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ABSTRACT
Owing to the ever-growing need for customization, software sys-
tems often exist in many different variants. To avoid the need to
maintain many different copies of the same model, developers of
modeling languages and tools have recently started to provide
representations for such variant-rich systems, notably variability
mechanisms that support the implementation of differences between
model variants. Available mechanisms either follow the annotative
or the compositional paradigm, each of them having unique benefits
and drawbacks. Language and tool designers select the used variabil-
ity mechanism often solely based on intuition. A better empirical
understanding of the comprehension of variability mechanisms
would help them in improving support for effective modeling.

In this paper, we present an empirical assessment of annotative
and compositional variability mechanisms for class models. We re-
port and discuss findings from an experiment with 73 participants,
in which we studied the impact of two selected variability mecha-
nisms during model comprehension tasks. We find that, compared
to the baseline of listing all model variants separately, the anno-
tative technique did not affect developer performance. Use of the
compositional mechanism correlated with impaired performance.
For two out of three considered tasks, the annotative mechanism
is preferred to the compositional one and the baseline. We present
actionable recommendations concerning support of flexible, tasks-
specific solutions, and the transfer of established best practices
from the code domain to models.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering; Software product lines.
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1 INTRODUCTION
Variant-rich systems can offer companies major strategic advan-
tages, such as the ability to deliver tailor-made software products
to their customers. Still, when developing a variant-rich system,
severe challenges may arise during maintenance, evolution, and
analysis, especially when variants are developed in the naive clone-
and-own approach, that is, by copying and modifying them [62].
The typical solution to these challenges is to manage variability
by using dedicated variability representations, capturing the differ-
ences between the variants [81]. An important type of variability
representation are variability mechanisms, which are used to avoid
duplication and to promote reuse when implementing variability
in assets such as code, models, and requirements documents. Over
more than three decades, researchers have developed a plethora of
variability mechanisms, albeit mostly for source code [8, 15, 82].

As companies begin to streamline their development workflows
for building variant-rich systems, they recognize a need for vari-
ability management in all key development artifacts, including
models. The use of models is manifold, ranging from sketches of
the system design, to system blueprints used for verification and
code generation. The car industry is particularly outspoken on
their need for model-level variability mechanisms. For example,
General Motors named support for variation in UML models as a
major requirement [37], and Volkswagen reports large numbers of
complex, cloned variants of Simulink models in their projects [67].
Beyond automotive, the need for model-level variability has been
documented for power electronics, aerospace, railway technology,
traffic control, imaging, and chip modeling [16].

Recognizing this need, researchers have started building vari-
ability mechanisms for models. Variability mechanisms are now
available both for UML [9, 25, 69] and DSMLs [7, 42, 77]. Building
on these results, researchers have started to address advanced prob-
lems such as the migration of a set of “cloned-and-owned” model
variants to a given mechanism [11, 54, 64, 67, 88], and efficient
analysis of large sets of model variants [22, 28, 59]. Adoption in
several industrial DSMLs has demonstrated the general feasibility
of model-level variability mechanisms in practice [80].

While variability mechanisms for source code are reasonably
well understood [15, 55, 82], language and tool designers are offered
little guidance on selecting the most effective variability mechanism
for their purposes. In fact, there is a lack of evidence to support the
preference of one mechanism over the other. In line with previous
studies on code-level mechanisms [35, 36, 49, 55], we argue that
comprehensibility is a decisive factor for the efficiency of a variabil-
ity mechanism—for any maintenance and evolution activity (e.g.
bugfixing, feature implementations), the developers first need to
understand the existing system. A better empirical understanding
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of the comprehension of variability mechanisms could support the
development of more effective modeling languages and tools.

To this end, we present an empirical study of variability repre-
sentations in models. In a fully randomized experiment performed
with 73 participants with relevant background, we studied how the
choice of variability mechanism affects performance during model
comprehension tasks. We consider two selected variability mecha-
nisms that are representative for the two main types distinguished
in the literature [47]: Annotative mechanisms maintain an inte-
grated, annotated representation of all variants. Examples include
preprocessor macros [72] (for code) and model templates [25] (for
models). Annotative mechanisms are conceptually simple, but can
impair understandability since they clutter model or code elements
with variability information [55, 72]. Compositional mechanisms
allow to compose a set of smaller sub-models to form a larger model.
Examples include feature-oriented programming [10] (for code) and
model refinement [34] (for models). Compositional mechanisms are
appealing as they establish a clear separation of concerns, but they
involve a composition step which might be cognitively challenging.
We aimed to shed light on the impact of these inherent trade-offs.

As a baseline for comparison, we consider a third solution of
listing model variants individually, which we call the “enumerative
mechanism.” As a particularly simple solution, this supports a richer
comparison of the considered mechanisms. Despite its use in prac-
tice [80], this solution is problematic as a standalone representation.
We discuss the implications of our baseline solution in Sect. 5.4.

Our focus is on class models, a ubiquitous model type: Class
models are the most frequently used part of UML [52, 60], due to
their role in system design and analysis. In code generation contexts,
they are used to generate data management components (e.g., large
parts of enterprise web and mobile apps can be generated from class
models [50, 57, 84]), object-oriented code in roundtrip engineering
scenarios [17], and ample MDE tooling in modeling platforms, such
as EMF [74]. In aeronautics, class models are used in AIXM, a
massively used information exchange format [32]. Furthermore,
they are representative for a wide array of visual languages based
on the graph paradigm, such as ER diagrams and DFDs.

We make the following contributions:

• We present a quantitative analysis of correctness, the com-
pletion time, and subjective assessments of our participants
for six model comprehension tasks.

• We present a qualitative analysis of participant responses,
adding rationale to explain the observed results.

• Based on our synthesized findings, we propose recommen-
dations for language and tools developers.

• A replication package [12] that includes our experimental
material, anonymized responses, and analysis scripts.

