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Abstract—During the development of security-critical software,
the system implementation must capture the security properties
postulated by the architectural design. This paper presents an
approach to support secure data-flow compliance checks between
design models and code. To iteratively guide the developer in
discovering such compliance violations we introduce automated
mappings. These mappings are created by searching for corre-
spondences between a design-level model (Security Data Flow
Diagram) and an implementation-level model (Program Model).
We limit the search space by considering name similarities
between model elements and code elements as well as by
the use of heuristic rules for matching data-flow structures.
The main contributions of this paper are three-fold. First, the
automated mappings support the designer in an early discovery
of implementation absence, convergence, and divergence with
respect to the planned software design. Second, the mappings also
support the discovery of secure data-flow compliance violations in
terms of illegal asset flows in the software implementation. Third,
we present our implementation of the approach as a publicly
available Eclipse plugin and its evaluation on five open source
Java projects (including Eclipse secure storage).

Index Terms—Security-by-design, Security compliance, Data
Flow Diagram (DFD), Model-to-Model Transformation (M2M)

I. INTRODUCTION

Security threats to software systems are a growing concern
in many organizations, particularly due to the recent changes
in legislation (GDPR) and upcoming security standards (ISO
21434). Therefore, one needs to consider security early in the
design phase, when little is known about the system. In the
start of the development process, requirements are collected
and use cases are defined. According to the principle of secu-
rity by design [1], [2], the system’s assets and threats already
have to be defined in this phase. The system architecture is
then iteratively refined and finally implemented. Before any
new functionality is released, it must be checked that every
security assumption made in any of the phases is met. The
state of the art for this check in practice are manual code
reviews by security experts. Since such reviews are expensive
and error-prone, they are only performed on selected code
parts, leaving a large leeway for security threats [3], [4].

In the context of software architecture design, threat analysis
techniques, like Microsoft’s STRIDE [5], attack trees [6],
CORAS [7], and threat patterns [8] aim to identify security
threats to software systems. Threat analysis is very helpful

to detect security threats early and plan countermeasures to
mitigate them. Yet, empirical evidence shows that existing
threat analysis techniques can be manually labor intensive [9]
and lack in automation [10]. Furthermore, design-level models
are seldom kept in sync with the implementation, potentially
resulting in architectural erosion and technical debt [11].

Threat analysis is often performed on a graphical repre-
sentation of the software architecture called Data Flow Di-
agram (DFD, [12], [13]). DFD-like models are extensively
used in practice, e.g., in the automotive industry [14] and at
Microsoft [5] as part of their STRIDE methodology. Still, the
DFD notation is informal and lacks the ability to specify secu-
rity properties, which is needed to reason about security threats
at the design level. To support the detection of problematic
information flows at the design level, previous work extends
the DFD notation with security-relevant information [15] and
security semantics [16]. However, the outcomes of such detec-
tion are of limited value if the implementation does not comply
with the security properties described in the DFD model.

This work aims to support the discovery of secure data-flow
compliance violations between the designed and the imple-
mented security properties in a software system. We present a
technique that automatically establishes mappings between a
design-level model enriched with security-relevant informa-
tion (Security Data Flow Diagram, short: SecDFD) and an
implementation-level model (Program Model). These map-
pings can be used to discover compliance violations of secure
data-flow properties (typically, data confidentiality and data
integrity properties) as follows: The designed data flow is cap-
tured in the SecDFD model. The actual data flow is obtained
from implementation-level data-flow analysis tools (discussed
later). These tools typically require sophisticated meta-data
(e.g. an explicit tagging of security-critical data and functions)
as input, which can be obtained from our mappings. Finally,
our mappings also support the designer in an early discovery
of implementation absence, convergence, and divergence with
respect to the planned software design, including its security
properties. We make the following contributions:

(i) We present an automated technique for establishing map-
pings between SecDFDs and program models, thereby
supporting the discovery of secure data-flow compli-
ance violations. The key idea of our technique is



twofold. First, we define a mapping between SecDFD
and program-model element types, constraining how
elements of a concrete system can be mapped to each
other. Second, we combine similarity-based matching
of element names with structural heuristics (based on
data-flow properties) to automatically derive suggested
mappings between the SecDFD and the program model.

(ii) We present an incremental methodology, in which the
user is involved to successively discover new mappings
and eventually derive an adequate mapping.

(iii) We present our implementation of the approach as a
publicly available Eclipse plugin and the evaluation of
its accuracy on five open source Java projects (including
Eclipse secure storage [17]).

The rest of the paper is organized as follows. Sec-
tion II describes the background, including the design and
implementation-level models. Sections III introduces the ap-
proach, and Section IV describes the evaluation results and
their discussion. The related work is presented in Section V,
and the limitations of this work are discussed Section IV-C.
Section VI presents the concluding remarks.

II. BACKGROUND

This section describes the background on design-level mod-
els, architectural compliance checks, and implementation-
level models. We consider the Eclipse secure storage [17]
to illustrate the models considered in this work. The secure
storage allows plugins to store and access secret data. This
functionality is used, for example, by the Git extension of
Eclipse to store user names and passwords [18].

