
Noname manuscript No.
(will be inserted by the editor)

Model Clone Detection for Rule-Based Model
Transformation Languages

Daniel Strüber1,2, Vlad Acreµoaie3,4, Jennifer Plöger2

the date of receipt and acceptance should be inserted later

Abstract Cloning is a convenient mechanism to en-

able reuse across and within software artifacts. On the

downside, it is also a practice related to severe long-

term maintainability impediments, thus generating a

need to identify clones in a�ected artifacts. A large vari-

ety of clone detection techniques has been proposed for

programming and modeling languages; yet no speci�c

ones have emerged for model transformation languages.

In this paper, we explore clone detection for rule-based

model transformation languages, including graph-based

ones, such as Henshin, and hybrid ones, such as ATL.

We introduce use cases for such techniques in the con-

text of constructive and analytical quality assurance,

and a set of key requirements we derived from these use

cases. To address these requirements, we describe our

customization of existing model clone detection tech-

niques: we consider eScan, an a-priori-based technique,

ConQAT, a heuristic technique, and a hybrid technique

based on a combination of eScan and ConQAT. We

compare these techniques in a comprehensive experi-

mental evaluation, based on three realistic Henshin rule

sets, and a comprehensive body of examples from the

ATL transformation zoo. Our results indicate that our

customization of ConQAT enables the e�cient detec-

tion of the considered clones, without sacri�cing accu-

racy. With our contributions, we present the �rst evi-

dence on the usefulness of model clone detection for the

quality assurance of model transformations, and pave

the way for future research e�orts at the intersection of

model clone detection and model transformation.

1 University of Koblenz and Landau, Germany
2 Philipp University of Marburg, Germany
3 Technical University of Denmark, Kgs. Lyngby, Denmark
4 Con�git, Copenhagen, Denmark
E-mail: strueber@uni-koblenz.de (corresponding author)

Keywords Quality assurance, model clone detection,

model transformation, ATL, Henshin

1 Introduction

Model transformation is of paramount importance to

Model-Driven Engineering [1]. Like all software arti-

facts, model transformation systems undergo a life-cycle

including at least two main phases: an initial creation

phase, followed by a long-term maintenance phase.

Cloning, the development of model transformations

in the copy-paste-modify paradigm, provides key ben-

e�ts for the creation phase; it is a fast, easy, and uni-

versally applicable practice. On the downside, cloning

presents severe maintainability challenges. For instance,

once a bug is found, many a�ected transformation rules

may have to be updated correspondingly, a tedious and

error-prone process. As maintenance tasks are estimated

to account for 60% of all software costs [2], it seems ad-

visable to address this trade-o� explicitly.

The drawbacks of cloning are well-known from re-

search on the general issue of software clones. Yet, de-

spite a substantial body of research [3], there is no

universally accepted directive for how to proceed with

clones. In the seminal work by Fowler [4], clones are

deemed one particular kind of �bad smell�. In this view, a

refactoring to a better suited abstraction is generally

recommended. Empirical studies lead to a more nu-

anced view: Kim et al. [5] identify di�erent types of

clones, some of them warranting a refactoring towards

suitable abstractions, others rendering such e�orts clearly

unjusti�ed. Still, despite controversy on the question of

how to proceed with clones, there seems to be a consen-

sus that software clones �should at least be detected � [6].

2 Daniel Strüber et al.

While numerous automated clone detection tech-

niques for programming and modeling languages have

been proposed [7], no speci�c ones have emerged for

model transformation languages. The lack of such tech-

niques is particularly surprising since existing model

transformations may be a�ected heavily by cloning: un-

like in the case of most programming languages, reuse

mechanisms for model transformations are just starting

to become available [8]. Clone detection can be an en-

abling technology for the evolution of existing transfor-

mation programs towards these reuse mechanisms. But

the variety of potential use cases for clone detection is

even broader. It includes the quality assessment of ex-

isting transformations, performance optimizations, and

even the identi�cation of new design patterns. One con-

tribution of this paper is an overview of such use cases.

The combination of di�erent model transformation

paradigms and use cases leads to a large design space for

clone detection techniques. In this paper, we approach

this design space from a speci�c angle: we focus on rule-

based model transformation languages; in particular, we

consider two language paradigms where rules play a key

role [9]: graph-based languages, in which transforma-

tions are expressed in terms of graph rewriting rules,

and hybrid languages, in which declarative rules are

combined with imperative language constructs. This se-

lection allows us to study cloning in two main paradigms

of model transformations [9,10] which are related by a

common denominator, the notion of rules.

Example. Consider three in-place model transforma-

tion rules expressed in a graph-based language. The

rules, shown in Fig. 1, specify variants of the move

method refactoring. Rule A describes the basic reloca-

tion of a method between two classes related through a

�eld. Rule B additionally creates a �wrapper� method

as a delegate for this method. Rule C adds an annota-

tion to mark the wrapper as deprecated.

Such rule sets are often created by copying a seed

rule and modifying the copies. If a rule set contains

many copied rules, maintaining it may be daunting and

error-prone. Therefore, it is advisable to provide dedi-

cated support for the copying and editing of such rules.

For instance, the rules could be uni�ed using a reuse

mechanism provided by the model transformation lan-

guage. Alternatively, the consistent editing of the rules

could be facilitated by tool support. In both cases, a

prerequisite for an improved management of clones is

their detection.

Contributions. This paper extends our recent work

on clone detection for graph-based languages [12] in two

main directions. First, in addition to graph-based lan-

guages, we consider hybrid ones. Hybrid languages are a

particularly interesting complementary case where the

«create»
:Method

abstract=true
name=m

«preserve»
:Class

abstract=true
name=src

«preserve»
:Class

name=trg

«create»
:Annotation

value="Dep"

«create»
:Method

name=m

«preserve»
:Method

name=m

A: pullUp(src, trg, m)

«preserve»
:Method

name=m

«preserve»
:Class

name=src

3

1

«delete»
methods

«preserve»
:Class

name=trg

2

«create»
methods

«preserve»
extends

B: pushDown(src, trg, m)

«preserve»
:Class

name=src

6

4

«delete»
methods

«preserve»
:Class

name=trg

5«preserve»
extends

«create»
methods

«preserve»
:Method

name=m

9

7

«delete»
methods

8

«create»
methods

«preserve»
extends

10

«create»
methods

C: pushDownWithAbstract(src, trg, m)

«preserve»
:Method

name=m

«preserve»
:Class

name=src

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

C: moveAndCreateDeprecatedDelegate(src, trg, m)

«preserve»
:Class

name=trg

«preserve»
type

«create»
:Method

name=m

«preserve»
:Method

name=m

«preserve»
:Class

name=src

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

«create»
methods

B: moveAndCreateDelegate(src, trg, m)

«preserve»
:Class

name=trg

«preserve»
type

«preserve»
:Method

name=m

«preserve»
:Class

name=src

«delete»
methods

«preserve»
:Field

«create»
methods

«preserve»
fields

A: move(src, trg, m)

«preserve»
:Class

name=trg

«preserve»
type

«create»
annotations

Fig. 1: Rules a�ected by cloning (from [11]).

notion of rule is of equivalent importance, but expresses

a slightly di�erent concept. Speci�cally, graph-based

rules specify rewriting patterns, whereas the rules in

hybrid languages can be seen as speci�cations of map-

pings between meta-models. The former concept lends

itself to application in endogenous transformation sce-

narios, the latter is suitable for use in exogenous sce-

narios. Both paradigms are increasingly applied in in-

dustrial and academic contexts [13]. Second, we provide

a considerably extended evaluation. To evaluate clone

detection approaches for graph-based rules in a large-

scale setting, we consider an additional scenario with

a rule set of 1,404 rules. For evaluation of the hybrid

ones, we performed an in-depth analysis of rules from

the ATL zoo1, comprising 2,566 rules in total.

In this work, we make the following contributions:

• We discuss use cases of clone detection for model

transformation languages. The discussion is in-

formed by recent developments in research on

model transformations and software clones.

1 https://www.eclipse.org/atl/atlTransformations/

Model Clone Detection for Rule-Based Model Transformation Languages 3

• Based on these use cases, we identify �ve key

requirements for a clone detection technique for

rule-based model transformations.

• To address these requirements, we introduce a

set of adaptations of existing model clone de-

tection techniques. We consider eScan, an a-

priori-based technique, ConQAT, a heuristic one,

and a hybrid composed of eSan and ConQAT.

Our adaptations are tailored to the graph-based

language Henshin [14,15] and the hybrid lan-

guage ATL [16].

• We provide an extensive experimental evalua-

tion based on three realistic graph-based trans-

formations, and a body of example transforma-

tions from the ATL transformation zoo.

An established taxonomy of software clones [3] dis-

tinguishes four types of clones based on their level of

similarity: Type I clones are identical fragments, Type

II are almost identical except for naming. Type III or

near-miss clones are identical except for subtle di�er-

ences, such as the presence or absence of certain ele-

ments, and Type IV or semantic clones represent dupli-

cate increments of functionality where the duplication is

not directly re�ected on the syntactic level. Since Type

I and II clones are routinely produced when transforma-

tion systems are developed in a copy-and-paste manner,

this work focuses on these types of clones.

The rationale behind the selection of eScan and Con-

QAT is to compare an a-priori-based and a heuristic ap-

proach to the detection of Type I and II clones. A key

�nding of our evaluation is that the accuracy of Con-

QAT was nearly optimal when using the results of eScan

and ScanQAT as a ground truth. At the same time,

the heuristic approach was the only one scaling up to

complete realistic rule sets, rather than just selected

subsets. With this �nding, we provide a �rst insight

into the application of model clone detection to model

transformations. In the future, we aim to study the

case of Type III clones using the SIMONE clone detec-

tor [17], which has also been shown to produce excellent

results for Type I and II clones. The detection of Type

IV clones is another interesting research avenue, elicit-

ing the question of how semantically equivalent model

transformations can be identi�ed.

The rest of this paper is structured as follows. In

Sect. 2, we outline the identi�ed use cases. In Sect. 3, we

present the necessary preliminaries. In Sect. 4, we pro-

pose requirements derived from the use cases. We dis-

cuss our customization of existing techniques in Sect. 5

and our evaluation of this approach in Sect. 6. After

discussing related work in Sect. 7, we conclude in Sect.

8 and suggest future research directions in Sect. 9.

