs [2, 13, 24, 40] focuses on the use of dedicated test
models for this purpose. To improve test coverage, Cichos
et al. [13] derive test cases from a “150%” test model for the
SPL, and Johansen et al. [24] use a certain notion of covering
arrays that can be derived from the feature model. Ali et al.
[2] propose a methodology for reducing the specification
effort during model-based testing of SPLs. Lachmann et al.
prioritize products by their risk for failures for integration
tests of SPLs [37]. These approaches do not aim to ensure a
complete analysis of all products of the product line.
Our security analysis falls into the category of family-

based analysis. Most works in this category focus on pro-
gram analyses, such as syntax and type checking [35], static
program analysis [21], or model checking [21]. A seminal
model-level work is the well-formedness analysis for model
templates by Czarnecki and Pietroszek [15] that we used as
a foundation for our analysis (see Sect.5). While this work
operates on vanilla UML models to validate well-formedness
constraints, our analysis works on stereotyped UML models
for checking security properties. Salay et al’s [55] work on
the lifting of transformation rules to model-based SPLs in-
cludes a matching step that can be considered a family-based
analysis. However, none of these works addresses security.

9 Conclusion and Future Work
Security is one of the hardest properties of software to ac-
complish in practice. With this work, we provide a compre-
hensive methodology for the model-based security analysis
of software product lines. Using the SecPL profile, users
specify security requirements as well as variability informa-
tion as part of the system model. Our analysis addresses the
scalability issues encountered in this setting by lifting the
analysis to the level of the entire product line rather than
individual products. In our evaluation, this solution enabled
the analysis of realistic product lines in realistic cases where
the naive approach terminated without a result; a user study
indicates the usefulness of our methodology.

In the future, we aim to extend ourwork in three directions.
First, we intend to broaden the scope of our reverse engi-
neering approach. When models and code may be subject to
evolution, keeping security properties synchronized on both
levels is challenging. Second, we aim to apply our methodol-
ogy to a broader selection of use-cases. Since UMLsec has
been used in protocol engineering [5], a promising applica-
tion involves protocol families. Finally, an extended form of
our analysis could inform the automated configuration of
a product line, e.g., by considering the established security
degree and the cost for security measures to assess solutions.

Acknowledgements
This work was supported by the Deutsche Forschungsge-
meinschaft (DFG), project SecVolution@Run-time, no. 221328183.

104

Model-Based Security Analysis of Feature-Oriented Software . . . GPCE ’18, November 5–6, 2018, Boston, MA, USA

References
[1] Amir Shayan Ahmadian, Sven Peldszus, Qusai Ramadan, and Jan Jür-

jens. 2017. Model-based Privacy and Security Analysis with CARiSMA.
In FSE. 989–993. https://doi.org/10.1145/3106237.3122823

[2] Shaukat Ali, Tao Yue, Lionel C. Briand, and Suneth Walawege. 2012.
A Product Line Modeling and Configuration Methodology to Support
Model-Based Testing: An Industrial Case Study. In MoDELS. 726–742.

[3] Oracle Corporation and/or its affiliates. 2018. OpenJDK. (2018). http:
//openjdk.java.net/

[4] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013.
Feature-Oriented Software Product Lines - Concepts and Implementation.
Springer.

[5] A. Bauer and J. Jürjens. 2010. Runtime Verification of Cryptographic
Protocols. Computers and Security 29, 3 (2010), 315–330.

[6] B. Best, J. Jürjens, and B. Nuseibeh. 2007. Model-based Security Engi-
neering of Distributed Information Systems using UMLsec. In ICSE.
ACM, 581–590.

[7] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2012. Model-
driven Software Engineering in Practice. Synthesis Lectures on Software
Engineering 1, 1 (2012), 1–182.

[8] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. 2017.
A feature-based survey of model view approaches. Software & Systems
Modeling (2017), 1–22.

[9] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot.
2010. MoDisco: A Generic and Extensible Framework forModel Driven
Reverse Engineering. In ASE. ACM, 173–174.

[10] Afredo Capozucca, Betty Cheng, Geri Georg, Nicolas Guelfi, Paul
Istoan, Gunter Mussbacher, Adam Jensen, Jean-Marc Jézéquel, Jörg
Kienzle, Jacques Klein, et al. 2011. Requirements Definition Docu-
ment for a Software Product Line of Car Crash Management Systems.
ReMoDD (2011).

[11] CARiSMA 2018. CARiSMA Tool. (2018). http://carisma.umlsec.de
[12] Maria Christakis and Christian Bird. 2016. What Developers Want and

Need from Program Analysis: An Empirical Study. In ASE. 332–343.
[13] Harald Cichos, Sebastian Oster, Malte Lochau, and Andy Schürr. 2011.

Model-Based Coverage-Driven Test Suite Generation for Software Product
Lines. Springer, 425–439.

[14] Krzysztof Czarnecki and Michal Antkiewicz. 2005. Mapping Features
to Models: A Template Approach Based on Superimposed Variants. In
GPCE. 422–437.