A. Design-level model

Various different model kinds are used for specifying a
system’s data processing procedures at design time. Apart from
DFDs, frequently used notations are activity diagrams [19]
and business process models (BPMN, [20]). Our rationale for
focusing on DFDs is twofold: First, they are widely applied
in practice, specifically, in the automotive industry [14] and at
Microsoft [5] as part of their STRIDE methodology. Second,
they represent an essential set of concepts necessary for data-
flow analysis (processes and data flows between them), which
be can mapped exhaustively to activity diagrams and business
processes, rendering our mapping generation technique also
applicable to these model kinds. Thus, while we introduce
our technique for DFDs, it can be applied to a broad range of
modeling languages supporting data flow modeling. In what
follows, we introduce DFDs and a security extension which
allows to include security-relevant information in DFD mod-
els [21], [15], as we require for checking consistency between
planned security and implemented security properties.

a) DFDs: A Data Flow Diagram (DFD) is a graphical
representation of the software architecture and the information
it handles [5]. It represents how the information enters, leaves,
and traverses the system. The DFD consists of processes
(active entities), external entities (e.g., 3rd parties), data stores
(where information rests), data flows (carrying the exchanged
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Fig. 1: A DFD for Eclipse secure storage.

information), and trust boundaries (signaling trust levels).
Fig. 1 depicts a DFD for the Eclipse secure storage. The plugin
attempts to access a secret by sending a request including
path information of where to look for the secret (e.g., a
password request for a user name of a Git account). The secure
storage queries an internal tree-like data structure to find the
corresponding node containing the secret. Next, the cache is
queried for the secret value, which can be in clear text (i.e.,
secret on flow 5 in Fig. 1) or encrypted (i.e., encr data on flow
6). If the value is in clear text, the secret is sent to the plugin. In
case of an encrypted value, a decrypt operation either fetches
the root password from the operating system or prompts the
user to provide it. Upon a successful decryption, the secret
is sent to the plugin (flow 9 in Fig. 1). Though useful for
performing architectural threat analysis [22], we do not use
trust boundaries in our work.

b) Security Extension: To capture security properties at
the architectural level, we propose to use Security Data Flow
Diagram (SecDFD, [16]). SecDFD is an intuitive graphical
notation that enriches DFD with security concepts to enable a
formally grounded information-flow analysis, focusing on the
confidentiality and integrity of information assets. Specifically,
assets can be tagged as high or low confidentiality. Process
nodes can tagged with security contracts that define how the
security properties of assets change upon exiting the node.
In our example, if a plugin requires permissions that are
cached encrypted, the user must provide a password when
prompted (c.f. pass. ext. in Fig. 1). Since the password is
confidential, it should not be leaked to other plugins running
in the environment. To specify this behavior, a designer would
add appropriate tags to the DFD shown in Fig. 1. The specified
security properties can be propagated from the SecDFD to the
code using the mappings created by our approach. They can
then be used as input for code-level analysis tools, thus en-
abling compliance checks between planned and implemented
security properties (see Sect. III-E). For the concrete syntax
and semantics of SecDFD we refer the reader to [16].

B. GRaViTY Program Model

To create a mapping between SecDFDs and their concrete
implementation we need an easy to analyze representation of
the source code. Representations such as abstract syntax trees
(AST) contain every detail from the implementation, which
makes it hard to analyze for security purposes. Many details

2



:TPackage

tName = "storage"

:TClass

tName = "SecurePreferencesWrapper"

:TClass

tName = "SecurePreferences"

:TMethodDefinition

:TMethodSignature :TMethodName

tName = "get"

:TMethodDefinition

:TMethodSignature:TParameter

:TParameter

:TClass

tName = "String"

:TPackage

tName = "security"

:TMethodName

tName = "getPassword"

:TMethodDefinition

:TClass

tName = "SecurePreferencesRoot"

:TMethodSignature

contains

defines

definitions

signatures

defines

call

definitions

signatures

parameter

parameter

typetype returnTypereturnType       

childparent

call

contains contains

defines

definitions

signatures

Fig. 2: Excerpt from the Program Model of the Eclipse secure storage (shown as UML object diagram).

about the implementation are not required for our approach.
At the same time, important information is not always directly
accessible. For example, in the source code files or an AST
accesses of fields are not directly visible as access edges
between the source and the accessed field, but are access
statements within the source to some field with a given name.
For our approach, it is only important to know that there is an
access to a specific field from some source, but we don’t need
to know every detail about the circumstances of this access.
The program model creates a more suitable abstraction for
security analysis and allows easy queries, which were very
useful for our approach.

A program representation which has been designed to make
information about the structure of a program easily accessible
and to abstract not relevant information from the statement
level has been proposed by Peldszus et al. with the GRaViTY-
framework [23], [24], [25]. The GRaViTY-framework has been
used for the evaluation and execution of refactorings [24], for
the detection of anti-patterns [26], as well as for the automated
design optimization of Java applications [27].

Fig. 2 shows an excerpt of the program model created
by the GRaViTY-framework for the Eclipse Secure Storage
example. The figure shows two method calls. The first call
is from the method get(String, String), defined in the class
SecurePreferencesWrapper, to the method get(String, String,
SecurePreferenesContainer) of the class SecurePreferences.
The second call is from the called method of the first call to the
method getPassword(String, IPreferencesContainer, boolean)
which is defined in the class SecurePreferencesRoot.

On top of the figure we can see the package structure of
the program. All packages without a parent can be taken as
entry point for a search. Additionally, it is possible to iterate
over all types directly. In the figure the types, in this case
all are classes, are shown in the second row, each with a
reference to the members defined within the type. In the figure
for the three classes SecurePreferencesWrapper, SecurePrefer-
ences, and SecurePreferencesRoot only a single method each
is shown. Methods are represented by an triple of method
name, method signature and method definition. This allows an
efficient search for specific methods, starting with the method
name, going over signatures to concrete definitions for them.
Method signatures have parameters which have a reference to
the type representing the parameters type and a reference to the
return type. In the program model excerpt only the parameters

of the signature get(String, String):String are shown.
A benefit for our mapping from SecDFD to Java imple-

mentations is the possibility of an iterative search, starting
only with little knowledge about the searched elements–e.g., a
method name. The program model allows to start a search with
such little information and to find more concrete elements by
considering more information like method parameters without
iterating over all method definitions defined in the source code.
This makes the searches more efficient and easier.