2 Use cases

In this section, we introduce potential use cases. In each

case, we pair a description of the use case with an ac-

count of the research state of the art.

Clone refactoring. The replacement of clones with

a suitable reuse mechanism is a typical refactoring pro-

cess [4]. Its outcome is a semantically equivalent, yet

syntactically re�ned representation of the input arti-

facts. While the strategies used in speci�c refactorings

may vary, they share the common requirement that a

target reuse mechanism is assumed. In the case of model

transformations, reuse approaches such as rule inheri-

tance [18], re�nement [19] or variability-based rules [20]

have emerged recently and are now available to devel-

opers. For instance, the rules in Fig. 1 can be expressed

using rule re�nement: to this end, rule A becomes a ba-

sis rule, while the individual parts of rules B and C are

captured via two sub-rules. Conversely, the same rules

can be represented by one variability-based rule, aug-

menting rule C with variability annotations to denote

individual parts of rules B and C. Usually, such refac-

torings are performed manually. In legacy transforma-

tions with hundreds of rules, such a task is daunting

and error-prone. An automated clone detection tech-

nique is an important prerequisite for automating this

process.

Clone management. A suitable clone refactor-

ing may not always be available. Even if the language

provides a reuse mechanism, this mechanism may not

match the scope or granularity of a�ected clones. For

instance, an external reuse mechanism [8] does not help

avoiding duplications in the same rule set, such as that

shown in Fig. 1. We explore this issue further in Sect. 4.

Furthermore, a refactoring may not always be desirable:

It has been observed that expert developers create soft-

ware clones intentionally with speci�c maintainability-

related bene�ts in mind [6]. Despite these bene�ts, the

existing drawbacks may remain. In these situations, the

remaining maintainability drawbacks can be mitigated

by tool support: A recent idea is to manage clones, us-

ing a system to monitor all clones constantly and to up-

date a�ected artifacts automatically when one of them

is edited [21,22].

Assessing speci�cations and languages. Clone

detection can be used during the assessment of transfor-

mation speci�cations, for instance, in a quality assur-

ance process [23] or to evaluate solutions in a student as-

signment. Furthermore, the number of detected clones

might be an indicator that the reuse mechanisms of the

employed model transformation language are not ade-

quate or not used enough. Finally, clone detection might

4 Daniel Strüber et al.

be useful to improve the detection of design-pattern

and anti-pattern instances [24,25]: In contrast to model-

query engines, which generally �nd exact matches of a

particular pattern, clone detection can identify common

sub-patterns as well. The detection of frequent patterns

in transformation speci�cations can even lead to the

identi�cation of new design patterns and anti-patterns.

In contrast to object-oriented programming languages,

where a catalog of fundamentally accepted patterns is

available, the identi�cation of transformation patterns

is a recent idea [26]. Clone detection may contribute

to this emerging branch of research by supporting the

discovery of new design patterns.

Usability improvements. The level of support of-

fered by most transformation editors to developers is

below that o�ered by programming language IDEs. For

instance, none of these editors bene�ts from advanced

auto-complete functionality. Detecting clones introduced

during an editing step could help providing such func-

tionality by asking the developer if the reuse of an exist-

ing element is preferred. The clone detection algorithm

would run in the background, much like the Java com-

piler runs in the background of Eclipse.

Performance improvements. While the impact

of software clones on maintainability has been stud-

ied intensively, maintainability is by no means the only

quality concern a�ected by cloning. Creating a large set

of mutually similar rules may also entail a substantial

computational e�ort during the application or analy-

sis of these rules. As a result, cloning may give rise

to longer execution times or even render entire trans-

formations infeasible. Blouin et al. report on a case

where a rule set of 250 similar rules was too large for

execution [27]. While most existing performance opti-

mizations for model transformations focus on accelerat-

ing the application of individual rules, clone detection

might be highly useful in improving the performance of

a whole model transformation system.

3 Preliminaries

In this section, we present formal preliminaries for clones

in rule-based model transformation languages, focusing

on graph-based and hybrid languages with rules. While

we consider clones in these two paradigms separately, a

unifying idea is that clones are de�ned as common parts

of multiple rules. In the graph case, this idea leads to

the notion of sub-rule: common parts of multiple rules

are generally self-contained rules of their own. In the

hybrid case, clones may be rule fragments which do not

form a self-contained rule.

L0 I0 R0

L1 I1 R1

r0 =

r1 =

le0 ri0

le1 ri1

sL sI sRs (1) (2)

Fig. 2: Subrule morphism.

3.1 Graph-based model transformation

languages

We �rst present formal preliminaries for clones in graph-

based model transformation systems. To address the re-

quirements identi�ed later in this work, we extend our

formalization from [11,28] by the distinction of full and

incomplete clones, as well as scopes. We leave the notion

of �graph� unspeci�ed, which allows us to insert a graph

kind with certain desired features. For instance, meta-

model conformance and attributes can be expressed us-

ing typed attributed graphs [29].

De�nition 1 (Rule) A rule r = L
le←− I

ri−→ R con-

sists of graphs L, I and R, called left-hand side, inter-

face graph and right-hand side, respectively, and two

embedding morphisms, le and ri. A transformation sys-

tem is a set of rules.

The rules in Fig. 1 conform to this de�nition, represent-

ing it in an integrated form: Elements of I are annotated

with the action preserve, elements of L \ I and R \ I
with the actions delete and create.

Our de�nition of clone re�ects the idea that rules

specify structural patterns: The left-hand side is a pat-

tern to be matched in the source model. The right-hand

side is a pattern specifying actions to derive the target

model. Thus, we de�ne �clone� as common sub-pattern

being present in a set of rules. Such a sub-pattern is a

fully formed rule itself, an idea captured by the concept

of subrules.

De�nition 2 (Subrule) Given a pair of rules r0 =

(L0
le0←− I0

ri0−→ R0) and r1 = (L1
le1←− I1

ri1−→ R1) with

embeddings lei, rii for i ∈ {0, 1}, a subrule morphism

s : r0 → r1, s = (sL, sI , sR) comprises injective mor-

phisms sL : L0 → L1, sI : I0 → I1 and sR : R0 → R1

s.t. (1) and (2) in Fig. 2 commute and
(i) the intersection of sL(L0) and le1(I1) is isomor-

phic to I0,

(ii) the intersection of sR(R0) and ri1(I1) is isomor-

phic to I0, and

(iii) L1 − (sL(L0)− sL(le0(I0))) is a graph.

Conditions (i)-(iii) ensure that a subrule always per-

forms the same actions on related elements as the orig-

inal rule. For example, in Fig. 1, A is a subrule of B

Model Clone Detection for Rule-Based Model Transformation Languages 5

Name Rules Size

C1 {B, C} 10
C2 {A, B, C} 8

Table 1: Full clones in the example graph-based rules.

since A can be injectively mapped to B and the actions

on the original and mapped elements are identical.

For simplicity, the formal treatment in this work

does not address an advanced feature of graph-based

model transformation called negative application con-

ditions (NACs, see [30]). In a recent work [31], we show

how the concept of subrule can be extended to rules

with NACs: a NAC is a graph with a graph morphism

between the left-hand side of the rule and this graph.

To de�ne the subrule relation, the notion of shifting

a NAC over a given graph morphism [32] is key: each

NAC of the subrule needs to have a counterpart in the

superrule that results from shifting the NAC over the

embedding morphism.

Given a set of rules, a clone is a subrule that can be

embedded into a subset of this rule set.

De�nition 3 (Rule clone) Given a set R = {ri|i ∈
I} of rules, a clone CR = (rc, C) over R consists of rule

rc and set C = {cj |j ∈ J, J ⊂ I} of subrule morphisms

ci : rc → rj. A clone CR induces a set of a�ected rules

Ra�(CR) = {r ∈ R | ∃c ∈ C : rc → r}.

In the example, any subrule of rule A is a clone over

the entire rule set {A, B, C} since it can be embedded

in each of these rules.

We discern full clones from partial clones. A full

clone is a largest subrule, that is, one not fully covered

by another clone over the same subset.

De�nition 4 (Full and partial clone) A clone CR =

(rc, C) over a set R of rules is a full clone i� there is

no clone C ′
R = (r′c, C′) over R with a subrule mapping

i : rc → r′c such that i 6= id. Non-full clones are called

partial clones.

The full clones present in the example rules are

listed in Table 1. Clones are characterized by their size,

calculated as the total number of involved nodes and

edges. In particular, C2 represents all nodes and edges

found in rule A. In addition, C1 incorporates the nodes

and edges present in B, but not in A. All subrules of A

except for the complete rule are partial clones. Please

note that we omit attributes here for simplicity.

In the established taxonomy of software clones [3],

our de�nition includes Type I and II clones, identical

and almost identical (except for naming) duplications.

Furthermore, depending on the selected base graph kind,

the de�nition may extend to Type III or near-miss

clones, di�ering just in the presence or absence of cer-

tain attributes. In contrast, Type IV or semantic clones

cannot be captured using syntactic properties, as we do.

Identifying semantic clones in rule sets based on their

behavior is an interesting avenue for future work.

We further distinguish clones based on their scope.

De�nition 5 (Scope) The scope of a clone is either

Micro, Internal or External.

scope(CR) =



Micro |Ra�(CR)| = 1

Internal |Ra�(CR)| ≥ 2 and

∃ transformation system T
s.t. Ra�(CR) ⊂ T

External else

This de�nition is illustrated in Fig. 3. Micro-clones

are pattern duplications within the same rule. In the

case of code clones, an e�ect has been observed that

the last in a set of micro-clones is particularly prone to

errors [33]. Internal clones, as exempli�ed in our run-

ning example, extend to multiple rules within the same

model transformation system. Transformation systems

are prone to internal clones if they capture multiple

variants of a rule: Some included actions may be com-

mon to all variants, others optional. External clones

shared between multiple transformation systems may

occur if a system or parts of it are adapted for a new

purpose, for instance in exogenous transformations: The

target language of the transformation may be replaced

while retaining the source language.

The reuse mechanisms found in transformation lan-

guages [8] correspond to these scopes. Micro-clones can

be avoided by specifying multiplicity at the level of in-

dividual graph nodes and edges [34]. Internal clones can

be replaced using reuse mechanisms such as rule inher-

itance [18], re�nement [19], or variability-based rules

[20]. A suitable alternative to the creation of external

clones are external reuse approaches, such as generic

model transformations [35].