[15] Krzysztof Czarnecki and Krzysztof Pietroszek. 2006. Verifying Feature-
based Model Templates Against Well-formedness OCL Constraints. In
GPCE. 211–220.

[16] Hugo Sica de Andrade, Eduardo Santana de Almeida, and Ivica
Crnkovic. 2014. Architectural bad smells in software product lines: an
exploratory study. In WICSA. 12:1–12:6.

[17] Premkumar T Devanbu and Stuart Stubblebine. 2000. Software Engi-
neering for Security: A Roadmap. In ICSE. ACM, 227–239.

[18] Tor Erlend Fægri and Svein O. Hallsteinsen. 2006. A Software Product
Line Reference Architecture for Security. In Software Product Lines -
Research Issues in Engineering and Management. 275–326.

[19] Geri Georg, Indrakshi Ray, Kyriakos Anastasakis, Behzad Bordbar,
Manachai Toahchoodee, and Siv Hilde Houmb. 2009. An Aspect-
oriented Methodology for Designing Secure Applications. INFSOF 51,
5 (2009), 846–864.

[20] Carla P Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman.
2008. Satisfiability Solvers. Foundations of Artificial Intelligence 3
(2008), 89–134.

[21] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. 2008.
Modeling and Model Checking Software Product Lines. In FMOODS.
Springer, 113–131.

[22] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John
McLean. 2008. Applying Formal Methods to a Certifiably Secure
Software System. IEEE Trans. Software Eng. 34, 1 (2008), 82–98.

[23] Alex Hern and agencies. 2015. Apple removes malicious programs
after first major attack on app store. The Guardian online. (2015).
https://goo.gl/phxmRR

[24] Martin Fagereng Johansen, Øystein Haugen, Franck Fleurey,
Anne Grete Eldegard, and Torbjørn Syversen. 2012. Generating Better
Partial Covering Arrays by Modeling Weights on Sub-product Lines.
In MoDELS. 269–284.

[25] J. Jürjens. 2000. Secure Information Flow for Concurrent Processes. In
CONCUR, C. Palamidessi (Ed.), Vol. 1877. 395–409.

[26] Jan Jürjens. 2001. Modelling Audit Security for Smart-Card Payment
Schemes with UML-Sec. In Trusted Information: The New Decade Chal-
lenge, Michel Dupuy and Pierre Paradinas (Eds.). Springer, 93–107.

[27] Jan Jürjens. 2002. UMLsec: Extending UML for Secure Systems Devel-
opment. In UML. 412–425.

[28] Jan Jürjens. 2005. Model-based Security Engineering with UML. In
FOSAD. Springer, 42–77.

[29] Jan Jürjens. 2005. Secure Systems Development with UML. Springer.
[30] J. Jürjens, J. Schreck, and P. Bartmann. 2008. Model-based Security

Analysis for Mobile Communications. In ICSE. ACM, 683–692.
[31] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and

A Spencer Peterson. 1990. Feature-oriented Domain Analysis (FODA)
Feasibility Study. Technical Report. DTIC Document.

[32] Christian Kästner and Sven Apel. 2009. Virtual Separation of Concerns-
a Second Chance for Preprocessors. Journal of Object Technology 8, 6
(2009), 59–78.

[33] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granular-
ity in Software Product Lines. In ICSE. ACM, 311–320.

[34] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. 2012.
Type Checking Annotation-based Product Lines. TOSEM 21, 3, Article
14 (July 2012), 14:1–14:39 pages.

[35] Christian Kästner, Paolo G Giarrusso, Tillmann Rendel, Sebastian
Erdweg, Klaus Ostermann, and Thorsten Berger. 2011. Variability-
aware Parsing in the Presence of Lexical Macros and Conditional
Compilation. ACM SIGPLAN Notices 46, 10 (2011), 805–824.

[36] Basel Katt, Matthias Gander, Ruth Breu, and Michael Felderer. 2011.
Enhancing Model Driven Security through Pattern Refinement Tech-
niques. In FMCO. 169–183.

[37] Remo Lachmann, Simon Beddig, Sascha Lity, Sandro Schulze, and Ina
Schaefer. 2017. Risk-based integration testing of software product
lines. In VaMoS. ACM, 52–59.

[38] Lampiro 2011. Lampiro. (2011). https://github.com/pinturic/lampiro/
tree/master/lampiro

[39] Kevin Lano, David Clark, and Kelly Androutsopoulos. 2002. Safety and
Security Analysis of Object-Oriented Models. In SAFECOMP. Springer,
82–93.

[40] Malte Lochau, Sven Peldszus, Matthias Kowal, and Ina Schaefer. 2014.
Model-based Testing. In Formal Methods for Executable SoftwareModels.
Springer, 310–342.

[41] Salvador Martínez, Valerio Cosentino, and Jordi Cabot. 2016. Model-
based Analysis of Java EEWeb Security Configurations. InMiSE. ACM,
55–61.

[42] Daniel Mellado, Eduardo Fernández-Medina, and Mario Piattini. 2008.
Towards Security Requirements Management for Software Product
Lines: A Security Domain Requirements Engineering Process. Com-
puter Standards & Interfaces 30, 6 (2008), 361–371.