C. Compliance

Identifying the differences and equivalences between the
planned and the implemented software architecture is the goal
of software architecture compliance checking. The compliance
checks can be based on a static set of rules [28], dynamic
monitoring of a running system [29], or a hybrid of both [11].
In our work, we statically check the compliance of design-level
models to implementation-level models. Running compliance
checks reveals the relations between a set of components of
the first (design-level) model and a set of components of
the second (implementation-level) model. As outcome, three
different types of relations can be discovered.

a) Convergence: The compliance checks reveal an al-
lowed relation between the implemented components. Con-
vergence indicates that the implementation is compliant with
the planned architecture. In this work, convergence means that
the user has accepted a suggested mapping or has manually
defined a mapping.

b) Divergence: The compliance checks reveal a relation
between the implemented components that is not allowed. In
other words, the implementation diverges and is therefore not
compliant to the planned architecture. In this work, divergence
means that there are flows of assets in the implementation
which haven’t been defined in a DFD. We look for elements
that relate to existing mappings to find the relative parts of the
implementation.

c) Absence: The compliance checks reveal a relation
between design-level components that were not implemented.
Absence indicates that the source code is not compliant with
the planned architecture due to a missing implementation. In
this work, divergence means that the user finished using our
approach, but there are still design-level elements that have
not been mapped.
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Fig. 3: Semi-automated Mapping of Implementations to DFDs

III. ENABLING COMPLIANCE CHECKS WITH AUTOMATED
MAPPING GENERATION

Assuming a correct DFD, the way it is implemented can
vary depending on concrete design (e.g., architectural patterns)
and implementation specific decisions (e.g., programming lan-
guage). Therefore, a full automatic generation of a correct and
complete mapping between DFDs and code is not feasible. Yet,
a manual specification of the same mapping is inefficient and
error-prone. To this tend, we propose an iterative methodology
for interactively guiding the user in finding an adequate map-
ping by combining automated mappings with user decisions as
shown in Fig. 3. In step 1, mappings between DFD elements
and implementation elements are calculated using a heuristic
technique. In step 2, these mappings are presented to the user
and manually checked by her. In step 3, the user can manually
map additional elements. Afterwards the automated mapping
is executed again, benefiting from the user input. The process
terminates when the user cannot find any additional mapping
or finds a violation.

In this section we describe the steps of our methodology,
including the automated technique, in detail. In addition, we
explain the use of these mappings in compliance checks. In
Sect. III-A, as a basis for mappings in concrete systems,
we define a mapping of DFD to element types that may
correspond to each other. In Sect. III-B, we show how our
automated technique in step 1 establishes concrete mappings
between DFDs and their implementations by using a naming-
and structure-based heuristics. In Sect. III-C and III-D, we
explain the interactive steps 2 and 3 of our techniques. In
Sect. III-E and III-E2, we argue how the created mappings
can be used for checking general compliance and security
compliance of the implementation with the DFD.

A. Corresponding Elements

As a prerequisite for mapping DFD elements to code
elements, first we have to define which DFD element can
correspond with which code elements.

• Assets → types: The assets in a DFD are the elements
holding critical data. On the level of implementation, data
is usually stored in fields, processed using variables and
transmitted using parameters and return values. A single
asset can be stored in many different locations at the same
time which makes it infeasible to map an asset to every
single location. The only property of an asset which only
changes rarely in programs, written in an object-oriented
languages, is the type of the asset.

dfd:Process pm:TMethodName
++

Constraint: equivalent(dfd.name, pm.tName)

Fig. 4: Rule describing the name matching for methods

:Asset :TAbstractType

:Process :TMethodName

:TMethodSignature++:Flow

signatures

returnType

outFlows
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Fig. 5: Rule for extending name matches based on return types

• Data stores → types & methods: If we think about
data stores like the cache in the example DFD, it is quite
obvious that this could be a field in some class. But it
could also be implemented by an operation which, e.g.,
requests the cached values from an external server by
creating HTTP requests. The thing in common between
these two variants is the type used to store the data in.
The field has a type which provides getters and setters
for using the data store, and the method used to get data
from a remote server is implemented in a type. Therefore,
we map data stores to types as well as to the methods
used for accessing the stored data.

• Processes → method(-names): Processes in DFDs de-
scribe functionalities which process data, like methods
in implementations do. Obviously, these two elements
correspond with each other. While a concrete method
definition in an implementation contains all details de-
scribing the functionality of this method, the processes
only have a name describing the functionality. We assume
that a developer implementing a process will chose a
similar name for the methods implementing this process.
This leads us to a correspondence between the names of
processes and the names of methods.

• Processes + Assets → method parameters: Between
processes in a DFD, data can be exchanged using flows,
where the exchanged data are represented by assets on
the flows. In the methods implementing these processes
the same data have to be exchanged. Data between
methods in implementations are usually exchanged using
parameters and return values. Therefore, we can combine
the name mappings between processes and methods with
the assets flowing into and out of a process to method
parameters giving us the according method signatures.

B. Semi-automated Mapping

In what follows we discuss the steps of our automatic
generation of mappings in detail.

1) Automated Mapping of Elements: The automated gener-
ation of mappings is based on name matchings and structural
heuristics, which are sequentially executed and complement
each other. For illustration, we formalize two of our mappings
using graph rules, using a notation inspired by algebraic graph
transformation [30] (explained below). The other mappings
can be formalized in a similar way.
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a) Name matching: First, the names of elements from a
DFD are mapped to the according names in the implementa-
tion. Asset and data store names are mapped to the names of
types and process names are mapped to the names of methods.
Fig. 4 shows a rule for mapping processes from a DFD
to method names from a program model. A correspondence
(visualized as circle connecting the corresponding elements)
between a process and a method name is created (denoted
by ++) if the constraint at the top of the rule holds. In this
case the names of the two elements on the left and right of
the rule have to be equivalent. The precise definition of this
equivalence is described in what follows.