3.2 Hybrid model transformation languages

Our investigation of clones in hybrid languages is in-

spired by the ATL Transformation Language (ATL,

[16]). ATL features a declarative rule concept called

matched rule. A matched rule comprises a source pat-

tern, specifying a set of source elements, and an optional

OCL constraint called guard, preventing the rule from

being applied if the constraint is not ful�lled. In ad-

dition, a rule has a target pattern, specifying a set of

6 Daniel Strüber et al.

Micro-clones
Duplications within the

same rule

Internal clones
Duplications across rules in the
same transformation system

External clones
Duplications across multiple

transformation systems

Fig. 3: Scope of clones in model transformation systems.

target elements. Each target element has a set of bind-

ings, specifying values for references and attributes of

the target element. Finally, rules may declare variables

that can be used within the target pattern elements.

In what follows, we focus on matched rules, leaving the

imperative parts of ATL such as helpers and statements

outside our scope.

Fig. 4: ATL module with two matched rules.

Example. This example is motivated by a large

real-life clone we identi�ed during our evaluation. Con-

sider a model-to-model transformation that re�nes class

models to program models. Just as class models do, pro-

gram models have classes, �elds, and methods. In ad-

dition, program models have some additional elements

that can be used during code generation, such as anno-

tations. In this context, Fig. 4 shows two matched rules

dealing with the transformation of classes. The rules

address the complementary cases where a boolean at-

tribute called deprecated is set to false or true, respec-

tively. The �rst rule deals with the false case: it ensures

that names, super-classes, and the values of the abstract

and interface attributes are transferred correctly dur-

ing the re�nement of classes. The second rule addresses

the true case. It does the same as the �rst rule. In ad-

dition, it establishes that an annotation @deprecated

is created together with the class. Since these two rules

share a signi�cant number of commonalities, a refactor-

ing seems recommended.

The following de�nition captures such rules. In par-

ticular, matched rules are required to have non-empty

sets of source and target pattern elements. If this is not

the case, we only speak of fragments. Each matched rule

is also a fragment, but not vice versa.

De�nition 6 (Matched rule fragment) A matched

rule fragment r = (S, g, V, T), in short: fragment, con-

sists of a set S of atomic elements, called source pat-

tern elements, a constraint g, called guard, a set V of

key-value pairs, called variables, and a set T of output

pattern elements. An output pattern element is a pair

(t, Bt) of an atomic element t and a set Bt of key-value

pairs, called bindings.

If both S and T are non-empty, r is called a matched

rule.

Rule ClassNotDeprecated is a matched rule in which

S = {s}, g ='not s.isDeprecated', V = ∅, and
T = {(t1, Bt1)} s.t. Bt1 contains the four shown en-

tries. Note that the speci�cation of guards is optional:

if a rule does not specify a guard explicitly, the guard

of that rule is true, that is, it is always ful�lled.

As a prerequisite for our notion of clones, we con-

sider a sub-fragment relation:

De�nition 7 (Sub-fragment) Given a pair of frag-

ments f = (Sf , gf , Vf , Tf) and s = (Ss, gs, Vs, Ts), s is

a sub-fragment of f i�

� Ss ⊆ Sf ,

� gs ∈ {gf , true},

Model Clone Detection for Rule-Based Model Transformation Languages 7

� Vs ⊆ Vf , and

� and ∀(t, Bt) ∈ Ts there exists ∃(t, B′
t) ∈ Tf s.t. Bt ⊆

B′
t.

For instance, if the guard of rule ClassNotDeprecated

was replaced with true, then this rule would be a sub-

fragment of ClassDeprecated.

De�nition 8 (Clone of matched rules) Given a set

R of matched rules, a fragment c is called a clone over

R if c is a sub-fragment of at least two rules in R. A
clone c induces a set of a�ected rules Ra�(c) = {r ∈
R | c is a sub-fragment of r}.

Rules ClassDeprecated and ClassNotDeprecated

are a�ected by clones: for instance, one clone is the

fragment with S = {s}, g = true, V = ∅, and T =

{(t1, Bt1)} s.t. Bt1 contains the four bindings from rule

ClassNotDeprecated.

Taking up the same disctinction as in Def. 4, clones

can be either full or partial.

De�nition 9 (Full and partial clones) A clone c over

a set of matched rules R is a full clone i� there is

no clone c′ over the same rule set so that c′ is a sub-

fragment of c. Non-full clones are called partial clones.

The aforementioned clone is a full one. If one of the

four bindings was missing, the result would be a partial

clone, since this clone would be a sub-fragment of the

aforementioned one.

Similar to clones of graph-based rules, this de�nition

may include Type I and II clones [6], identical and al-

most identical (except for naming) clones, depending

on whether we consider the name of an element to be a

part of its identity. As a Type III clone, we may consider

a set of rules that only di�er in a number of elements,

where the number is below a certain user-de�ned sim-

ilarity threshold. Type IV clones may be addressed by

also considering the imperative part of an ATL trans-

formation.

We can de�ne the scope of a clone as either internal

or external. An internal clone spans exactly one module,

while an external one spans multiple ones.

De�nition 10 (Scope) The scope of a clone is either

Internal or External.

scope(c) =

{
Internal | ∃ module T s.t. Ra�(c) ⊆ T
External else

In contrast to Def. 5, micro-clones are not part of this

de�nition, since we assume that elements can be uniquely

identi�ed. Therefore, there is generally exactly one way

to map a sub-fragment to a matched rule.

4 Requirements

In this section, we present key requirements for a clone

detection technique for rule-based model transforma-

tions. The requirements were identi�ed from the use

cases introduced in Sect. 2. We summarize them in Ta-

ble 2.

(R1) Pattern-based. In accordance with our de�-

nition of clones, the identi�cation of structural patterns

is a hard requirement in all identi�ed use cases. A detec-

tion technique capable of identifying cloned patterns is

required, rather than one aimed at identifying pairs of

similar elements. The latter typically assumes that in-

dividual elements contain a signi�cant amount of infor-

mation, such as names [36]. In rules, conversely, nodes

and edges usually express only limited amounts of infor-

mation, such as just a type and an action. Moreover, for

the performance improvement use case, it is crucial to

�nd patterns; individual elements in isolation are hard

to handle e�ciently during rule application [37].

(R2) Performance. Clone detection needs to sup-

port scenarios with many rules and large individual

rules � arguably situations where maintainability is prob-

lematic [38]. In such scenarios, performance becomes

a signi�cant challenge. The task at hand is pattern-

mining, the identi�cation of structurally corresponding

subgraphs, which boils down to the NP-complete sub-

graph isomorphism problem [39]. Clearly, a high execu-

tion time in the range of hours or days would not be

bene�cial for use cases that are applied constantly, such

as refactorings. Still, a high latency may be acceptable if

clone detection is to be used in a nonrecurring manner:

Performance optimizations can be carried out statically

before running the transformation. Clone management

may require a one-time setup of the transformation sys-

tem. Yet even in such cases, execution time is not the

only issue � a large search space may lead to memory-

related program terminations.

(R3) Exhaustiveness. To deal with the computa-

tional cost, a clone detection tool might trade-o� per-

formance for exhaustiveness: It may apply a heuristic

to trim its search space. As a result, certain duplica-

tions may not be considered, leading to the reporting

of partial clones (Def. 4). In three use cases, this kind of

outcome is problematic: In clone refactoring, using par-

tial clones as a starting point leads to unnatural results

that retain certain duplications. A clone management

tool that only propagates arbitrary updates to corre-

sponding instances is undesirable. The quality of a spec-

i�cation may be assessed incorrectly if the full extent

of cloning is not discovered. In contrast, exhaustiveness

8 Daniel Strüber et al.

Requirement Summary Target use case

U1 U2 U3 U4 U5

R1: Pattern-based Must identify common structural patterns. � � � � �
R2: Performance Must be able to deliver results rapidly. � � � � �
R3: Exhaustiveness Must prefer full over partial clones. � � � � �
R4: Scope Must operate in a speci�c cloning scope. � � � � �
R5: Tool integration Must integrate with existing tool environments. � � � � �

Table 2: Key requirements for clone detection techniques in the identi�ed use cases: Clone refactoring (U1), clone

management (U2), assessment (U3), usability improvement (U4), performance improvement (U5). � = Hard

requirement, � = Soft requirement, � = Not required.

plays no evident role in auto-completion features and

performance optimizations that normally operate on a

best-e�ort basis.

(R4) Scope. Since all identi�ed use cases operate

on a speci�c scope, a clone detection technique needs to

match this scope. For instance, during clone refactor-

ing, it is essential that the upfront clone detection step

operates in a scope where a suitable reuse mechanism

is available for refactoring. The refactoring of internal

clones requires an internal reuse mechanism, while that

of external clones requires an external reuse mechanism

(see the discussion after Def. 5).

(R5) Tool integration. It is best to enable the

exploration of clones in the environment familiar to

maintainers, that is, their transformation editor. Even

in scenarios where clone detection is an upfront step to

an automated refactoring, developers need to inspect

the reported clones to in�uence the refactoring result.

This requirement can be neglected in performance opti-

mizations since they are usually transparent to the user,

and to some extent in usability-oriented recommender

systems that use clone detection as a background tech-

nique only.

5 Adapting Existing Clone Detection

Techniques

In this section, we explore our adaptations of existing

clone detection techniques to the requirements of rule-

based model transformations.

We considered the applicability of several clone de-

tection techniques. Since rule patterns are abstractions

of model structures, the most suitable candidate tech-

niques are those focusing on model clone detection. We

consider two techniques, eScan [40] and ConQAT [41,

42], as they allow us to address R1, the identi�cation of

identical patterns in their input models, by support-

ing the identi�cation of Type I and II clones. Both

techniques were originally devised for the domain of

Simulink models. It is noteworthy that they may not

seem a natural �t for our purpose: Simulink models

Groups of clone
fragments

eScan

Labeled graph

A priori algo

Clusters of
clone pairs

Labeled graph

ConQAT

Heuristics

convert
rules

Clones

Rules

1

convert
results

3

search
clones2 2

Rule converters

Result converters

Fig. 5: Overview of adapted clone detection techniques.

are structured based on control �ow, while rules do not

prescribe a speci�c navigation order.