We present the first study on variability mechanisms for models.
While earlier studies have investigated the comprehensibility of
code variability mechanisms (see Sect. 7), their generalizability to
models is unclear. Code usually has a tree-like structure and is ex-
pressed in textual notations. Modeling languages support the struc-
turing of models in a graph-like manner and usually have graphical
notations. Since different representations are known to affect per-
formance during decision-making tasks [85], specifically, software

engineering tasks [3, 51], we argue that the comprehensibility of
model variability mechanisms requires a dedicated investigation.

2 BACKGROUND
There has been a recent surge of interest in dedicated variability
mechanisms for models. Lifting the related distinction from code-
level mechanisms, two main types are distinguished: Annotative
mechanisms represent variability with an annotated integrated rep-
resentation of all variants. Mechanism in this category are model
templates [25, 42, 79] and union models [5]. Compositional mech-
anisms represent variability by composing variants from smaller
sub-models. Available approaches mostly differ in their model frag-
ment syntax and composition strategy. Examples are delta modeling
[21], model superimposition [9], and model refinement [34].

To illustrate the role of both types of mechanisms in industry,
we refer to a recent survey of variability support in 23 DSMLs [80].
They describe four strategies being used: First, a model represents
one variant (9 languages); second, elements are reused across mod-
els by referencing (10 languages); third, multi-level modeling is
used for capturing variability (1 language); fourth, elements have so-
called presence conditions (explained shortly, 3 languages). The first
strategy is considered as a baseline in our experiments. The second
and third one are compositional, as they spread differences between
variants across several smaller models. The fourth one is annotative.

We selected the two variability mechanisms for our experiment
based on the following criteria: (M1) The mechanism has a graphical
syntax. (M2) The mechanism is supported by available tools. (M3)
The mechanism has been described in scientific literature. The ratio-
nale for M1 was to study variability mechanisms in the widespread
graphical representation of class diagrams. Support by available
literature (M2) and tools (M3) may contribute to the transfer of exist-
ing research results to industrial practice, and allows practitioners
to test the mechanisms in an available prototype.

Based on these criteria, as annotative mechanism, we identified
model templates (implemented in FeatureMapper [42], SuperMod
[69], and Henshin [77]). For compositional, we identified two exist-
ing approaches fulfilling the criteria: Delta modeling (implemented
by DeltaEcore [70] and SiPL [61]) and model refinements (imple-
mented by eMoflon [7]). We decided to consider model refinements,
as they implement the compositional paradigm in the most straight-
forward way (delta modeling supports deletions, which increases its
expressiveness, but requires a more complex syntax and semantics).

Example.We illustrate the specific variability mechanisms used in
our experiments with a simple example, inspired by Schaefer [66].
The same example was also used in the experiment to introduce
the variability mechanisms to the participants.

The example represents a simple cash desk system that exists in
three similar, but different variants. Figure 1 depicts the individual
variants using separate class diagrams: Variant var1 consists of
a CashDesk with a KeyBoard and a Display. Variant var2 has
additionally exactly one CardReader connected to the CashDesk.
Variant var3 replaces the Keyboard with a Scanner and makes the
CardReader optional (multiplicity 0..1 instead of 1).

The depicted representation of listing variants individually is
used as a baseline in our experiments, referred to as the “enumer-
ative mechanism.” This solution is frequently applied in practice
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[80], where it leads to severe maintenance drawbacks. For example,
a bug found in one of the variants must be fixed in all variants
separately. The goal of the variability mechanisms presented below
is to simplify working with such similar, but distinct variants.

Annotative. The annotative mechanism considered in our exper-
iments is model templates [25]. Like annotative mechanisms in
general, it combines all variants into a single representation with
annotations. The left-hand side of Fig. 2 shows a model template for
our example: a class diagram that represents the three variants of
the cash desk system. Parts of the class diagram are annotated with
presence conditions, stating the variants in which the part occurs.
In general, a presence condition is a list of configuration options
(disjunction). For example, the presence condition «var1,var2»
indicates that the annotated part is present when either the config-
uration option var1 or var2 is selected. The absence of a presence
condition denotes that the part is contained in all variants.

Colors are used in the following way: Elements (classes and
associations) with a black outline occur in all variants, elements
with a grey outline occur in two or more variants, elements with a
colored outline belong to precisely one variant, whose annotation
is also depicted with the same color. The use of colors to distinguish
elements goes back to the original paper that introduced model
templates [25]. Colors may be crucial for comprehensibility. In the
case of code-level variability mechanisms, Siegmund et al. [35]
found that colors support understanding of annotative variability.
We are interested to study if this finding also applies to models.

Individual variants are obtained from the combined representa-
tion as follows: The user sets one of the configuration options as
active. The corresponding class model is produced by removing all
those elements whose presence condition does not contain the con-
figuration option. For example, selecting the configuration option
var1 leads to the model variant var1 in Fig. 1.

Compositional. The compositional mechanism we considered is
refinement [7]. Like all compositional variants, refinement pro-
vides (i) a means of decomposing variants into smaller building
blocks, and (ii) a means ofmerging building blocks to form complete
variants. This allows for a sharing and reuse of common parts in
different variants. The building blocks are visually shown as a net-
work, as depicted in the right-hand side of Fig. 2. Commonalities of
var1 and var3, as well as var2 and var3 have been extracted into
separate “super” class diagrams. These diagrams have a dashed bor-
der as they only represent commonalities and are “abstract” in the
sense that they are not complete variants. Composition of diagrams
is denoted using an inheritance arrow, e.g., var2 is formed by com-
bining var1, the elements specified in var2, and the elements in
the common super class of var3 and var2. As the example demon-
strates, multiple super class diagrams (see var3), and transitive
composition (see var2) are possible.