Names, both in a DFD and in a Java implementation, are
usually build by concatenating multiple words. For example,
a Java method name getPassword consists of the word get and
password. These words can vary slightly in the names of the
corresponding DFD processes (e.g., in plural form, passwords
instead of password). In addition the style of word concatena-
tion can differ. In Java usually the camel case (getPassword)
is used, whereas in DFDs this is not a prescribed style, so
underscores may also be used (Get_Passwords).

To deal with these issues, first, we split the strings at
frequently used delimiters and upper-case characters. This
gives us for the example the sets of words [get, Password] and
[Get, Passwords]. Then we compare the lower-case versions
of the words with each other using a fuzzy compare based on
the Levenshtein distance [31]. The Levenshtein distance is a
measure of the minimal amount of characters which have to be
removed, added or flipped to change one word into the other
one. For the given example this distance is zero and one as
the first word is already identical and only the character s has
to be added to change password into passwords. We accept
different distances between words for considering them as
identical according to the length of the words to be compared.

Finally, a DFD process is usually implemented in multiple
methods, typically having slightly more concrete names. For
example besides the method getPassword, there might also
be an additional method internalGetPasswod involved in the
implementation of the process Get_Passwords. But the DFD
process name might also contain additional information – e.g.
the process get_Passwords_External of the DFD in Fig. 1. To
address this challenge, we compare all words from the two
names with each other and count the similar words. If this
number reaches an threshold of more than half the number of
the average words of the compared names, we consider the
names sufficiently equal.

For the example DFD in Fig. 1 and the program model
excerpt in Fig. 2 we get a name match between the Get_Value
process and the two method names get and getPassword as
well as a match between the process Get_Passwords_External
and the method name getPassword. While two of this matches
are expected, the match between Get_Value and getPassword
is unexpected and should be dropped in the following steps.

b) Extending Name Matches to Method Signatures: For
every method name, multiple signatures may exist. Even if
our name matches were always perfectly correct, this would

not imply that all signatures with this name are the ones
corresponding to the according process. For example, besides
the relevant signature getPassword(String, IPreferencesCon-
tainer, boolean):PasswordExt, there might be a second signa-
ture getPassword():char[] defined in the Java standard library
which is never used in the implementation. To identify the
actually relevant signatures, we use data-flow information
about assets flowing into and out of a process. Information
flowing into a process has to be passed to the implementation
of the process, for example, as a parameter value. Likewise,
information leaving a process can leave it over return values
and parameters. Accordingly, we can use the mapped assets
to identify relevant signatures. For every signature, we count
how many mapped assets are compatible with the parameters
and return types of the existing signatures. If we have at least
one match we consider this signature for further mappings.

A rule for extending a process mapping based on an asset
flowing out of a process is shown in Fig. 5. On top of the
rule we can see an existing mapping between a process and a
method name, as e.g. created by the rule shown in Fig. 4. A
mapping to one of the signatures having this name is created
if there is an mapping between an asset flowing out of the
process and a type which is the return type of the signature.

If we look at the return type of the signature get(String,
String):String and assume that the secret asset from Fig. 1
has been mapped to the class java.lang.String we’ll accept
this signature as corresponding with the process Get_Value.
The other method name corresponding with this process was
getPassword. The return type of this method signature is
PasswordExt and also no parameter type is matching to an
asset. Accordingly, we don’t create a correspondence.

c) Finding Implementations of Signatures: The last step
is to find concrete implementations of a signature correspond-
ing with the process. For every signature there might be sev-
eral concrete implementations, all of which do not necessarily
correspond to the process. We make use of the flows between
different processes to find the concrete definitions.

If there is a flow from one process to another, this does
not only mean that there has to be a signature which has the
capability to return or receive the according asset. There also
has to be a definition of this signature which is called from a
definition in the other process. Therefore, we search for two
kinds of data flows between the concrete definitions of the
signatures found before.

1) Parameters passed by a call from the source of a flow to
to the target of the flow.

2) Return values returned along a call from the target of a
flow to the source of the flow.

The flow between two such definitions is not neces-
sarily a single direct call between the two definitions.
There can also be multiple definitions in between for-
warding data. For example we can see in Fig. 2 a call
between the methods get(String, String, SecurePreferenes-
Container):String and getPassword(String, IPreferencesCon-
tainer, boolean):PasswordExt but in the DFD in Fig. 1
there is no flow between the processes Get_Value and
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Get_Passwords_External, they have been mapped to. In the
implementation the get method forwards the return value of
getPassword to a call of method decrypt which has been
mapped to the process Decrypt_data. Matching this inter-
mediate to one of the two involved processes is non-trivial.
However, if we found such a flow, we can definitely assume
that we found two definitions implementing at least parts of
the two processes.

The intermediate definitions can be partly mapped to one
of the two processes by considering the internal coupling in
a process. For every pair of signatures mapped to the same
process, we look for pairs of definitions calling each other.
For example, this is the case for the definition of the signature
internalGetPassword, which is called by getPassword(String,
IPreferencesContainer, boolean):PasswordExt.

d) Cleanup: After matching assets and processes we
have to decide which matches are most likely to be correct
and, therefore, should be presented to the user. For that reason,
we introduce a certainty score for our mappings. This score
is calculated with respect to the quality of the underlying
name matching as well as the coupling of matched elements
with other matched elements. For every DFD element we only
present mappings whose score is higher or equal to the median
score of all mappings for this element.

The mappings sorted out in this step are not presented to
the user, but may be discovered later again in the interactive
process – based on future matches, which might have a
coupling to the elements that are now discarded.