We selected eScan and ConQAT since they repre-

sent two complementary paradigms to the detection of

Type I and II clones: eScan provides an a priori strat-

egy that can generally achieve perfect precision and re-

call during clone detection, assuming unlimited mem-

ory and time. ConQAT provides an heuristic strategy

that improves the e�ciency during clone detection by

trimming the search space to focus on the most viable

alternatives, which comes at the cost of decreased re-

call. The study of alternative heuristic approaches, such

as the text-based one of SIMONE [17] is an interesting

avenue for future work; it might become especially rele-

vant when we extend the present work to address Type

III clones, which are only supported by SIMONE so far.

For both considered techniques, our adaptations fol-

low the same basic process shown in Fig. 5. First, as

both techniques assume a directed, labeled graph as

input data structure, we provide rule converters that

Model Clone Detection for Rule-Based Model Transformation Languages 9

encode the input rules into such graphs. Second, the

actual clone search takes place. Third, we provide con-

verters to map the identi�ed clones back to the original

rules.

5.1 Adaptation for Graph-Based Model

Transformation

5.1.1 Phase 1: Convert rules.

Our rule converters produce the following encoding of

Henshin rules, illustrated in Fig. 6.

� Nodes: Henshin rules arrive in the form of multi-

ple graphs, following Def. 1. Our encoding of these

graphs to just one graph is inspired by the represen-

tation shown in Fig. 1. The action and type assigned

to a node is re�ected in its label. This encoding al-

lows us to capture the subrule relation: for instance,

a clone never includes the left-hand side instance of

a preserve node while neglecting the right-hand side

counterpart, thereby turning it into a delete node.

� Edges: Similar to nodes, each edge contained in the

rule is represented by one edge in the graph, labeled

with its action and type.

� Attributes: Attributes are represented as additional

graph elements. Each attribute becomes a pair of a

node and an edge, labeled with the attribute action,

type, and value. Encoding attributes as distinct el-

ements allows us to account for reuse mechanisms

that accommodate the attribute level.

Note that in our current implementation, we focus

on representing the elements of rules that can be en-

coded using the actions delete, preserve, and create,

which correspond to the rule parts stipulated in Def. 1.

An additional rule feature not addressed yet are NACs.

However, based on the extended formalization discussed

in Sect. 3, an adaptation to NACs would be straight-

forward: each NAC can be represented using one ad-

ditional action. For example, in a rule with two NACs

n1 and n2, we would have two additional actions, for-

bid#n1 and forbid#n2.

5.1.2 Phase 2: Clone search.

We use the search phases of the considered approaches

in a black-box manner. For completeness, we still give

a brief account of the internal workings of these ap-

proaches. Details are found elsewhere [40,42].

ConQAT proceeds by �nding pairs of nodes with

the same label and combining these node pairs to clone

pairs. A clone pair represents two isomorphic sub-graphs

attr

attr

attr

preserve fields preserve type

create methodsdelete methods

preserve :Class

preserve :Field

preserve :Class

preserve :Method

preserve name=src preserve name=trg

 preserve name=m

Created with yEd Live

Fig. 6: Labeled graph for encoding the Henshin rule

move (cf. Fig. 1).

of the input graph. To group only promising node pairs

together, a heuristics is applied. To this end, a similar-

ity function is used, comparing the neighborhoods of

two input nodes. Starting with one of the node pairs

with the highest similarity value, ConQAT executes a

breadth �rst search to �nd a clone pair of the largest

possible size, that is, number of included node pairs. In

each step, one of the node pairs of highest similarity is

used to extend the clone pair.

In the example, there are 26 relevant node pairs.2

The �src� nodes in Rules B and C are determined most

similar as they share the largest number of common

adjacent nodes and edges. Starting at this pair, phase

2 produces six clone pairs, four of size 4 (rule A with

corresponding parts of rule B and C, and reversed) and

two of size 5 (rule B with the corresponding part of rule

C, and reversed).

eScan works by systematically deriving all clone

fragments, that is, sub-graphs with an isomorphic coun-

terpart, contained in the input graph. Starting with

sub-graphs comprising of just one edge and its source

and target node, eScan produces larger sub-graphs in-

crementally. In each iteration, given the cloned sub-

graphs with k edges, eScan �nds the set of (k+1) edge

sub-graphs by including additional edges from the graph.

Sub-graphs without isomorphic counterparts are dis-

carded. Isomorphy between sub-graphs is detected by

comparing their canonical labels, an encoded represen-

tation of their elements. An optimization ensures that

each sub-graph is used as a starting point just once.

In the example, the input graph contains 15 sub-

graphs of size 1: four in rule A, �ve in rule B and six

in rule C.2 With the exception of the annotations edge

in rule C, each of these sub-graphs is a clone fragment

and is consequently used to derive sub-graphs of size 2.

After termination, there are 14 clone fragments of size

1, 16 of size 2, 16 of size 3, 11 of size 4, and 2 of size 5.

Both approaches include a post-processing of the

clone search result. The two main actions are cluster-

2 For simplicity, we neglect attributes in these illustrations.

10 Daniel Strüber et al.

elems elems

srcPattern trgPattern

guard

binds

binds

binds

binds

:SrcPattern

:Rule

:TrgPattern

s:ClassModel!Class:SrcElem t1:ProgramModel!Class:TrgElem

"not s.isDeprecated":Guard

"name<-s.name":Binding

"superClass<-s.superClass":Binding

"isAbstract<-s.isAbstract":Binding

"isInterface<-s.isInterface":Binding

Created with yEd Live

Fig. 7: Labeled graph for encoding the ATL rule

ClassNotDeprecated (cf. Fig. 4).

ing and �ltering. Clustering groups individual clones to

sets of isomorphic subgraphs. From these sets, �ltering

removes entries that are completely covered by another

one. For instance, in the eScan result, the groups con-

taining the sub-graphs of size 1, 2 and 3 are completely

covered by the group of size 4. Covered groups are dis-

carded since they are typically not useful to developers.

Note that ConQAT and eScan report only connected

sub-graphs as clones. Where desirable, larger uncon-

nected clones can be assembled from connected ones by

enumerating the power set of the set of clones a partic-

ular rule is a�ected by.

5.1.3 Phase 3: Convert results.

To obtain clones (Def. 3), we map the results of Phase 2

back to the rules, using a mapping that we created dur-

ing Phase 1. In the example, both approaches produce

the output shown in Table 1.

5.2 Adaptation for Hybrid Model

Transformations

5.2.1 Phase 1: Convert rules.

Our rule converters produce the following encoding of

ATL rules to the ConQAT and eScan input data struc-

tures, illustrated in Fig. 7:

� Nodes: Given a matched rule, we create one node

for each of the following objects: the rule itself, its

guard, the source and target patterns, each source

pattern element, each variable, each target pattern

element, and each binding of each target pattern el-

ement. The labels specify all information required

to determine elements identities as required for the

sub-fragment relationship (see Def. 7). The node la-

bels for rules as well as source and target patterns

are simply :Rule, :SrcPattern, and :TrgPattern,

since the identity of these elements is irrelevant for

clone detection. For the remaining elements, we use

the following information: for source pattern ele-

ments, the name and type; for the guard constraint,

the constraint value; for variables, the name, type,

and value; for target pattern elements, the name and

type; for bindings, the type and value.

� Edges: Edges represent the containment references

between the represented elements. Apart from con-

tainment ones, no other kind of reference is relevant

in our de�nition of clones.

5.2.2 Phase 2: Clone search.

For a description of the internal workings of ConQAT

and eScan, see Sec. 5.1.2.

5.2.3 Phase 3: Convert results.

Again we convert the clone detection results to actual

rule clones, using stored mappings between both ar-

tifacts from Phase 1. In the case of the example, this

step yields precisely one clone, indicated in Table 3. The

clone comprises elements s as well as t1 with its four

bindings, leading to a size of 6 (:Rule, :SrcPattern

and :TrgPattern are not part of the clone).

Name Rules Size

C1 {ClassNotDeprecated, ClassDeprecated} 6

Table 3: Full clones in the example ATL rules.

In general, the employed strategy during Phase 2

may have implications for the exhaustiveness of the re-

sult (R3). Since eScan eventually produces every pos-

sible sub-graph, it �nds all full clones (Def. 4) � as-

suming unlimited memory and time. In practice, eScan

has been shown not to scale up to larger models in the

Simulink domain [42]. In contrast, ConQAT shows good

scalability behavior, yet the employed heuristic might

lead to some detected clones being incomplete.

6 Evaluation

In this section, we present an evaluation of our ap-

proach. We address the following research question:

Model Clone Detection for Rule-Based Model Transformation Languages 11

ConQAT eScan ScanQAT

Clone detection algorithm

Largest clones
(# elements)

Broadest clones
(# rules)

Time
(ms)OCL2NGC

FMEDIT

UMLEDIT

Independent variables Dependent variablesExperiment

8 rule sets

54 rules
19.7 nodes/rule
30.7 edges/rule
10 attributes/rule

8 rule sets

57 rules
5.2 nodes/rule
15.8 edges/rule
4.6 attributes/rule

13 rule sets

1404 rules
2.5 nodes/rule
1.9 edges/rule
0.8 attributes/rule

Fig. 8: Experimental design for graph-based model transformations

Can the requirements for rule-based model transfor-

mation clone detection be satis�ed by adapting existing

model clone detection techniques?

Using our customizations of ConQAT and eScan we

addressed the requirements as follows:

� ConQAT and eScan are pattern-based (R1) by de-

sign. Since this requirement is important in all iden-

ti�ed use cases, we selected these particular tech-

niques to investigate clone detection in model trans-

formation rules.

� To study performance (R2), we conducted an ex-

perimental evaluation. To this end, we applied each

technique on rule sets from realistic model transfor-

mation systems and measured execution time.

� In the course of our experimental evaluation, we also

studied exhaustiveness (R3). While eScan guaran-

tees exhaustiveness by design, we devised a custom

set-up to study the exhaustiveness of ConQAT: we

fed the largest clones reported by ConQAT as input

to eScan-Inc [40], an incremental variant of eScan

that allows continuing the clone search from clones

of a given size. This method that we call ScanQAT

potentially allows any clones missed by ConQAT to

be detected. The number of full clones missed by

ConQAT gives an indication of its exhaustiveness.

� To study scope (R4), we discuss how our customiza-

tion of the existing techniques accounts for the dif-

ferent scopes of clones.

� To study tool integration (R5), we report on our ex-

perience with integrating the studied techniques in

the existing tool environment of the Henshin model

transformation language [14].