CashDesk Keyboard

Display

var1

CashDesk Keyboard

Display

var2

CardReader

1

CashDesk Scanner

Display

var3

CardReader

0..1

Figure 1: Three variants of a cash desk system
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Display
CardReader0..1

Keyboard

«var3» «var3»

«var1,var2»
«var1,var2»

«var2,var3»

«var2,var3» 1

«var3»

«var2»

CashDesk CardReader

CashDesk Scanner

var3

0..1

CashDesk

Display

CashDesk Keyboard

var1

CashDesk CardReader

var2

Figure 2: Annotative and compositional variability

Deriving individual variants is a two-step process. First, a union
of the contents of the variant and all its transitive parents is com-
puted; this results in a single, flat class diagram (with no parents).
Second, a merge operator is used to combine elements that should
be the same. For class diagrams, this operator combines all ele-
ments with the same name. The merge operator also defines how
to resolve conflicts: for class diagrams, a common subtype must
exist for nodes to be merged, and multiplicities of merged edges are
combined by taking the maximum of lower bounds and minimum
of upper bounds. For example, when the variant var1 is selected,
it is merged with its parent (top class diagram with dashed lines).
Building the union of both class diagrams and merging the cash
desk elements leads to the model variant var1 in Fig. 1.

3 PREPARATORY STUDY
As preparatory study, we conducted an experiment to shape the de-
sign of our materials and tasks. The goal was to assess the suitability
of our experimental tasks and to derive potential improvements of
the setup. The study was performed on a population of 28 students
(disjoint from the population of our experiment). The students were
familiar with class models, the model type used in the experiment.

The tasks considered were bug-finding tasks, a typical task type
for assessing the usefulness of visual representations [55, 76]. Par-
ticipants were handed a textual requirement specification, together
with design models implementing the requirements with one of
the given variability mechanisms. The design models contained a
number of deviations from the textual requirements (bugs), which
the participants were asked to identify. We also asked the partici-
pants to suggest potential improvements to the experiment using a
textual input form.

To obtain meaningful example system, our examples were ob-
tained from the existing literature. The first example represented
a phone product line with phones being conditionally capable of
making incoming and outgoing calls [9]. The second example rep-
resented a project management system with managers, employees,
and tasks [33]. Students obtained a virtual instruction sheet and a
link to an explanation video for the used variability mechanisms.

From this preliminary study we made three main conclusions:
First, example models with 3 to 4 classes, and 3 or 4 variants each
are too simple to demonstrate a difference between both mecha-
nisms. This conjuncture is supported by one of the participants’
recommendation to “create [more] complicated examples with 6 or 7
classes and not so easy ones,” provided via the textual feedback form.
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ExperimentSetup
• fully randomized design (within-subjects)
• systems specified as class diagrams
• selection of systems informed by

literature survey
• two questions per system and task type
• design informed by pre-study (n=28)

Population
• 73 student participants
• homogeneous expertise:

→ relevant expertise in class diagrams
→ low expertise in variability mechanisms

Intervention
(independent variable)

Observation
(dependent variables)

Task metrics
Score
[0..6]

Time
[min]

Subjective metrics

Preferred mechanism per task type
[Annotative, Compositional,

Enumeration, No Preference]

Understandability
of mechanism

[1..5]

Difficulty of tasks
when using mechanism

[1..5]

3
systems

73
participants

Variability mechanism

Annotative Compositional

Diam
Circ

Tri

Enumerative

3
task types

Figure 3: Methodology overview

Second, despite our efforts to provide clear requirements, a par-
ticipant asked us to be “more specific and less ambiguous with the
requirement specifications.” Ambiguity is an inherent risk to exper-
imental validity since its effect is hard to quantify (it is unclear how
many participants assume a different understanding than intended).
Another, recurrent comment was that reading the descriptions was
tiring, threatening the completion rate. Therefore, we decided to
switch the nature of the used tasks in the main experiment to
comprehension tasks that do not rely on additional artifacts.

Third, a provided instruction video was viewed as redundant, as
it showed only information that is available on the instruction sheet.
In the final experiment, we decided to omit the explanation video.

4 METHODOLOGY
The goal of our experiment was to study the effect of variability
representations on model comprehension. Figure 3 provides a high-
level overview of our methodology. Using experimental material
from three subject systems, we asked 73 participants to perform
three kinds of comprehension tasks. We varied the used variability
mechanism during the tasks (independent variable) and recorded
task metrics, subjective metrics, and quantitative feedback (depen-
dent variables). In this section, we describe the research questions,
participants, tasks, metrics, and questions of our experiment. Our
experimental materials and result data are publicly available [12].

4.1 Goal and Research Questions
We formulated and investigated the following research questions:

RQ1 To what extent do variability representations im-
pact the efficiency of model comprehension?

We studied the effect of annotative and compositional representa-
tions on the ability to solve model comprehension tasks correctly
and quickly.

RQ2 How are variability representations perceived dur-
ing comprehension tasks?

We studied the understandability and perceived difficulty to com-
plete model comprehension tasks, based on subjective assessments.

RQ3Which variability representations do the partici-
pants prefer during comprehension tasks?

We elicited qualitative and quantitative data regarding the partici-
pants’ subjective preferences, by asking them to name a preferred
representation and explain their choices.

4.2 Subject Systems and Material
Our final experiment comprised a number of tasks based on certain
subject systems. To select the systems, we specified a set of criteria
that a subject system would need to fulfill: (C1) The system has been
introduced in previous literature. (C2) The system comprises several
variants. (C3) The system has not been introduced in a context related
to a particular variability mechanism. The rationale of these criteria
was to select systems that represent real variability, rather thanmak-
ing up artificial examples on the spot. Moreover, we wanted to avoid
bias in favor of one of the considered variability mechanism types.

Three subject systems were identified, based on their familiar-
ity to the authors (convenience sampling [89]): Simulink, Project
Management, and Phone. For the former two systems, we were
aware of several available variants in the literature. To systemati-
cally identify available variants, we performed database searches
in Google Scholar, IEEExplore, and ACM’s Digital Library, with the
search strings "Project Management meta-model" and "Simulink
meta-model". The considered variants of Phone correspond to the
feature model from the original paper.

Simulink is a block-based modeling language that is widely ap-
plied in the design of embedded and cyber-physical systems. The
absence of an official specification has given rise to the emergence
of various variants. We obtained six publications that included a
Simulink meta-model [6, 41, 44, 53, 71, 78]. These meta-models are
relevant for our study, since meta-modeling is one of the prime use
cases of class models, enabling the development of custom-tailored
DSMLs [73] and language families [24].