C. User Verification of Mappings

The mappings created in the previous step are now presented
to and verified by the user. For every asset-, data store-type and
process-definition mapping the user can preform three actions:

1) Accept: The user can accept the mapping. From then,
the mapping cannot be discarded by the optimization
step of the automated mapping approach anymore, and
all mappings coupled to this mapping obtain a higher
certainty score.

2) Reject: The user can reject the mapping. From then,
this mapping is never presented to the user again and
it is not considered anymore for extending it to other
mappings. All other mappings to which the rejected
mapping has been extended will be removed, too, but
might be presented to the user again.

3) Tolerate: The user can choose to ignore some suggested
mappings. Mappings that are not explicitly accepted or
rejected are suggested again and can be re-assessed in
future iterations.

Mappings accepted or rejected by the user allow the heuris-
tic to automatically discard related mappings that have only
been found by following up the rejected mapping. This is how
the search space is reduced in the next automated iteration.
Conversely, manually accepting mappings can lead to the score
of related mappings being increased and, for this reason, allow
to propose new mappings which haven not been considered as
correct ones before. Anyhow, a limitation of our heuristic is

that they cannot detect mappings which are outside of the
search space created by the initial name mappings. We are
overcoming this limitation in our approach by including user
feedback as described in what follows.

D. Manual Mapping of Elements

To increase the search space, an additional user step is
conducted after the user manually verified the automatically
created mappings (or at least a part of them). In this step, the
user has to add at least one new mapping to give additional
input to the automated mapping algorithm. The selection of
this manually mapped element can have a large impact on the
efficiency of the following automated steps.

E. Compliance Checks

The created mapping can be used to perform different
kinds of compliance checks. At first it can be checked if
the implementation corresponds with the specification in the
DFD. Afterwards the mappings can be used to perform more
sophisticated security analyses on the code using security
information from the SecDFDs.

1) Compliance of Models and Code: The correspondence
checks take place while the mappings are created. Using
the proposed approach, we check for the three kinds of
correspondences introduced in section II-C:

a) Convergence: All DFD elements which have been
mapped to implementation elements and have not been re-
jected are allowed to be mapped. Following the definition of
convergence, the convergences between the DFDs and the code
are described by the set of all allowed mappings.

b) Divergence: Elements present in the code, but not
specified in the DFD represent a divergence between the
DFD and code. To help the user discovering divergences, it
is possible to show all flows from members mapped to one
process to other members not mapped to this process. If the
target of such a flow has not been mapped to any process, there
seems to be a divergence. But, a divergence also arises if there
is a flow between two processes in the code that has not been
specified on the DFD. If an critical asset is communicated
along such a flow this is not only a divergence from the
intended design but a security violation.

c) Absence: If we are neither able to map a DFD element
to the code automatically and the user is not able to map
the same element when asked, we discover an absence of
specified functionality in the code. Assuming correctness of
DFD models, we only have to consider this one direction of
absence (concerning the opposite direction, see divergence).

Using these checks, a developer or code reviewer can detect
convergences, divergences and absences between an DFD and
the implementation at hand. However, regarding security, these
checks are not precise enough: They might not reveal flows
of confidential assets into parts of the program that are not
supposed to take place – e.g., if a developer uses a full
representation of an object, instead of a stripped one. To this
end, we can perform more sophisticated security checks, as
described in what follows.
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2) Security Compliance Checks: The created mappings
cannot only be used for compliance checks of SecDFDs
and code, in terms of convergence, divergence and absence,
but they can also be used for checking the security of the
code. For this purpose multiple checks have been developed.
A first example are security metrics [32], [33] which, e.g.,
calculate relations between security-critical and non-security-
critical properties and allow an coarse estimation of the
systems security level. Additionally, there are sophisticated
path and flow analyses which can be used to detect concrete
security violations [34], [35]. Such metrics and analyses are
not directly applicable to the source code of the subjects which
should be analyzed, since they require an explicit specification
of sources and sinks of security-relevant data.

In the SecDFDs this information is explicitly given and
can be fed into analysis tools as described before. Every
asset in a SecDFD is labeled with the security properties
of confidentiality and integrity. Using the mapping created
by our approach we can identify the sources and sinks of
the assets in the concrete implementations. For instance,
the asset secret read by the plugin in Fig. 1 is read from
the cache which corresponds with a field of the type Map
in the class SecurePreferences. The correspondence
mappings make it possible to identify program locations where
proof obligations should be injected. Specifically, the Java
Modeling Language (JML) enables annotating verifiable con-
ditions for method implementations. Existing projects provide
tools (i.e., KeY [36]) for statically verifying a correct behavior
with respect to such proof obligations.

After the release of the system, the security information can
be used to monitor the system at run-time. For example JBlare
can be used to monitor sensitive information flows [37]. As
security information for internal parts of a program is usually
unavailable, JBlare can currently only be used to check IO
calls, but not if a specific piece of data is allowed to enter some
part of the program. The tracing of the security annotations
to the code can be used to allow JBlare to monitor sensitive
data flows within the program.

IV. IMPLEMENTATION AND EVALUATION

To evaluate our approach we implemented a tool prototype
on which we performed the evaluation. In this section, first, we
introduce this prototype and how it can be used by a developer
or reviewer. Afterwards, we describe the performed evaluation
and its threats to validity.

A. Implementation

The approach is implemented and packaged as a publicly
available Eclipse plugin [38]. The implementation leverages
an existing implementation for modeling SecDFDs with an
Xtext DSL with editor support [16]. We use an existing plugin
for generating the program model from Java source code [25].