In the rest of this section, we �rst present the set-up

and results of our experimental evaluation, focusing on

the requirements of performance (R2) and exhaustive-

ness (R3). We start with the case of graph-based model

transformations in Sec. 6.1 and continue with hybrid

ones in Sec. 6.2. In our wrap-up discussion in Sec. 6.3,

we also address scope (R4) and tool integration (R5).

Finally, in Sec. 6.4, we discuss threats to validity.

6.1 Graph-Based Model Transformation

6.1.1 Methods and Materials.

An overview of our experimental design and detailed

information on all rule sets is given in Fig. 8. As the in-

dependent variable, we varied the clone detection tech-

nique by applying ConQAT, eScan, and the hybrid Scan-

QAT (described above). In our experiments, we used

rule sets from three transformation scenarios. The rule

sets were chosen since they represent realistic, non-

trivial rule sets available to the authors (convenience

sampling). Ocl2Ngc is a set of rules from an OCL to

nested graph constraint translator [43]. FmEdit and

UmlEdit are sets of editing rules for feature models

and UML models, respectively, used in the context of

model di�erencing [44]. All rule sets have recently been

made publicly available as part of a benchmark set [45].

Table 4 provides detailed metrics information on the

used rule sets. The rules in Ocl2Ngc are organized

12 Daniel Strüber et al.

Rule set #R #N #E #A

trE04 4 8.0 10.0 2.3
trE0506 4 8.0 10.0 3.3
trE1112 4 14.0 18.0 7.3
trE09 4 11.0 16.0 4.3
trE10 4 10.0 13.0 3.3
trE13 6 19.5 29.5 10.0
trE16 4 20.0 29.0 12.3
trE17 7 26.7 41.7 17.9

all 54 19.7 30.7 10.0

(a) Ocl2Ngc

Rule set #R #N #E #A

a.arbitrary 7 3.9 5.1 2.7
a.generalize 9 3.2 4.3 2.2
a.refactor 2 2.0 1.0 2.0
a.specialize 9 3.1 3.6 3.0
c.arbitrary 4 5.3 9.3 4.5
c.generalize 8 6.9 35.8 8.5
c.refactor 11 6.6 17.0 4.7
c.specialize 7 8.1 39.9 7.4

all 57 5.2 15.8 4.6

(b) FmEdit

Rule set #R #N #E #A

gen/ADD 26 2.1 1.5 0.0
gen/CHANGE 282 1.0 0.0 1.0
gen/CREATE 100 2.7 2.1 4.8
gen/DELETE 105 2.3 1.7 0.0
gen/MOVE 682 3.5 3.0 0.1
gen/REMOVE 26 2.1 1.5 0.0
gen/SET 136 1.2 0.3 0.8
gen/UNSET 22 2.1 1.3 0.0
man/CREATE 8 3.9 5.9 13.3
man/DELETE 8 3.8 5.6 0.0
man/MOVE 2 3.0 2.0 0.0
man/SET 4 1.8 0.8 0.3
man/UNSET 3.0 2.0 1.0 0.0

all 1404 2.5 1.9 0.8

(c) UmlEdit

Table 4: Sample rule sets with number of rules (#R) and average number of nodes (#N), edges (#E), and attributes

(#A) in each rule.

in sets of 4 to 7 rules. The rules in FmEdit are orga-

nized in sets of 2 to 11 rules. The rules in UmlEdit are

organized in sets of 22 to 682 automatically generated

rules, and 2 to 8 manually created ones. In the case of

Ocl2Ngc, we selected small, average, and large rules

as samples for our experiments, presenting them in the

table. In the case of FmEdit and UmlEdit, we stud-

ied all rule sets. These sets provide a semantic grouping

of the transformations without prescribing a particular

control �ow. In addition, the Ocl2Ngc transformation

exhibits an elaborate control �ow expressed using units,

an activity-diagram-like control mechanism, which we

neglected as it was orthogonal to the grouping into rule

sets. To explore scalability, we also applied the consid-

ered techniques to the entire rule sets.

We created an implementation prototype for our ex-

periments, implementing the customization outlined in

Sect. 5. For Phase 2, in the case of ConQAT we used

the publicly available implementation3. We created our

own implementation of eScan as no existing one was

available to us. We ran all experiments on a Windows

10 system (2.6 GHz; 8 GB of RAM).

6.1.2 Results.

We applied the techniques on all rule sets, obtaining the

results shown in Tables 5, 6, and 7. For each combina-

tion of technique and rule set, we show the largest and

the broadest clone. The largest clone is the one with

the greatest number of common elements. The broad-

est clone is the one found in the greatest number of

3 https://www.cqse.eu/en/products/conqat/install/

input rules; ties are broken by selecting the one with

the greatest number of common elements.

Performance. The performance plots in Figs. 9a, 9b,

and 9c show the runtimes in relation to the sizes of the

considered rule sets. Size was measured in terms of the

accumulative number of elements in all included rules;

note the logarithmic scale on the time axis. ConQAT

took between 7 msec and 8.8 seconds for each individ-

ual rule set. When applied to the full rule sets, it took

64.4 seconds for Ocl2Ngc, 3.7 seconds for UmlEdit,

and 1.1 seconds for FmEdit. Our ScanQAT and eScan

implementations did not yield results for all rule sets: in

some cases, they terminated with memory over�ow er-

rors or did not terminate within one hour. In the result

tables, these cases are indicated by dashes. In the cases

where they produced results, they mostly did so in less

than ten seconds; yet the longest successful runs took

57 seconds for eScan and 16.7 minutes for ScanQAT, re-

spectively. Note that our implementations of eScan and

ScanQat may in principle be �awed. Yet our experience

of memory issues is in line with earlier experiments in

the Simulink domain [42].

Exhaustiveness. In the cases where eScan and Scan-

QAT did not yield results, we cannot evaluate the ex-

haustiveness of ConQAT. In the other cases, the clones

reported by ConQAT, ScanQAT and eScan for the rule

sets of Ocl2Ngc and FmEdit were always identical

in size. In the case of UmlEdit, we observed a number

of subtle di�erences between the reported results: the

largest clone found by ConQAT for the gen/CHANGE and

gen/MOVE rule sets spanned more or fewer rules, respec-

tively, than the ones reported by ScanQAT and eScan

did. In man/DELETE, the reported largest clone was a

Model Clone Detection for Rule-Based Model Transformation Languages 13

ConQAT eScan ScanQAT

Rules R N E A R N E A R N E A

trE04 2 7 8 1 2 7 8 1 2 7 8 1

4 6 5 1 4 6 5 1 4 6 5 1

trE0506 2 7 8 2 2 7 8 2 2 7 8 2

4 6 5 2 4 6 5 2 4 6 5 2

trE09 2 10 14 3 2 10 14 3 2 10 14 3

4 9 11 3 4 9 11 3 4 9 11 3

trE10 2 9 11 2 2 9 11 2 2 9 11 2

4 8 8 2 4 8 8 2 4 8 8 2

trE1112 2 13 16 6 � 2 13 16 6

4 12 13 6 � 4 12 13 6

trE13 2 20 30 10 � �

6 2 1 1 � �

trE16 2 19 27 11 � 2 19 27 11

4 18 24 11 � 4 18 24 11

trE17 2 28 42 19 � �

7 4 2 1 � �

all 2 33 55 16 � �

31 2 1 1 � �

Table 5: Ocl2Ngc results.

ConQAT eScan ScanQAT

Rules R N E A R N E A R N E A

a.arbitary 2 3 2 0 2 3 2 0 2 3 2 0
2 3 2 0 2 3 2 0 2 3 2 0

a.generalize 2 3 2 0 2 3 2 0 2 3 2 0
2 3 2 0 2 3 2 0 2 3 2 0

a.refactor 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

a.specialize 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

c.arbitary 2 4 5 1 2 4 5 1 2 4 5 1
3 2 1 0 3 2 1 0 3 2 1 0

c.generalize 2 5 7 2 2 5 7 2 2 5 7 2
7 2 2 0 7 2 2 0 7 2 2 0

c.refactor 2 6 13 1 2 6 13 1 2 6 13 1
10 2 1 0 10 2 1 0 10 2 1 0

c.specialize 2 5 7 2 2 5 7 2 2 5 7 2
6 3 2 0 6 3 2 0 6 3 2 0

all 2 8 18 1 � �
18 3 2 0 � �

Table 6: FmEdit results.

slightly smaller one. These observations indicate that

in situations where perfect exhaustiveness is required,

a scalable tool is still not available. In other cases, Con-

QAT seems generally suitable to address the exhaus-

tiveness requirement. Note that the largest clones found

by ConQAT for all rules were larger than those in the

individual rule sets � these clones spanned over several

rule sets.

ConQAT eScan ScanQAT

Rules R N E A R N E A R N E A

gen/ADD 2 2 2 0 2 2 2 0 2 2 2 0
2 2 2 0 2 2 2 0 2 2 2 0

gen/CHANGE 9 0 0 1 5 0 0 1 5 0 0 1
11 0 0 1 11 0 0 1 11 0 0 1

gen/CREATE 7 2 2 10 7 2 2 10 7 2 2 10
9 0 0 7 9 0 0 7 9 0 0 7

gen/DELETE 2 3 4 0 2 3 4 0 2 3 4 0
7 2 2 0 7 2 2 0 7 2 2 0

gen/MOVE 2 3 4 0 12 3 4 0 11 3 4 0
34 2 2 0 34 2 2 0 34 2 2 0

gen/REMOVE 2 2 2 0 2 2 2 0 2 2 2 0
2 2 2 0 2 2 2 0 2 2 2 0

man/CREATE 3 6 7 28 � �
3 6 7 28 � �

man/DELETE 3 6 7 0 2 6 9 0 2 6 9 0
3 6 7 0 3 6 7 0 3 6 7 0

all 3 6 7 28 � �
34 2 2 0 � �

Table 7: UmlEdit results (excluding �ve rule sets

for which no clone was found by either technique:

gen/{SET,UNSET}, man/{MOVE,SET,UNSET}).

Legend for Tables 5�7: For each rule set, the largest

(�rst row) and the broadest (second row) reported clones

are denoted with their number of rules (R), nodes (N),

edges (E), and attributes (A). ��� denotes memory-

related program exits or execution times longer than one

hour.

6.2 Hybrid Model Transformation

6.2.1 Methods and materials.

Fig. 10 provides an overview of our experimental evalu-

ation of clone detection techniques for hybrid languages.