The Project Management (PM) product line represents a family
of software systems for project management, with concepts such
as projects, activities, tasks, persons, and roles. This example is
inspired by the availability of various similar, but different class
models for project management software, which we identified in
our literature search [18, 23, 31, 38, 39, 43].

The Phone product line, introduced by Benavides et al. [14], repre-
sents a family of software systems for mobiles phones with various
hardware functionalities, such as different cameras and displays. As
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an example that was originally introduced for variability analysis in
software systems, it is suitable for studying variability mechanisms.

We developed three class model representations for each sys-
tem: an enumerative, an annotative, and a compositional one (cf.
Sect. 2). For each system, the starting point was the enumerative
representation, consisting of several class model variants. The other
representations were derived manually as follows: the annotative
one by following Fahrenberg et al.’s merge procedure [33]; the com-
positional one by identifying reusable features (e.g., keyboard) and
encapsulating them as fragments (e.g., var1 in the example). Since
this strategy relies on subjective decisions (of what to consider as a
feature), a separate expert researcher was consulted for quality as-
surance. Two of the authors verified the correctness of all produced
models by manually checking that "flattening" the produced anno-
tative and compositional solutions leads the enumerative solutions
again. The enumerative version of the Simulink scenario contains
eight classes and six variants in total. The PM scenario includes nine
classes and five variants. The Phone scenario comprises 14 classes
and six variants in total. The given numbers of classes refer to the
total number of all classes as shown the annotative representation;
each individual variant contains a smaller number of classes.

4.3 Experimental Design
We applied a cross-over trial, a variant of the within-subject de-
sign [45], in which all participants are sequentially exposed to each
treatment. The treatments in our case are the use of an annotative,
compositional, or enumerative representation during comprehen-
sion tasks. Annotative and compositional are the variability mech-
anisms under study, while the enumerative representation acts as
a baseline, representing the case in which no dedicated variability
mechanism is available. The main benefit of the chosen design is its
efficiency in supporting statistically valid conclusions for a given
number of participants. The design also reduces the influence of
confounding factors, such as participant expertise, because each
participant serves as their own control.

A main threat to this kind of study design are learning effects:
during the experiments, participants might transfer experience
gained by solving one task to other tasks. We mitigated this threat
by using the latin square design [55, 56]. All participants were ran-
domly distributed across three equally sized groups, of which each
followed one of three paths through the questionnaire:

• Enumerative→Annotative→Compositional (path 1),
• Compositional→Enumerative→Annotative (path 2), and
• Annotative→Compositional→Enumerative (path 3).

Following the latin square design, to avoid bias related to the com-
plexity of the considered systems, the order of systems was fixed
between paths: Phone→PM→Simulink (see Sect. 3). We discuss
further threats and mitigation strategies in Sect. 6.

4.4 Tasks Types and Questions
The design of our experimental tasks was informed by the expe-
riences from our pre-study (see Sect. 3). We used comprehension
tasks, in which the participants were asked to answer comprehen-
sion questions regarding providedmodels (equippedwith variability
mechanisms). Models were presented on paper printouts, which
is less realistic than presenting them in a tool, but avoids many

confounding factors (e.g., different screen sizes, maturity issues
of tools). We chose three task types to capture whether the par-
ticipants understood the variability present in the systems based
on the used variability mechanisms. For quality assurance (i.e., en-
suring that the provided instructions and examples are clear), we
performed a trial run with 3 participants. Below, we explain the
task types, and argue for their representativeness during realistic
comprehension scenarios.

Task type 1: trace elements to variants. The participants were asked
to identify variants that include specified classes and relationships.
Such a task is representative of the feature location problem, in
which parts of a given code base or model implementing a specified
feature are to be identified. In absence of fully reliable automated
techniques, feature location is often performed manually [30]. Par-
ticipants were asked the following two questions for the Simulink
system, and similar question pairs for the other two systems:

(1) How many variants have both the classes “InPort” and
“OutPort”?
(2) Are there any variants that do not have the class “Port”? If
yes, which variants?

Task type 2: compare two variants. The participants were asked
to compare two variants, either by naming their differences or by
comparing them in terms of a specified quantity, such as number
of classes. Such a task is performed when understanding the nu-
ances of how two closely related variants differ. Participants were
asked the following two questions for the PM system, and similar
questions for the other two systems:

(3) How do variants var1 and var2 differ?
(4) Which of the two variants var3 and var5 has more associa-
tions?

Task type 3: compare all variants. The participants were asked to
identify model elements that appear in a maximal or a minimal
subset of all variants. Such a task is typically performed when
trying to understand a full variant space. Participants were asked
the following two questions for all systems:

(5) Which class is required by all variants? List all such classes
if there are more than one.
(6) Which class is required by only one variant? List all such
classes if there are more than one.

Task metrics: To address RQ1, we collected two tasks metrics:
correctness score and completion time. The correctness score of a
particular answer is either 1 (correct), 0.5 (partially correct), or
0 (incorrect), as obtained by a manual assessment of the answer.
Answers were deemed as partially correct if they contained some
correct aspects, but not all required aspects or some incorrect ones.
For example, considering question 3, if the variants differ in two
classes, and the answer consists of one of them, the answer is
partially correct. The assessment was checked and agreed on by
two authors. For each of the three treatments, we elicited the total
completion time (in minutes) for completing all tasks. The elicitation
was performed by asking the participants to enter the current time
at the end of each page in the questionnaire.
Subjective assessment: To address RQ2 and RQ3, we collected
three subjective metrics and additional textual feedback at the end
of the experiment. For RQ2, we asked the participants to assess the
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Figure 4: Correctness scores.

Table 1: Correctness scores of our participants. Scores are between 0 and 2 per task type.