Fig. 6 shows a screenshot of the user interface in Eclipse.
On the left hand side of the figure, users can see the Package
Explorer. The bottom windows are used for displaying and
defining the mappings. The top two windows are used for

Fig. 6: Screenshot of the UI in Eclipse

displaying the source code (left) and the SecDFD (right).
The target audience of the tool are software developers (or
code reviewers) with training in the principles of software
architecture. After the installation of the required packages,
the program is started as a running Eclipse instance.

The developers first manually create one or several
SecDFDs for representing the high-level architecture of a Java
project (c.f., top right window in Fig. 6). Next, using context
menu entries, the developers trigger the automated generation
of a program model from the source code, and start the
first iteration of the semi-automated process for mapping the
SecDFD elements to source code elements (see Sect. III).

At the start of each iteration, the developers are shown a list
of suggested mappings (c.f., bottom window in Fig. 6). Since
one SecDFD element is usually mapped to several program
elements, the results are grouped by the SecDFD elements.
For each SecDFD element, the list of mapped program model
elements is shown, each with its path in the source code. The
developers can interact with the tool by accepting, rejecting,
and manually defining mappings. A suggested mapping is
accepted or rejected with a right-click on the entry and
selecting accept or reject, respectively. Once a mapping is
accepted, corresponding in-line markers are created on the
SecDFD and in the source code. Double-clicking a mapping
will open the correct source file and navigate to the correct line
in the file. Accepted mappings can always be rejected. If all
the suggested mappings are correct, the developers can select
accept all. Rejected mappings will never be suggested again.
Manual definition works by right-clicking and selecting Map
Selection to SecDFD on source code elements. At the end of
the iteration, developers can either stop or select continue to
trigger a new search refining the present mapping.

B. Evaluation

In an experiment we applied our approach to five open
source projects to evaluate the performance of our implemen-
tation. In what follows, we briefly describe the design of the
experiment, the projects, and the results.

a) Design of study: In our evaluation, we investigated
the correctness of the automatically generated mappings. To
this end, we set up an experiment to compare a ground truth of
manually created mappings with the generated mappings for
each of the five considered projects. The iterative approach
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TABLE I: Projects considered in the evaluation

source code DFD

project lloc classes methods elements

jpetstore 1,221 17 277 47
ATM simulation 2,290 57 225 85
Eclipse secure storage 2,900 39 330 41
CoCoME 4,786 120 512 44
iTrust 28,133 423 3,691 31

involves the user to guide the generation of mappings in the
desired direction. As per this design choice, we intentionally
investigate the correctness of the automated mappings and the
impact of the user separately. Consequently, the evaluation
aims to answer the following research questions.

RQ1. What is the correctness of the automated mappings
generated by the plugin? We measured correctness in terms
of precision and recall (dependent variables). Conventionally,
precision (TP/(TP + FP )) is measured as a ratio between
the true positives (i.e., correct mappings) and all generated
mappings (including the false mappings). A true positive
TP is a correct mapping between the source code and the
SecDFD element which is listed in the ground truth. A false
positive FP is a mapping between the source code and
SecDFD element that is not listed in the ground truth. Recall
(TP/(TP + FN)) is measured as a ratio between the true
positives and all correct mappings (including the overlooked
mappings). A false negative FN is a mapping between the
source code and the SecDFD element which is present in the
ground truth, but has not been identified.

RQ2. What is the impact of the user on the correctness of
mappings? The implementation automatically derives trivial
mappings from the user defined mappings, raising the recall
before a new iteration starts. Therefore, the impact of the
user defined mappings is measured as the difference in recall
before, and after the added mappings.

b) Evaluation subjects: Table I depicts the characteristics
of five open source Java projects used in the evaluation.

Jpetstore [39].This is a web application built on top of My-
Batis 3, Spring and the Stripes Framework. This is an example
with very few classes, implementing the basic functionalities
of a web store. In principle, the users are able to create their
accounts, browse, and order goods online. Jpetstore has been
designed as minimal demonstration application for MyBatis,
which should have a good design and documentation. The
developers tried to strictly follow the MVC pattern.

ATM simulation [40]. This is an implementation of a simu-
lation for an ATM machine developed for academic purposes.
The ATM simulation implements the main procedure of a
control system. Upon start-up a new session is initiated, and
the users are able to insert their card and PIN number. The
session continues upon a correct PIN entry, and provides the
users with the option of a withdrawal, deposit, balance inquiry,
and money transfer. After a completion of desired transactions,
the ATM returns the card and optionally prints the receipt.

Eclipse secure storage [17]. As described in Section II,

Eclipse secure storage is used for ensuring secure storage and
management of sensitive data within the developer’s Eclipse
workspace. The secure storage allows for plugins to authenti-
cate and have controlled access to workspace resources.

CoCoME [41]. CoCoMe is a platform for collaborative
empirical research on information system evolution [42]. This
platform helps engineers manage different aspect of software
evolution, such as the system life-cycle, versioning artifacts,
and comprehensive evolution scenarios. The implemented sys-
tem is a cash register.

iTrust [43]. The iTrust example is a web application for a
hospital which allows the hospital’s staff to manage medical
records of patients, based on 55 use cases. The example
originally stems from a course project, has been maintained
by the Realsearch research group at North Carolina State
University, and was used as an evaluation example in research
papers before [44]. Detailed requirements describing different
activities are available online [43]. However, the available
requirements and use cases mostly describe very simple tasks
and only a few of them are realized in the implementation.

c) Execution: The experiment was executed by the first
and second author. The authors worked on the projects individ-
ually and compared their results at each step. First, the authors
created the SecDFDs for all five projects models manually.
To this aim, the authors inspected all available documentation
(including the source code) and reverse engineered a high-
level architecture. Second, a ground truth was created for each
SecDFD by following the execution of the modeled scenarios
and manually mapping the executed methods and transferred
data to the processes and assets of the according step. The
ground truth is a JSON file with a list of correspondence
mappings between the elements of the SecDFD and a uniquely
identifiable location of the source code element. Third, the
implemented plugin was used to find the automated mappings
in several iterations. Each iteration included accepting, reject-
ing the automated mappings, and defining mappings manually
by highlighting elements in the source code and specifying
the corresponding SecDFD elements. After each iteration the
precision and recall of the automated mappings were logged.