Again we considered our adaptions of ConQAT and

eScan as well as the hybrid clone detector ScanQAT.

We used samples from the ATL transformation zoo4,

called AtlZoo in short. AtlZoo is an online collec-

tion of 103 transformation scenarios with 202 modules

in total. Several modules occur in multiple versions, a

particularly interesting scenario for clone detection.

We applied ConQAT, ScanQAT, and eScan to Atl-

Zoo in its entirety. In addition, to study performance

and exhaustiveness in a more detailed manner, we ap-

plied them to suitable subsets of AtlZoo. Speci�cally,

in a preparation step, we identi�ed 21 �clusters� of mod-

ules that are mutually related via common clones. To

this end, we applied our adaptation of ConQAT to

4 https://www.eclipse.org/atl/atlTransformations/

14 Daniel Strüber et al.

1

10

100

1,000

10,000

100,000

2 0 2 1 2 6 3 1 3 9 5 9 6 1 8 6 3 4 5

Ti
m
e
 (m

s)

Rule Set Size

ConQAT eScan ScanQAT

1

10

100

1,000

10,000

100,000

1,000,000

1
3

3
4

3
8

4
0

6
1

6
1

7
4

9
1

9
4

1
1
2

1
6
4

1
7
3

1
8
1

1
9
9

2
2
6

2
8
4

4
1
0

1
4
0
5

2
8
3
0

3
5
2
7

1
0
8
8
2

2
0
8
9
9

Ti
m
e
 (m

s)

Cluster Size

ConQAT eScan ScanQAT
(a) Ocl2Ngc

1

10

100

1,000

10,000

1 2 3 4 5 6 7 8 9

Ti
m
e
 (m

s)

Rule Set Size

ConQAT eScan ScanQAT

1

10

100

1,000

10,000

100,000

1,000,000

2 2 3 3 3 4 4 4 5 7 9 1 0 2 3 7 9

Ti
m
e
 (m

s)

Rule Set Size

ConQAT eScan ScanQAT

(b) FmEdit

1

10

100

1,000

10,000

1 2 3 4 5 6 7 8 9

Ti
m
e
 (m

s)

Rule Set Size

ConQAT eScan ScanQAT

1

10

100

1,000

10,000

100,000

1,000,000

2 2 3 3 3 4 4 4 5 7 9 1 0 2 3 7 9

Ti
m
e
 (m

s)

Rule Set Size

ConQAT eScan ScanQAT

(c) UmlEdit

1

10

100

1,000

10,000

100,000

2 0 2 1 2 6 3 1 3 9 5 9 6 1 8 6 3 4 5

Ti
m
e
 (m

s)

Rule Set Size

ConQAT eScan ScanQAT

1

10

100

1,000

10,000

100,000

1,000,000

1
3

3
4

3
8

4
0

6
1

6
1

7
4

9
1

9
4

1
1
2

1
6
4

1
7
3

1
8
1

1
9
9

2
2
6

2
8
4

4
1
0

1
4
0
5

2
8
3
0

3
5
2
7

1
0
8
8
2

2
0
8
9
9

Ti
m
e
 (m

s)

Cluster Size

ConQAT eScan ScanQAT

(d) AtlZoo

Fig. 9: Performance plots for the four example rule sets.

ConQAT eScan ScanQAT

Clone detection algorithm

Largest clones
(# elements)

Broadest clones
(# rules)

Time
(ms)

Independent variables Dependent variablesExperiment

ATL Zoo

21 clusters

202 modules
2566 rules
1.03 input elem./rule
0.05 variables/rule
2.05 output elem./rule
6.02 bindings/rule
0.58 guards/rule

Fig. 10: Experimental design for hybrid model transformations

get a �rst approximation of present clones. To group

the modules based on the identi�ed clones, we used a

standard clustering algorithm: hierarchical agglomera-

tive clustering [46], which has been used as a grouping

mechanism in the MDE context before [47]. We con�g-

ured the clustering algorithm to use the average linkage

strategy and clone size as the similarity metric.

An overview of the clusters obtained from this prepa-

ration is shown in Table 8. We discarded clusters that

only contained a single module; the number of modules

in the remaining clusters ranged from 2 to 46. A �rst

interesting observation is that 166 of all 202 modules

are contained in one of the clusters � in other words,

82% of all modules are a�ected by at least one exter-

Model Clone Detection for Rule-Based Model Transformation Languages 15

nal clone (Def. 10). Subscripts indicate versions of the

same module. Several groups of versions are part of the

same cluster, e.g. two versions of UML2MOF. Conversely,

several groups have been split over multiple clusters,

e.g., the eight versions of TypeA2TypeB are split over

two clusters.

6.2.2 Results.

The results of this experiment are shown in Table 9.

Again, the table indicates the largest and broadest re-

ported clones, that is, the ones incorporating the great-

est number of elements and spanning the largest num-

ber of rules, respectively.

Performance. The performance plot in Fig. 9d relates

execution time to the size of the considered modules.

Size is given in terms of the accumulative number of

elements in all rules of all included modules; note the

logarithmic scale on the time axis. ConQAT took 111.3

seconds for the entire AtlZoo. For the individual clus-

ters, it took between 0.2 and 1.3 seconds in three cases

and less than 0.1 seconds in all other cases. eScan and

ScanQAT did not produce results in six cases: the en-

tire rule set, the three largest clusters, and two clusters

of medium size that included the modules UML2MOF and

MOF2UML, respectively. A de�ning feature of the latter

two cases is the relatively large size of their included

rules, as characterized by the number of elements per

rule. Large input graphs are challenging for eScan and

ScanQAT as they su�er from the combinatorial ex-

plosion of opportunities for extending clone candidates

during their search. In the cases where they reported a

result, eScan took between 2 milliseconds and 662 sec-

onds; ScanQAT took between 7 and 340 milliseconds.

Exhaustiveness. While eScan and ScanQAT are ex-

haustive by design, the exhaustiveness of ConQAT can

only be assessed in the cases where a baseline result pro-

duced by either eScan or ScanQAT exists. Since eScan

and ScanQAT did not terminate for the complete rule

set and the �ve clusters mentioned above, we can only

study the exhaustiveness in the remaining 16 of the 21

clusters.

In these cases, we �nd a complete agreement of all

three techniques on the largest and broadest clones.

In other words, the exhaustiveness provided by Con-

QAT was perfect in these cases. Among the determined

clones were several ones of considerable size.

We consider some particular interesting data points

more detailedly. The largest clone found for the en-

tire AtlZoo concerns the rules ConceptHasSuper and

Concept HasSuperAndisAbstract in the DSL2XMLmod-

ule. This clone, a Type I clone including 39 common

target pattern elements and 88 bindings, is compara-

ble to the one in the example shown in Fig. 4: it results

from addressing two vastly similar cases of a translation

that only di�er in the handling of a meta-attribute of

the considered source class. The broadest clone found

for the complete AtlZoo, found in 340 rules, com-

prises a target pattern element called o of the type

XML!Element. The broadest clone found in an individ-

ual set was found in the module UML2Copy, a guard of

the value (thisModule. inElements->includes(s))

found in each of the 167 rules in this module. Such

small clones may appear to be not immediately useful

to developers. However, it is worth noting that even

clones of the smallest extent have been observed to be

related to defects [33].

6.3 Discussion

Our results can be summarized as follows: ConQAT,

ScanQAT and eScan were on par with regards to all

identi�ed requirements except performance, where Con-

QAT outperformed the other approaches. From the per-

formance plots in Fig. 9, it is noticeable that the main

issue of eScan and ScanQAT is scalability: while these

techniques are capable of providing perfect exhaustive-

ness for inputs of a certain size, they do not cope with

the combinatorial explosion during clone detection for

larger inputs. Conversely, the promising exhaustiveness

results for ConQAT complement the �ndings from our

recent work where we used this technique to construct

rules in a performance optimization scenario [11]. The

new �ndings indicate that ConQAT is potentially useful

in all considered use cases, a conclusion that particu-

larly applies to situations with considerably large rule

sets such as UmlEdit or AtlZoo. Moreover, we found

that eScan and ScanQAT can be used to determine

a ground truth for assessing the accuracy of heuristic

techniques. However, for realistic rule sets in the mag-

nitude of the ones used in our evaluation, it might be

necessary to consider selected subsets for this purpose.

Scope. The encoding described in Sect. 5 can be used

to apply the considered techniques on all desired scopes:

The input graph provided to the technique may repre-

sent one rule as well as multiple rules from the same or

di�erent transformation systems. An interesting border

case we observed in the larger rules of Ocl2Ngc in-

cludes clones that cover other clones of a separate scope:

Internal clones may exhibit multiple embeddings to the

same rule, that is, cover a micro-clone. The preferable

directive in this case depends on the use case. For in-

stance, if adequate reuse concepts are available, clones

can be refactored incrementally, �rst explicating the

reuse inside the rule and then that across multiple rules.

16 Daniel Strüber et al.

Cluster #M #R #S #G #V #T #B

XML2RDM, R2ML2RDM, XML2MySQL, XML2Make, XML2Ant, etc. 58 1296 1299 845 41 3094 6448
ATL_WFR, ATL2BindingDebugger, ATL2Tracer, KM32SimpleClass, etc. 46 371 389 201 15 536 1890
Table2HTML, Table2TabularHTML, XML2SpreadsheetMLSimpli�ed, etc. 14 71 105 30 19 346 935
Measure2XHTML2, Measure2XHTML, KM32Measure2, Measure2Table2, etc. 5 29 42 0 11 36 110
TypeA2TypeB, TypeA2TypeB2, TypeA2TypeB4, TypeA2TypeB3 4 10 10 4 0 12 16
TypeA2TypeB5, TypeA2TypeB8, TypeA2TypeB7, TypeA2TypeB6 4 9 10 0 0 11 13
UML22Measure, UML22Measure2, KM32Measure3, KM32Measure 4 8 8 8 0 8 24
RemovingAnAssociationClass, RedundantClassRemovable, AssertionModi�cation 3 31 31 11 0 39 94
CloneDr2CodeClone, SimScan2CodeClone, Simian2CodeClone 3 15 16 0 0 15 30
PathExp2TextualPathExp, PathExp2PetriNet, XML2PetriNet 3 13 13 9 1 17 43
UMLCD2UMLPro�le, UML2Copy 2 201 201 200 0 205 3121
Make2Ant, Maven2Ant 2 35 35 2 4 36 98
MDL2GMF, MDL2UML 2 25 25 24 2 68 131
UML2MOF, UML2MOF2 2 24 24 10 6 26 228
MOF2UML, MOF2UML2 2 22 22 4 0 46 342
MySQL2KM3, UML2KM3 2 22 22 14 0 27 132
UML2Transformations2, UML2Transformations 2 15 15 0 0 17 80
ECore2Class, EMF2KM3 2 12 12 1 0 12 37
XML2PNML, PetriNet2PNML 2 9 9 4 0 30 55
SoftwareQualityControl2Bugzilla, SoftwareQualityControl2Mantis 2 4 4 0 1 14 72
Tree2List2, Tree2List 2 3 3 2 0 4 6

all 202 2566 2637 1524 115 5248 15445

Table 8: Clusters of cloning-a�ected modules in AtlZoo, with number of modules (#M), rules (#R), source

elements (#S), guards (#G), variables (#V), target elements (#T), and bindings (#B).