Annotative Compositional Enumerative
Task type Mean Median Sd.dev Mean Median Sd.dev Mean Median Sd.dev
1: Tracing elements to variants 1.7/2 2.0/2 0.6 1.5/2 2.0/2 0.7 1.7/2 2.0/2 0.6
2: Comparing two variants 1.5/2 1.5/2 0.6 1.5/2 1.5/2 0.6 1.6/2 1.5/2 0.4
3: Comparing all variants 1.6/2 2.0/2 0.7 1.2/2 1.0/2 0.7 1.5/2 2.0/2 0.7
Total 4.8/6 5.0/6 1.3 4.2/6 4.5/6 1.4 4.9/6 5.0/6 1.1

understandability of each mechanism and the difficulty of address-
ing each task type using each mechanism. For RQ3, we asked them
to specify a preferred mechanism per task type. To complement this
quantitative information with qualitative data, we also asked our
participants to elaborate by asking them to explain their choice of
preferred mechanism. We used the following questions:

(S1) How easy did you find it to understand each mechanism?
(S2) How difficult was it to answer the questions on “Finding
classes and relationships in variants” (Questions 1 and 2) for
each mechanism?
(S3) How difficult was it to answer the questions on “Compar-
ing two variants” (Questions 3 and 4) for each mechanism?
(S4) How difficult was it to answer the questions on “Compar-
ing all variants” (Questions 5 and 6) for each mechanism?
(S5) Which mechanism do you prefer for each of the three task
types?
(S6) Can you explain your subjective preferences (intuitively)?

Following the common practice for subjective responses, we
captured the answers to S1–4 on one five-point Likert scale for
each mechanism. The answer to S5 was specified by selecting one
of the literals Annotative, Compositional, Enumerative, None for
each of the task types. To collect qualitative data in S6, we asked
the participants to enter their answer into a free-form text field.

For hypothesis testing, we used the Wilcoxon signed-rank test
[87] which we applied to the task and subjective metrics, following
recommendations according to which this test can be applied to
Likert-type data [29].We used the standard significance threshold of
0.05. Twomeasurements involve multiple comparisons (correctness,
difficulty; each for 3 different task types). For thesemetrics, we apply
the Bonferroni correction [1], yielding a corrected significance

threshold of 0.017, obtained by dividing 0.05 by 3. We assessed effect
size using the A12 score, following Vargha and Delaney’s original
interpretation [83]: A12≈0.56 = small; A12≈0.64 = medium; and
A12≈0.71 = large. All tests were executed with R.

4.5 Participants
We performed the experiment with 73 participants. The participants
were recruited from four undergraduate and graduate courses at
German universities. Our rationale for recruiting students is their
suitability as stand-ins for practitioners: students can perform in-
volving unfamiliar software engineering tools equally well as practi-
tioners [65]. The baseline modeling technology in our experiments
is class models. The students were, therefore, recruited from courses
with completed previous lectures and homework assignments on
class models. Before the experiment, it was pointed out that partici-
pation in the experiment was entirely voluntary, and data would be
stored anonymously. To encourage participation, a gift card raffle
was offered as a prize to interested participants.

We asked the students to self-assess their expertise in three rele-
vant categories using five-point Likert scales: class diagrams (the
baseline technology of our experiments), programming (to argue
for the representativeness of our findings), and the considered vari-
ability mechanisms (the experimental treatment). In line with our
strategy to recruit students familiar with class models, students
expressed an average level of expertise, amounting to 3.47 (mean) ±
0.60 (standard deviation). The self-reported programming expertise
of 3.62 ± 0.74 was comparable, justifying generalizations of our
findings to programmers with average experience. In contrast, the
self-reported expertise in variability mechanisms was considerably
lower, amounting to 1.73 ±0.87 in annotative mechanisms, 1.86
±1.03 in compositional mechanisms, and 1.87 ±0.93 in enumerative
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Figure 5: Completion times (in minutes).

mechanisms. The homogenous experience in the considered mech-
anisms is beneficial for the validity of our findings, by countering a
possible threat related to different previous knowledge.

5 RESULTS
We now present the results from our experiment, focusing on the
aggregated results over all three systems. We also briefly discuss
the results per system, providing more details in our appendix [12].

5.1 RQ1: Efficiency
We determined efficiency by considering the ability of our par-
ticipants to correctly and rapidly complete the presented tasks.
Considering correctness, Table 1 and Fig. 4 summarize the scores
of all participants for solving all tasks. The participants generally
performed equally well with the annotative and the enumerative
mechanisms: on the individual task types, the achieved mean scores
amount to 1.7, 1.5, 1.6 for annotative versus 1.7, 1.5, 1.6 for enumera-
tive. In contrast, the use of the compositional mechanism leads to a
noticeable drop in mean performance to 1.5, 1.5 and 1.2. Hypothesis
testing shows that the difference for compositional to other types
is significant for task types 1 and 3. For type 1, we find p=0.01 for
the comparison to annotative, with a medium-ranged effect size of
A12=0.62 (p=0.02 for the comparison to enumerative, surpassing the
corrected threshold). For type 3, we find p<0.01 when comparing
compositional to both annotative and enumerative, with medium
effect sizes (A12=0.66 and 0.64, respectively). We did not find signif-
icant differences between the mechanisms for type 2. Annotative
and enumerative do not differ significantly in any considered case.
The results per system [12] are generally consistent with the aggre-
gated results; however, the differences are more pronounced in the
largest system, Simulink, and smaller in the other systems.

Considering rapidness, Table 2 and Fig. 5 provide an overview of
the completion times of all participants for solving all tasks. Accord-
ing to this data, the participants were fastest on average when using
the annotative mechanism (mean completion time: 6.6 minutes).
Enumerative led to the second-lowest completion times (7.1 min-
utes). Compositional comes last in this comparison (8.8 minutes).
The difference between annotative and enumerative is not signifi-
cant (p=0.12). In contrast, the differences between compositional
and both annotative and enumerative are highly significant with
p<0.001. The effect size is large when comparing compositional
Table 2: Completion times (in minutes) of our participants.