d) Results: This study shows promising results for guid-
ing the user in the discovery of compliance violations. In
particular, Table II shows measurements of high precision and
recall only after a few iterations for realistic Java projects.
Each iteration consists of an automated, and a manual (user
input) phase. We present the precision and recall for the
automatically suggested mappings in each iteration. We also
depict the amount of manually accepted, user defined, the
sum of all accepted and user defined, rejected mappings, and
the impact of the user defined mappings on recall (in that
order). Notice that the later iterations make use of the manually
defined mappings.

RQ1. We start by reporting the correctness of the automated
mappings in the first iteration. The average precision of the
first iteration is 50.5%. On average, the recall of the first
iteration is 69.8%. Yet, both the precision and the recall
increase after the first iteration. On average, the final precision
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TABLE II: Results of the mapping after each iteration

automated manual

project it. precision[%] recall[%] accept+u (
∑

) reject recall[%](∆)

jpetstore 1 56.1 51.1 23 + 3 (26) 18 57.8 (+6.7)
2 96.4 60.0 1 + 3 (30) 1 66.7 (+6.7)
3 96.8 66.7 0 + 5 (35) 1 77.8 (+11.1)
4 97.4 82.2 2 + 3 (40) 1 88.9 (+6.7)
5 100 93.3 2 + 3 (45) 0 100 (+6.7)

ATM 1 72.0 40.0 18 + 3 (21) 7 46.7 (+6.7)
simulation 2 67.6 51.1 2 + 5 (28) 11 62.2 (+11.1)

3 70.5 68.9 3 + 5 (36) 11 80.0 (+11.1)
4 76.6 80 0 + 4 (40) 13 88.9 (+8.9)
5 95.5 93.3 2 + 3 (45) 2 100 (+6.7)

Eclipse 1 73.0 90.5 40 + 1 (41) 14 92.9 (+2.4)
sec. storage 2 67.7 100 1 + 0 (42) 12 —

CoCoME 1 27.9 77.3 17 + 1 (18) 44 81.8 (+4.5)
2 86.4 90.5 1 + 1 (20) 2 90.9 (+0.4)
3 90.9 83.3 0 + 2 (22) 4 100 (+16.7)

iTrust 1 23.5 80.0 8 + 1 (9) 26 90.0 (+10.0)
2 81.8 90.0 0 + 1 (10) 2 100 (+10.0)

and recall of the automated phase are very good (87.2% and
92%, respectively).

The average difference between the recall of the second
iteration and the the user-impacted recall of the first iteration
(last column in Table II) is 4.5%. This means that on average,
the automated search was able to increase the recall between
the first and second iteration by 4.5%. On the other hand,
the average difference between the user-impacted recall of the
second iteration and the recall of the third iteration is minimal.
This means that, the automated search was not able to increase
the recall significantly between the second and third iteration.

RQ2. On average, the user accepted less (7) mappings
then they rejected (9.6), and defined only 2.6 mappings
manually. However, in three cases (jpetstore, ATM simulation,
Eclipse Secure Storage) the user accepted more mappings then
rejected. This means that the user could quickly scan the
suggested mappings and eliminate the ones that are obviously
wrong. Overall, adding a few mappings manually resulted
in a more fruitful next iteration. For instance, adding three
mappings manually in the first iteration of evaluating the ATM
simulation resulted in two new correct mappings (see accepted
mappings of the second iteration).

On average, the user impact on the recall was an increase
of 7.9%. This means that the users were indeed able to guide
the discovery of compliance violations. Further, the users had
a larger impact on increasing the recall in later iterations
compared to the automated search (7.9% vs 4.5%). Notice, that
on average 75% of all correct mappings (TP ) are suggested
to the user and do not have to be manually defined.

e) Additional observations: While we where executing
the evaluation we made different observations which are not
directly covered by our research questions, but give further
proof for the effectiveness of our approach.

1) All DFDs where created based on the available documen-
tation. At executing the evaluation on the ATM simulation

we recognized an absence between the created DFD and
the implementation. Further investigations revealed that
there is really an absence between the documentation of
the ATM simulation and its implementation.

2) At studying the different examples from our evalua-
tion we noticed big differences between the different
implementations. The more realistic or real examples
(Eclipse secure storage, CoCoME and iTrust) have a
much better structured source code than the other two
more artificial examples. While in the realistic examples
functionalities are implemented in multiple methods, in
the artificial examples single methods realize multiple
functionalities. These differences are one of the reasons
why our technique performed better on the realistic, larger
examples. An hypothesis to be studied in the future is that
writing the code with the DFD in mind can help structure
it better and get better mappings.

3) In the experiments we had to manually accept and reject
proposed mappings repeatedly. Thereby we learned that
users can reduce the amount of necessary clicks by first
rejecting asset mappings, then accepting process map-
pings and in the end accepting asset mappings and reject-
ing process mappings. This order ensures that a maximal
amount of rejects and accepts is performed automatically.

C. Threats to Validity

Our experiment is subject to a number of threats.
The main threat to external validity is our selection of

samples, based on a limited number of open source projects,
partially originating from a teaching context. The rationale for
our selection was the manual effort for creating the ground
truth of our technique, a full mapping between high-level
DFD elements and low-level program elements. However, as
a result, the generalizability of the results to larger project in
other domains is limited. To mitigate this threat, the considered
projects were chosen to be representative for realistic projects
by providing a good documentation, including architectural
information (such as, wikis, use cases, scenarios, requirements,
state charts, and the like). The available documentation en-
abled building good design models, close to the intended
architecture. We plan to extend the evaluation in the future
to include a more comprehensive set of projects.