Fig. 11: Clone Detection view and Henshin editor.

Tool integration. To explore the integration with ex-

isting tools, we designed and implemented an Eclipse

plug-in on top of the Henshin language [14]. Fig. 11

shows a screenshot of the user interface: We devised

a custom Clone Detection view as an extension to the

Henshin transformation editor, listing reported clones.

When the user selects an entry in this view, the cor-

responding elements are highlighted in the editor. This

view can be combined with most considered use cases,

for instance, by serving as an entry point for a clone

refactoring. We describe the use of this plug-in more

detailedly in another work [48]. Providing tool support

for the ATL clone detectors created as part of this work

is left to future work.

6.4 Threats to validity

Based on the classi�cation of threats to the validity of

software engineering experiments proposed by Wohlin

et al. [49], our experiments are vulnerable to construct,

internal, and external validity threats. We discuss the

implications and mitigation of these threats in what fol-

lows. Construct validity refers to the extent to which an

experiment successfully measures the phenomena under

investigation, in this case the performance and exhaus-

tiveness of clone detection algorithms. A �rst threat

to the construct validity of our study concerns exhaus-

tiveness. We have not compared the results to a list of

known clones, which would be the most reliable strat-

egy. Unfortunately, such lists are di�cult to produce

Model Clone Detection for Rule-Based Model Transformation Languages 17

Clusters ConQAT eScan ScanQAT

Name M R M R S G V T B M R S G V T B M R S G V T B

XML2RDM etc. 58 1296 1 2 1 0 0 39 88 � �
15 340 0 0 0 1 0 � �

ATL_WFR etc. 46 371 2 2 2 1 0 7 49 � �
8 123 1 0 0 0 0 � �

Table2HTML etc. 14 71 1 2 1 0 0 18 33 � �
6 21 0 0 0 1 0 � �

Measure2XHTML2 etc. 5 29 2 2 1 0 0 4 7 2 2 1 0 0 4 7 2 2 1 0 0 4 7
1 6 1 0 0 0 0 1 6 1 0 0 0 0 1 6 1 0 0 0 0

TypeA2TypeB etc. 4 8 2 2 1 0 0 1 2 2 2 1 0 0 1 2 2 2 1 0 0 1 2
3 6 1 0 0 0 0 3 6 1 0 0 0 0 3 6 1 0 0 0 0

TypeA2TypeB5 etc. 4 10 2 2 1 0 0 1 1 2 2 1 0 0 1 1 2 2 1 0 0 1 1
4 4 1 0 0 1 0 4 4 1 0 0 1 0 4 4 1 0 0 1 0

UML22Measure etc. 4 9 2 2 1 1 0 1 4 2 2 1 1 0 1 4 2 2 1 1 0 1 4
4 8 0 0 0 1 0 4 8 0 0 0 1 0 4 8 0 0 0 1 0

RemovingAnAssociationClass etc. 3 15 2 2 1 0 0 1 6 2 2 1 0 0 1 6 2 2 1 0 0 1 6
3 3 1 0 0 0 0 3 3 1 0 0 0 0 3 3 1 0 0 0 0

CloneDr2CodeClone etc. 3 31 3 3 1 0 0 1 2 3 3 1 0 0 1 2 3 3 1 0 0 1 2
3 4 1 0 0 0 0 3 4 1 0 0 0 0 3 4 1 0 0 0 0

PathExp2TextualPathExp etc. 3 13 1 2 1 0 0 1 2 1 2 1 0 0 1 2 1 2 1 0 0 1 2
1 3 1 0 0 1 1 1 3 1 0 0 1 1 1 3 1 0 0 1 1

UMLCD2UMLPro�le etc. 2 22 1 2 0 0 0 1 14 1 2 0 0 0 1 14 1 2 0 0 0 1 14
1 167 0 1 0 0 0 1 167 0 1 0 0 0 1 167 0 1 0 0 0

Make2Ant etc. 2 24 1 2 1 0 0 1 2 1 2 1 0 0 1 2 1 2 1 0 0 1 2
1 2 1 0 0 1 2 1 2 1 0 0 1 2 1 2 1 0 0 1 2

MDL2GMF etc. 2 15 1 2 1 0 0 4 0 1 2 1 0 0 4 0 1 2 1 0 0 4 0
2 23 1 0 0 0 0 2 23 1 0 0 0 0 2 23 1 0 0 0 0

UML2MOF etc. 2 35 2 2 1 0 0 2 19 � �
2 4 0 0 0 1 4 � �

MOF2UML etc. 2 3 2 2 1 1 0 6 53 � �
2 8 0 0 0 1 3 � �

MySQL2KM3 etc. 2 9 1 2 1 0 0 1 10 1 2 1 0 0 1 10 1 2 1 0 0 1 10
1 5 1 0 0 0 0 1 5 1 0 0 0 0 1 5 1 0 0 0 0

UML2Transformations2 etc. 2 4 2 2 1 0 0 1 11 2 2 1 0 0 1 11 2 2 1 0 0 1 11
2 2 1 0 0 1 11 2 2 1 0 0 1 11 2 2 1 0 0 1 11

ECore2Class etc. 2 22 2 2 1 0 0 0 0 2 2 1 0 0 0 0 2 2 1 0 0 0 0
2 2 1 0 0 0 0 2 2 1 0 0 0 0 2 2 1 0 0 0 0

XML2PNML etc. 2 201 1 4 1 0 0 2 2 1 4 1 0 0 2 2 1 4 1 0 0 2 2
2 8 0 0 0 1 0 2 8 0 0 0 1 0 2 8 0 0 0 1 0

SoftwareQualityControl2Bugzilla etc. 2 25 2 2 1 0 0 0 0 2 2 1 0 0 0 0 2 2 1 0 0 0 0
2 2 1 0 0 0 0 2 2 1 0 0 0 0 2 2 1 0 0 0 0

Tree2List2 etc. 2 12 2 2 1 1 0 1 1 2 2 1 1 0 1 1 2 2 1 1 0 1 1
2 2 1 1 0 1 1 2 2 1 1 0 1 1 2 2 1 1 0 1 1

all 202 2566 1 2 1 0 0 39 88 � �
15 340 0 0 0 1 0 � �

Table 9: AtlZoo results. For each cluster, the largest (�rst row) and broadest (second row) reported clones are de-

noted with their number of modules (M), rules (R), source elements (S), guards (G), variables (V), target elements

(T), and bindings (B). ��� denotes memory-related program exits or execution times longer than one hour.

manually for large rule sets. Furthermore, we only focus

on the detection of the largest clones, ignoring smaller

ones. While more comprehensive exhaustiveness stud-

ies are desirable, large clones are the most relevant for

refactoring and performance optimizations.

Internal validity concerns an experiment's capacity to

highlight a causal relationship between its factors and

outcomes. In our case, internal validity is ensured by

the experimental design and by precautions taken while

running the experiment. The adopted design does not

su�er from potential confounding factors, and all trials

were conducted under similar conditions: on the same

machine running the same minimal set of applications.

External validity indicates an experiment's ability to

produce generalizable results. We discuss the external

validity of our experiments from two orthogonal per-

18 Daniel Strüber et al.

spectives: (1) the considered transformation scenarios

and (2) the considered model transformation languages.

From the �rst perspective, the external validity of our

experiments is threatened by the limited sample of trans-

formation rules sets. Although the studied graph-based

scenarios are based on three heterogeneous and non-

trivial rule sets, the rules were not created in an indus-

trial context. From the second perspective, we argue

that Henshin is similar in terms of features to other

graph-based model transformation languages such as

AGG [50], GReAT [51], VMTS [52], and Story Dia-

grams [53]. We therefore expect the �ndings of this ex-

periment to be generalizable to such languages. Our

�ndings are, however, not generalizable to model trans-

formation languages representing other paradigms than

graph transformation and the hybrid paradigm as em-

bodied by ATL. Still, since we selected the graph-based

and hybrid paradigms as two of the most commonly

used transformation paradigms, we are con�dent that

our results give interesting insights to both researchers

and practitioners.

7 Related Work

Several other techniques for model clone detection have

been proposed. While the approaches by Störrle [36,54]

and Ekanayake et al. [55] enable the identi�cation of

groups of similar elements in UML and business pro-

cess models, respectively, we focus on the detection of

identical patterns. Liang et al. [56] propose a clone de-

tection technique based on identifying the longest sub-

sequences in paths through the input models. The tech-

nique shows a comparable accuracy to that of ConQAT

while yielding a runtime improvement. We focus on

ConQAT due to its publicly available implementation

that fully satis�ed the requirements in our experiments.

Tairas et al. [57] propose a model-based approach for

identifying clones in textual Domain Speci�c Languages

(DSLs), and exemplify this approach by applying it to

several OCL code bases, including the ATL zoo. The

presented experiment suggests that clones appear in

large numbers in publicly available OCL repositories.

This work is complementary to our proposal; a promis-

ing combination of both approaches is to use the OCL

clone detection algorithm in conjunction with our ap-

proach for detecting clones in the structure of ATL

transformations.

The clones considered in this paper are Type I-II

clones. Additional classes of clones are Type III or �near

miss clones�, which include layout changes and addi-

tions of connections, and Type IV or �semantic� clones.

The SIMONE clone detector proposed by Cordy and

his colleagues [17,58,59] focuses on Type III clones in

Simulink models. An evaluation of SIMONE indicates

that, in addition to Type III clones, it is capable of iden-

tifying all Type I-II clones detected by ConQAT [58],

suggesting that Type III clones in rule-based model

transformation languages may also be reliably identi-

�ed. This is an important area of future work in the

direction opened by the present paper.