Mechanism Min Mean Median Max Sd.dev
Annotative 3 6.6 6 15 2.6

Compositional 4 8.8 8 17 3.2
Enumerative 3 7.1 6 19 3.1
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Figure 6: Subjective perceptions.

and annotative (A12=0.71) and medium to large for compositional
to enumerative (A12=0.67). The differences of completion times per
system [12] are fully consistent with those for the aggregated times.

Compared to the enumerative mechanism, the participants were
equally efficient when using the annotative one. Using the compo-
sitional mechanism, they took longer to complete the tasks and
made more mistakes, specifically when a good overview of all
variants and the ability to trace elements to variants was required.

5.2 RQ2: Subjective Perception
We determined the subjective perception of all variability mecha-
nisms by asking the participants relevant questions on a 5-point
Likert scale. Table 3 and Fig. 6 give an overview of the results.

In the understandability rating, with a mean rating of 2.2, enu-
merative was considered easier than annotative (mean: 2.6), and
compositional (mean: 3.2). We observe statistical significance as
follows: for annotative vs. enumerative, p=0.006 with A12=0.61
(small to medium effect); for annotative vs. compositional, p=0.004
with A12=0.66 (medium effect); for compositional vs. enumerative,
p≤0.001, with A12=0.73 (large effect).

The difficulty rating is fully consistent with the objective task
metrics (RQ1). Comparing the annotative and the enumerative
mechanism, the givenmean ratings are approximately equal, amount-
ing to 2.5, 2.5, 2.5 for annotative, and 2.5, 2.2, 2.5 for enumerative.
We do not find statistical significance for this comparison, the low-
est observed p-value being for task type 2 (p=0.8). In contrast, the
mean ratings for compositional of 3.1, 3.0 and 3.2 are much higher.



MODELS ’20, October 18–23, 2020, Montreal, QC, Canada Strüber, Anjorin, Berger

Table 3: Participant perception. Scores from a 1..5 Likert scale; lower value indicates better understandability/less difficulty

Annotative Compositional Enumerative
Quality Mean Median Sd.dev Mean Median Sd.dev Mean Median Sd.dev
Understandability 2.6/5 3/5 1.1 3.2/5 3/5 1.1 2.2/5 2/5 1.2
Difficulty Task type 1 2.3/5 2/5 1.2 3.1/5 3/5 1.2 2.3/5 2/5 1.1

Task type 2 2.5/5 2/5 1.3 3.0/5 3/5 1.3 2.2/5 2/5 1.2
Task type 3 2.5/5 2/5 1.2 3.2/5 3/5 1.3 2.5/5 2/5 1.1

In all comparisons of compositional to another mechanism, we find
significance. In all cases but one (task 2, annotative vs. composi-
tional: p=0.03; A12=0.62), the p-value is below 0.003 and the effect
size betweenA12=0.65 and 0.69, indicating a medium to large effect.

The participants found it equally difficult to perform the compre-
hension tasks with enumerative and annotative. Likewise, both
annotative and enumerative outperform compositional. Enumera-
tive was found more understandable than annotative, which itself
was found more understandable than compositional.

5.3 RQ3: Preference
To study subjective preference, we collected a combination of quan-
titative and qualitative data.

Table 4 and Fig. 7 provide an overview of our quantitative data:
the percentages of selected answers when asked to specify a pre-
ferred variability mechanism per task type. Interestingly, we find
that the preferences vary strongly between the tasks. Annotative is
preferred by most participants for task types 1 and 3, albeit with
only a moderate to slight difference to the enumerative mechanism:
50.7% vs. 34.2% for type 1, and 43.8% vs. 42.5% for type 3. In contrast,
the enumerative mechanism is preferred with a large margin for
task type 2, comparing two variants (which are explicitly present
in the enumerative representation). Compositional comes in last in
all comparisons, with percentages between 12.3% and 15.1%. Partic-
ipants generally expressed a preference; the no-preference option
was only selected in 1.4% of all cases. Intuitively, the preference for
enumerative for type 2 is not surprising: in a comparison between
two variants, explicitly representing the variants seems beneficial.
Based on the preference of annotative for type 1 and 3, we hypothe-
size that this representation is suitable for tasks that require a good
overview of all variants and the ability to trace elements to variants.

To obtain additional insights, we asked the participants to explain
their preferences in a textual form. Based on a manual assessment
performed on the answers, we give an overview of recurring aspects
deemed as relevant by the participants.
Inherent trade-offs. Our quantitative results indicate that the
preferred mechanism highly depends on the task at hand. Several
answers explicitly address the trade-offs inherent to the means
of displaying information in each mechanism: "Each mechanism

Table 4: Preference distributions of our participants.

Task type Ann Comp Enum None
1: Tracing el.s to variants 50.7% 13.7% 34.2% 1.4%
2: Comparing two variants 26.0% 15.1% 57.5% 1.4%
3: Comparing all variants 43.8% 12.3% 42.5% 1.4%

provides good readability for a specific kind of information but trades
off readability regarding other aspects, e.g. the Enumerative mecha-
nism makes it very easy to compare two specific variants but finding
similarities and differences between all variants is hard." This finding
is aligned with the cognitive fit theory [85], according to which the
performance during decision-making tasks depends on the suitabil-
ity of the information being emphasized in the used representation,
and that required for the task at hand. It highlights the need for flex-
ible, purpose-tailored visualizations, as provided by paradigms such
as virtual separation of concerns [46], and projectional editing [13].
Efficient use of space. Among the three considered representa-
tions, the annotative one is the most compact one, since it avoids
showing any elements redundantly. Participants found the result-
ing compactness convenient: "In the Annotative one you had all
the information asked on the first look; comparing was easy since
the different vars were all in the same diagram". Conversely, inef-
ficient use of space was addressed as a disadvantage in the other
mechanisms: "[in compositional] with taking a brief look on to it it’s
nearly undoable to get the whole context in this overview" and "The
enumerative variant is the easiest, but uses a lot of space".
Use of color.A design choice was to show the feature names in the
annotative representation in distinguished colors, based on previous
recommendations for code-level mechanisms [35]. Doing so bal-
ances out a disadvantage of annotative representations: the use of
labels increases information density and visual crowding [86], thus
affecting readability. In line with these findings, participants noted
that it was "easier to compare classes in Annotative because of colors",
and that "the colouring of annotative diagrams make [task type 1]
really easy". We propose related recommendations in Sect. 5.4.
Scalability. In their assessment, several participants extrapolated
from the considered case to more complex ones. "[In enumerative,]
although you need more models/space, you can see everything rela-
tively easy. However, if you have maybe like 20 variants, enumerative
is probably not the way to gol." [sic], "last the Enumerative, the 6
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variants were okay but when there are even more it is to much" [sic],
and finally "The problem with the Compositional was [the] bigger
and more complex it gets, it is harder to understand in a short time".