Regarding internal validity, the main threat of our evaluation
is researcher bias. In absence of pre-existing ground truths
and design models, the ground truth and design models for
our evaluation were created manually by the authors, possibly
introducing a risk of creating a biased result. To mitigate this
threat, the ground truths and the design-level models were
carefully discussed between all authors. The created models
and ground truths are of similar size and complexity and are
available online: [38].

With respect to construct validity we consider the threat
of misinterpreting divergence, absence, and convergence com-
pliance violations in the context of design-level models and
implementation-level models. However, to the best of our
knowledge, our interpretations are in-line with the existing
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literature [11]. As such, the implementation of the ap-
proach does not perform low-level static or dynamic checks
to verify the intended security properties of SecDFD assets.
This threatens the intension of the approach to holistically
analyze security properties. We discuss the possibilities to
extend the plugin to include static and dynamic check as
future work. The implemented plugin only notifies the user
about the accepted, defined, and missing mappings with in-line
information markers. Thus, the user decides what compliance
issues the mappings identify. Yet, the implementation can be
easily extended to support active proposals of compliance vi-
olation types.

V. RELATED WORK

Existing works on maintaining security consistently in dif-
ferent development stages focus on forward and reverse engi-
neering, that is, the automated transformation of a more high-
level to a more technical representation, and back. Considering
forward engineering, Ramadan et al. [45] use model trans-
formation to automatically generate security-annotated UML
class models [1] from security-annotated BPMN models. For
the classical reverse engineering scenario from source code to
UML class models, Peldszus et al. [46] propagate hand-crafted
security annotations from source code to the corresponding
elements in automatically extracted class models. Most closely
related to ours is the approach of Abi-Antoun et al. [47],
which is concerned with DFD-to-code conformance checks.
They automatically reverse engineer a DFD from the given
implementation, calling it source DFD. The user has to specify
a mapping between a manually created high-level DFD and
the source DFD, which is then used to uncover inconsistencies.
In contrast to this manual approach to mapping, our approach
is semi-automated: It automatically proposes an initial set of
mappings, which is iteratively refined based on user feedback.

Similar to our considered problem of mapping DFD ele-
ments to code, feature location techniques aim to find the
code assets that contribute to the implementation of a given
feature. Two existing surveys [48], [49] summarize the variety
of available techniques, which largely differ in their assumed
input, program representation, and required degree of user
interaction. Most closely related to ours are those works that
derive an initial mapping based on name similarities and use
it as input for a structural search. Zhao et al.’s approach [50]
assumes as input a set of features provided by means of one
textual description for each feature. They use a information
retrieval technique called Latent Semantic Analysis (LSA) to
identify a set of seed elements deemed as relevant for each
feature. They then filter a call graph representation of the
input program to remove those branches that do not include
a relevant element. Strüber et al.’s approach [51] uses LSA
in the same way, then scores all elements based on topology
measures and assigns each element to the feature it is deemed
most relevant for. Font et al.’s approach [52] assumes user-
specific input seeds that they extend with a genetic algorithm
to generate a candidate for the implementation of the given
feature; a textual description of the input feature is then used

to judge the relevance of the identified fragment. In contrast to
feature location techniques, which use textual descriptions and
manually specified mappings as input, we rely on a different
source of information. Our heuristics exploit the rich structural
information given by the input DFDs to guide the search of the
program model; that is, we exploit an assumed correspondence
between the two models being available in our scenario.

Beyond the security scope of this paper, conformance check-
ing is generally a well-studied topic in model-driven engi-
neering. Paige et al. [53] use meta-models as the common
reference point to enable conformance checks between di-
agrams representing different views on a system. Diskin et
al. [54] present a framework for global consistency checks of
heterogeneous models based on constraints. By supporting the
explicit specification of overlaps between the considered mod-
els, they avoid the need for a global meta-model. Expanding
on this work, König and Diskin [55] improve the efficiency of
this approach by supporting an early localization of relevant
parts of the models whose consistency is to be checked. Reder
and Egyed [56] propose an efficient approach to consistency
checking based on predefined consistency rules. However,
none of these works address security, and an application to
data flow-related threats as addressed by DFDs is not obvious.

VI. CONCLUSION AND FUTURE WORK

We presented an interactive, semi-automated approach for
mapping concrete implementations to SecDFDs with the aim
to perform conformance checks of the implementations with
the SecDFDs as well as security checks on the implemen-
tations. In the proposed approach mappings are iteratively
calculated by heuristics and are presented to a user for veri-
fication. Furthermore, the user guides the automated mapping
by actively adding additional mappings. We demonstrated how
users of our approach can discover convergence, absence and
divergences between the SecDFDs and their implementations
as well as how the security information available in the
SecDFDs can be used for executing security analyses on the
source code level.

The approach has been evaluated on five open-source
projects (including Eclipse secure storage [17]) and shows
good precision and recall for the initial, automatically created
mapping. Our evaluation shows that new mappings can be
found by considering the user input in later iterations. Conse-
quently, both the user and the proposed heuristics contribute
to the discovery of new mappings. All in all the user is not
only guided through the implementation by our tool, but also
assisted in creating the mappings between SecDFDs and their
implementations.

In this work we only studied how we can feed security
information from the SecDFDs into existing security analysis
tools using the mappings created in this work. In future we
will use the mappings to explicitly verify whether the security
contracts defined on the SecDFDs can be verified in the imple-
mentation. Furthermore, we will study how the heuristics can
be improved by considering additional information available
in other notations like UML activity diagrams.
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