[43] Daniel Mellado, Haralambos Mouratidis, and Eduardo Fernández-
Medina. 2014. Secure Tropos Framework for Software Product Lines
Requirements Engineering. Computer Standards & Interfaces 36, 4
(2014), 711–722.

[44] MobilePhoto 2008. MobilePhoto. (2008). http://homepages.dcc.ufmg.
br/~figueiredo/spl/icse08/

[45] Varvana Myllärniemi, Mikko Raatikainen, and Tomi Männistö. 2015.
Representing and Configuring Security Variability in Software Product
Lines. In QoSA. 1–10.

105

https://doi.org/10.1145/3106237.3122823
http://openjdk.java.net/
http://openjdk.java.net/
http://carisma.umlsec.de
https://goo.gl/phxmRR
https://github.com/pinturic/lampiro/tree/master/lampiro
https://github.com/pinturic/lampiro/tree/master/lampiro
http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/

GPCE ’18, November 5–6, 2018, Boston, MA, USA Sven Peldszus, Daniel Strüber, and Jan Jürjens

[46] Sarah Nadi and Stefan Krüger. 2016. Variability Modeling of Crypto-
graphic Components: Clafer Experience Report. In VaMoS. 105–112.

[47] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Caballero, and
Tudor Dumitras. 2015. The Attack of the Clones: A Study of the Impact
of Shared Code on Vulnerability Patching. In SP. IEEE, 692–708.

[48] Phu Hong Nguyen, Koen Yskout, Thomas Heyman, Jacques Klein,
Riccardo Scandariato, and Yves Le Traon. 2015. SoSPa: A System
of Security Design Patterns for Systematically Engineering Secure
Systems. In MoDELS. 246–255.

[49] Object Management Group (OMG). 2011. UML 2.5 Superstructure
Specification. (2011).

[50] OMG. 2017. OMG SystemModeling Language. Technical Report. Object
Management Group.

[51] Sebastian Oster, Florian Markert, and Philipp Ritter. 2010. Auto-
mated Incremental Pairwise Testing of Software Product Lines. In
SPL. Springer, 196–210.

[52] Salvador Martínez Perez, Joaquín García-Alfaro, Frédéric Cuppens,
Nora Cuppens-Boulahia, and Jordi Cabot. 2013. Model-Driven Extrac-
tion and Analysis of Network Security Policies. In MoDELS. Springer,
52–68.

[53] Jörg Pleumann, Omry Yadan, and Erik Wetterberg. 2010. Antenna
Preprocessor. (2010). http://antenna.sourceforge.net/

[54] Max Reininger. 2006. End-to-End Security in a Reinsurance Company,
Remote Access to the Company Network. Master’s thesis. TU Munich.

[55] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Mar-
sha Chechik. 2014. Lifting Model Transformations to Product Lines.

In ICSE. ACM, 117–128.
[56] Laurens Sion, Dimitri Van Landuyt, Koen Yskout, and Wouter Joosen.

2016. Towards Systematically Addressing Security Variability in Soft-
ware Product Lines. In SPLC. 342–343.

[57] SMS 2002. ISO/IEC 21989:2002: Information technology – Telecommuni-
cations and information exchange between systems – Private Integrated
Services Network – Specification, functional model and information flows
– Short message service. Technical Report. International Organization
for Standardization, https://www.iso.org/standard/36050.html.

[58] Dieter Spaar and Fabian A. Scherschel. 2015. Beemer, Open Thyself! –
Security vulnerabilities in BMW’s ConnectedDrive. (2015).

[59] Harald Störrle. 2017. How are Conceptual Models used in Industrial
Software Development?: A Descriptive Survey. In EASE. ACM, 160–
169.

[60] Daniel Strüber, Timo Kehrer, Thorsten Arendt, Christopher Pietsch,
and Dennis Reuling. 2016. Scalability of Model Transformations: Posi-
tion Paper and Benchmark Set. In Workshop on Scalable Model Driven
Engineering. 21–30.

[61] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. 2014. A Classification and Survey of Analysis Strategies for
Software Product Lines. ACM Comput. Surv. 47, 1 (2014), 6:1–6:45.

[62] Len Wozniak and Paul Clements. 2015. How Automotive Engineering
is Taking Product Line Engineering to the Extreme. In SPLC. 327–336.

[63] Koen Yskout, Riccardo Scandariato, and Wouter Joosen. 2015. Do
Security Patterns Really Help Designers?. In ICSE. 292–302.

106

http://antenna.sourceforge.net/

	Abstract
	1 Introduction
	2 Background
	3 Running Example
	4 Security and Variability Profiles
	4.1 UMLsec Security Checks
	4.2 SecPL Profile

	5 Family-based Security Analysis
	5.1 UMLsec Checks as OCL Constraints
	5.2 Template Interpretation
	5.3 Discussion

	6 Reverse Engineering of SecPL Models
	7 Evaluation
	7.1 RQ1: Efficiency
	7.2 RQ2: Scalability
	7.3 RQ3: Usefulness
	7.4 Threats to Validity

	8 Related Work
	9 Conclusion and Future Work
	References