The participants preferred different mechanisms for different tasks.
Annotative was preferred for comparing all variants, and for trac-
ing elements to variants. Enumerative was largely preferred for
comparing two variants to each other. A contributing factor to
preferring annotative is its higher compactness; some inherent
disadvantages could be balanced out by the use of colors.

5.4 Discussion and Recommendations
The objective and subjective differences between variability mecha-
nisms observed in our study can be considered by tool and language
developers for improving user experience, an important prerequi-
site for MDE adoption [2]. We discuss our findings in the light of
derived recommendations.

Provide flexible, task-oriented representations. We find that
there is no globally preferable variability mechanism—indeed, the
”best“ mechanismmay depend on the task to be performed. Tool and
language developers can support user performance and satisfaction
by providing multiple representations, tailored to the task at hand.
We propose to consider a spectrum of solutions, each trading off the
desirable qualities flexibility and simplicity: As the most simple, but
least flexible solution, one can augment a given representation with
task-specific, read-only views, e.g., given an annotative representa-
tion, generate individual enumerated variants (or a subset thereof,
see below). A second, more advanced solution is to make these
additional representations editable, which offers more flexibility,
but gives rise to a new instance of the well-known view-update
problem [26]—-the particular challenge here is to deal with the
implications of layout changes. The third, most advanced solution
is projectional editing [13], in which developers interact with freely
customizable representations of an underlying structure. Projec-
tional editing offers the highest degree of flexibility, but poses a
learning threshold to users for adapting to a new editing paradigm.

Support the simple solution, for appropriate use-cases. Our
participants preferred the simple enumerative solution for a subset
of tasks. While being commonly applied in practice (e.g., in 9 out
of 23 cases studied by Tolvanen et al. [80]), this solution is inher-
ently problematic: In small to moderate product lines, organizations
struggle with the propagation of changes between cloned variants
[67]. In large product lines, considering a distinct model for each
of thousands of variants is simply infeasible. Instead, we suggest to
address use-cases that involve a clearly defined subset of variants:
In staged configuration processes [27, 68], such subsets are derived
by incrementally reducing the variant space, thus obtaining partial
configurations of the system. Variability viewpoints [48], which
are applied at companies like Daimler, reduce the variant space
based on the perspective of a specific stakeholder. To address theses
use cases, we suggest to provide support for selecting and inter-
acting with a subset of enumerated variants, while using a proper
variability mechanism for maintaining the overall system.

Use colors, and use them carefully. In line with the existing
literature [35], we find that colors can be helpful for mitigating

the drawbacks of annotative techniques. However, relying on col-
ors in an unchecked way is undesirable due to the prevalence of
color-blindness. Up to 8% of males and 0.5% of females of North-
ern European descent are affected by red-green color blindness
[19]. A recommendation for language and tool designers is to
avoid representations that solely rely on color, and to use ded-
icated color-blindness simulators such as Sim Daltonism (https:
//michelf.ca/projects/sim-daltonism/) to check their tools.

6 THREATS TO VALIDITY
We discuss the threats to validity of our study, following the rec-
ommendations by Wohlin et al. [89].
External validity.Our experiment focuses on class models, a ubiq-
uitous model type. We discuss representativeness and practical rele-
vance in MDE contexts in Sect. 1. While studying a wider selection
from the modeling language design space is left to future work, the
qualitative data presented in Sect. 5.3 is by no means specific to
class models, and yields a promising outlook on generalizability.

Another issue is the generalizability of our results to larger sys-
tems, specifically, systems with more variants and model elements.
Since the number of variants grows exponentially with the number
of features, the enumerative representation will eventually be out-
performed by the other representations. We discuss possible roles
for the enumerative representation in larger systems in Sect. 5.3.
To avoid researcher bias, we selected systems that were not used
before with a specific variability mechanism. Studying comprehen-
sion in larger models is desirable, but has some principle limitations
with regard to the amount of information that participants can be
exposed to in the scope of an experiment (participant fatigue).

Student participants can be representative stand-ins for practi-
tioners in experiments that involve new development methods [65].
Specifically, our participants had limited prior experience with
variability mechanisms. While considering a broader spectrum of
experience levels would be worthwhile, we arguably focus on a crit-
ical population: In a given organization, consider the onboarding of
a new team member with a similar experience level to our partici-
pants. Poor comprehension would pose a major hurdle to becoming
productive, and, therefore, pose a risk for the organization.
Internal validity.Within-subject designs help to elicit a represen-
tative number of data points to support statistically valid conclu-
sions. We addressed their drawbacks as follows: To address learning
effects, we applied counterbalancing. Between the different groups,
we distributed the order of variability mechanisms equally, while
keeping the system and task order constant. To balance the assign-
ment of participants to classes, we randomized the assignment.
Conclusion validity. We operationalized comprehensibility with
comprehension tasks, arguing for the importance of the considered
tasks in Sect. 4. The choice of tasks was informed by our pre-study,
in which we encountered trade-offs regarding participant fatigue
and confounding factors when usingmore demanding tasks (Sect. 3).
Since we find significant performance differences between mecha-
nisms, the difficulty level of our tasks seems appropriate; however,
other tasks might exist (e.g. understanding a single feature and
its context), and task completion could also be facilitated if users
are supported by specialized tools (e.g. query engines). Generally,
systematic knowledge on the design space of model comprehension

https://michelf.ca/projects/sim-daltonism/
https://michelf.ca/projects/sim-daltonism/
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tasks would help to maximize realism in comprehension experi-
ments, but such knowledge is currently lacking.

Our setup did not involve tools, representing an unavoidable
trade-off: While having the participants use a tool environment
would have been more realistic, it would have lead to confounding
factors related to usability obstacles and participants’ familiarity
with the tool. Extending our research to consider the effect of tools
on model comprehension is an important avenue for future work.

Colors were only used in the annotative representation, where
their usefulness (for distinguishing elements from different variants)
seems more obvious than in the compositional one (where such
elements are already distinguished by being contained in different
modules). A follow-up study for studying the impact of colors in
different representations might provide additional insight.

Construct validity. Subjective measures are generally less reliable
than objective ones. However, previous findings suggest that they
are correlated with objective performance measurements [40]. In
fact, we find an agreement between the subjective and objective
measurements performed in our experiments.

7 RELATEDWORK

Annotative vs. compositional. Annotative approaches are tradi-
tionally seen as inherently problematic. Spencer [72], for example,
argues that #ifdef usage in C as a means to cope with variability
is harmful, leading to convoluted, unreadable, and unmaintainable
code (the infamous "#ifdef hell"). Spencer appeals to basic principles
of good software engineering: explicit interfaces, information hid-
ing, and encapsulation. Kästner et al. [47] argue that compositional
approaches tend to promise advantages, which, however, only be-
come manifest under rather specific assumptions. They emphasize
that only empirical research can provide conclusive evidence.

Aleixo et al. [4] compare both mechanism types in the context
of Software Process Line engineering, i.e., applying concepts and
tools from SPL engineering to software processes. They compare
two established tools: EPF Composer, which uses a compositional
mechanism, and GenArch-P, which uses an annotative one. Similar
to our conclusions, they report that the annotative mechanism
performs better, especially with regards to a criterion the authors
call adoption, i.e., howmuch knowledge is required to initially apply
the mechanism.

Empirical studies of variabilitymechanisms.Krüger et al. [49]
present a comparative experimental study of two variability mecha-
nisms: decomposition into classes, and annotations of code sections.
They find that annotations have a positive effect on program com-
prehension, while the decomposition approach shows no significant
improvement and, in some cases, a negative effect. While these find-
ings are in line with ours, this study focuses on Java programs, and
compares the considered mechanisms to a different baseline, pure
OO code without any traces of variants. In our case, we considered
the frequent case in industry of copied and reused model variants.

Fenske et al. [36] present an empirical study based on revision
histories from eight open-source systems, in which they study
the effect of #ifdef preprocessors to maintainability. The analyze
maintainability in terms of change frequency, which is known to
be correlated with error-proneness and change effort. In contrast

to the traditional belief, they find that a negative effect of #ifdefs to
maintainability cannot be confirmed.

Feigenspan et al. [35] study the potential of background colors
as an aid to support program comprehension of source code with
#ifdef preprocessors. In three controlled experiments with varying
tasks and program sizes, they find that background colors con-
tributed to better program comprehension and were preferred by
the participants. We base the use of color in our experiments on
these findings, and confirm them for the previously unconsidered
case of a model-level variability mechanism.
Empirical studies ofmodel comprehension. Labunets et al. [51]
study graphical and tabular models representations in security risk
assessment. In two experiments, they find that participants prefer
both representations to a similar degree, but perform significantly
better when using the tabular one. The authors build on cognitive
fit theory [85] to explain their findings: tables represent the data in
a more suitable way for the considered task. Like we do, this study
supports the need for task-tailored representations.

Nugroho [58] studies the effect of level of detail (LoD) on model
comprehension. In an experimental evaluation with students, the
author finds that a more detailed representation contributes to
improved model understanding. Ramadan et al. [63] find a posi-
tive effect to comprehension of security and privacy aspects when
graphical annotations are included in the considered models. Our
results are in line with these findings, since the annotative mecha-
nism includes the names of the associated variants as one point of
additional information.

Acreţoaie et al. [3] empirically assess three model transformation
languages with regard to comprehensibility. They consider a textual
language and two graphical ones, one of which uses stereotype an-
notations to specify change actions in UML diagrams. They observe
best completion times and lowest cognitive load when using the
graphical language with annotations, and best correctness when
using the textual language. Studying this trade-off further, by study-
ing variability mechanisms in graphical and textual representations,
would be an interesting extension of our work.

8 CONCLUSION
We presented the results of a controlled experiment, in which we
studied the effect of the two variability mechanisms, representative
for the two fundamental mechanism types—annotative and compo-
sitional ones—on model comprehensibility. We conducted the study
with 73 student participants with relevant background knowledge.
For the scope of models in the size of our examples and similar
tasks, we present and discuss the following main conclusions:
• The annotative mechanism does not affect comprehensibility for
any task.

• The compositional mechanism can impair comprehensibility in
tasks that require a good overview of all variants.

• The preferred variability mechanism depends on the task at hand.
We present several recommendations to language and tool de-

velopers. We consider a spectrum of solutions to maintain multiple
task-tailored representations, especially in contexts of large sys-
tems where maintaining a separate model per variant is infeasible.
We endorse the recommendation to use colors for improving com-
prehension in annotative variability, and discuss its limitations.
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We envision three directions of future work. First, we want to
understand the effect of tools to model comprehension. Second,
we wish to systematically explore the space of typical tasks during
model comprehension. Additional experiments would allow us
to come up with a catalog of task-specific recommendations for
variability mechanism use. Third, we are interested in broadening
the scope of our experiments to take different modeling languages
into account, including textual ones, which represent a middle
ground between traditional programming languages and graphical
modeling languages, and transformation languages, for whichmany
different reuse mechanisms have recently been developed [20, 75].
Acknowledgement. We thank the reviewers and the participants
from our pre- and main experiment.
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