In our evaluation, we compared the available model

clone detection techniques by using the exact detection

results reported by eScan and ConQAT as a ground

truth, a strategy that was suitable for small to medium

rule sets, but did not scale up to the largest ones we

considered. In the future, we may bene�t from avail-

able works on the evaluation of model clone detection

techniques. In the context of Type III clones, a suit-

able strategy for clone detector evaluation is mutation

analysis [60,61]: this strategy involves the application

of certain mutator operations to seed variations in a

set of clones, which allows Type I and II clones to be

turned into Type III ones.

A number of quality assurance approaches for model

transformations are related. Van Amstel et al. [62] pro-

pose a variety of analytical methods, such as metrics

and dependency graphs. Without mentioning speci�cs,

they also foresee the use of clone detection. Kapová

et al. [63] propose a set of quality metrics to evaluate

QVT-R transformations; number of clones is mentioned

as one metric. Wimmer et al. [64] introduce a refactor-

ing catalog to improve the quality of M2M transforma-

tions; duplicate code is mentioned as a bad smell. Ger-

pheide et al. [65] present a quality model for QVT-O

comprising 37 quality properties and four quality goals:

functionality, understandability, performance, and main-

tainability. In line with our discussion of clone refactor-

ing and management as use cases for clone detection

(see Section 2), Alkhazi et al. [66] propose a search-

based solution for the automatic refactoring of ATL

transformations. Some of the supported refactorings (e.g.

�extract superrule�, �extract helper�, and �merge rule�)

stand out as direct applications of clone detection.

8 Conclusion

Clone detection is an important static analysis for en-

abling the identi�cation of duplications in software ar-

tifacts, thereby supporting the transition from an ad-

hoc development style to a more systematic one. In this

work, we present the �rst approach to address clone de-

tection for model transformations, focusing on the rule-

based transformation paradigms of graph-based and hy-

brid model transformations.

Our experimental evaluation features a selection of

large-scale rule sets from realistic Henshin and ATL

Model Clone Detection for Rule-Based Model Transformation Languages 19

transformation scenarios. The results indicate that our

adaptation of ConQAT, a technique from the domain

of Simulink models, is well-suited to satisfy the require-

ments of clone detection in rule-based model transfor-

mations: It supports the identi�cation of overlapping

patterns, which is a particularly important requirement

in the context of graph-based transformations, where

rule elements do not necessarily have names. In cases

where we could assess its accuracy, ConQAT's accuracy

was excellent, while providing favorable performance in

particular for larger rule sets. Our current investigation

focused on Type I and II clones.

9 Future Work

Since research on clone detection for model transfor-

mation languages is still in its infancy, there are several

directions for future work.

The hypothesis that transformation developers can

bene�t from clone detection must be validated empiri-

cally. To this end, a user experiment based on our proto-

typical tool support is appropriate. Moreover, we aim

to broaden the scope of our work towards additional

model transformation and clone detection features and

paradigms.

First, in addition to transformation rules as addressed

in this work, transformation languages often come with

imperative features such as control �ow mechanisms or

even completely imperative transformation programs.

To detect clones related to these features, integrating

existing clone detection approaches for imperative pro-

gramming languages as well as textual DSLs is one par-

ticular development of interest. Using this approach, we

aim to establish whether similar results as the ones pro-

vided for graph-based and hybrid model transformation

languages can be obtained for other paradigms, such as

imperative ones.

Second, in our evaluation, we saw that the number and

extent of clones reported to the user can be substantial.

The identi�cation of suitable clones for a particular use

cases might require to identify subsets of clones based

on certain �tness criteria. This task may bene�t from

advances in search-based model optimization [67].

Third, a desirable clone detection feature we intend to

address in the future includes support for Type III and

IV clones. Since we were able to adapt existing clone

detection techniques for Type I and II clones, we aim

to establish whether similar results can be obtained in

this case. Speci�cally, to detect Type III clones, we plan

to adapt the SIMONE clone detector, which has shown

excellent results in the Simulink domain. Moreover, an

important feature to address in future work is an in-

cremental execution mode for clone detection, which

reuses detection results from earlier runs. In particu-

lar, this feature might be bene�cial for the use cases of

performance optimization and usability improvements.

Acknowledgement.We thank the reviewers for their

valuable and constructive suggestions. This research was

partially supported by the research project Visual Pri-

vacy Management in User Centric Open Environments

(supported by the EU's Horizon 2020 programme, Pro-

posal number: 653642).

References

1. Sendall, S., Kozaczynski, W.: Model transformation: The
heart and soul of model-driven software development. IEEE
software 20(5) (2003) 42�45

2. Glass, R.L.: Frequently forgotten fundamental facts about
software engineering. IEEE software (3) (2001) 112�110

3. Koschke, R.: Survey of research on software clones. In:
Dagstuhl Seminar 06301: Duplication, Redundancy, and Sim-
ilarity in Software. GI (2007) 24

4. Fowler, M.: Refactoring: improving the design of existing
code. Addison-Wesley Professional (2002)

5. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical
study of code clone genealogies. In: ACM SIGSOFT Software
Engineering Notes. Volume 30., ACM (2005) 187�196

6. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and Eval-
uation of Code Clone Detection Techniques and Tools: A
Qualitative Approach. Science of Computer Programming
74(7) (2009) 470�495

7. Rattan, D., Bhatia, R., Singh, M.: Software clone detection:
A systematic review. Information and Software Technology
55(7) (2013) 1165�1199

8. Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: Reuse in model-to-model
transformation languages: are we there yet? Software & Sys-
tems Modeling 14(2) (2013) 537�572

9. Czarnecki, K., Helsen, S.: Classi�cation of model transfor-
mation approaches. In: Proceedings of the 2nd OOPSLA
Workshop on Generative Techniques in the Context of the
Model Driven Architecture. Volume 45., USA (2003) 1�17

10. Mens, T., Gorp, P.V.: A taxonomy of model transforma-
tion. Electronic Notes in Theoretical Computer Science 152
(2006) 125 � 142

11. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer,
G., Plöger, J.: RuleMerger: Automatic Construction of
Variability-Based Model Transformation Rules. In: Interna-
tional Conference on Fundamental Approaches to Software
Engineering, Springer (2016) 122�140

12. Strüber, D., Plöger, J., Acretoaie, V.: Clone Detection for
Graph-Based Model Transformation Languages. In: Pro-
ceedings of the International Conference on the Theory and
Practice of Model Transformations (ICMT), Springer (2016)
191�206

13. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven soft-
ware engineering in practice. Synthesis Lectures on Software
Engineering 1(1) (2012) 1�182

14. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer,
G.: Henshin: advanced concepts and tools for in-place EMF
model transformations. In: International Conference on
Model Driven Engineering Languages and Systems. Springer
(2010) 121�135

20 Daniel Strüber et al.

15. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T.,
Ohrndorf, M., Tichy, M.: Henshin: A usability-focused frame-
work for emf model transformation development. In: Interna-
tional Conference on Graph Transformation. (2017) 196�208

16. Jouault, F., Kurtev, I.: Transforming models with ATL. In:
Satellite Events at the MoDELS 2005 Conference, Revised
Selected Papers, Springer (2005) 128�138

17. Alal�, M.H., Cordy, J.R., Dean, T.R., Stephan, M., Steven-
son, A.: Models are code too: Near-miss clone detection for
simulink models. In: International Conference on Software
Maintenance, IEEE (2012) 295�304

18. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W., Kolovos, D.S., Paige, R.F.,
Lauder, M., Schürr, A., et al.: Surveying rule inheritance in
model-to-model transformation languages. Journal of Object
Technology 11(2) (2012) 1�46

19. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modulariz-
ing triple graph grammars using rule re�nement. In: Interna-
tional Conference on Fundamental Approaches to Software
Engineering. Springer (2014) 340�354

20. Strüber, D., Rubin, J., Chechik, M., Taentzer, G.: A
Variability-Based Approach to Reusable and E�cient Model
Transformations. In: International Conference on Funda-
mental Approaches to Software Engineering, Springer (2015)
283�298

21. Nguyen, H.A., Nguyen, T.T., Pham, N.H., Al-Kofahi, J.,
Nguyen, T.N.: Clone management for evolving software.
Software Engineering, IEEE Transactions on 38(5) (2012)
1008�1026

22. Narasimhan, K., Reichenbach, C.: Copy and paste redeemed.
In: International Conference on Automated Software Engi-
neering. IEEE (2015) 630�640

23. Stephan, M., Cordy, J.R.: Model-driven evaluation of soft-
ware architecture quality using model clone detection. In: In-
ternational Conference on Software Quality, Reliability and
Security, IEEE (2016) 92�99

24. Stephan, M., Cordy, J.R.: Identi�cation of simulink model
antipattern instances using model clone detection. In: Inter-
national Conference on Model Driven Engineering Languages
and Systems, IEEE (2015) 276�285

25. Stephan, M., Cordy, J.R.: Identifying instances of model de-
sign patterns and antipatterns using model clone detection.
In: International Workshop on Modeling in Software Engi-
neering, IEEE (2015) 48�53

26. Lano, K., Kolahdouz-Rahimi, S.: Model-transformation de-
sign patterns. Software Engineering, IEEE Transactions on
40(12) (2014) 1224�1259

27. Blouin, D., Plantec, A., Dissaux, P., Singho�, F., Diguet,
J.P.: Synchronization of models of rich languages with triple
graph grammars: An experience report. In: International
Conference on Model Transformation. Springer (2014) 106�
121

28. Strüber, D.: Model-Driven Engineering in the Large: Refac-
toring Techniques for Models and Model Transformation Sys-
tems. PhD thesis, Philipps-Universität Marburg (2016)

29. Heckel, R., Küster, J.M., Taentzer, G.: Con�uence of typed
attributed graph transformation systems. In: International
Conference on Graph Transformation. Springer (2002) 161�
176

30. Habel, A., Heckel, R., Taentzer, G.: Graph Grammars with
Negative Application Conditions. Fundamenta Informaticae
26(3/4) (1996) 287�313

31. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G.,
Plöger, J.: Variability-based model transformation: formal
foundation and application (2017) accepted.

32. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.:
M-adhesive transformation systems with nested application

conditions. Part 1: parallelism, concurrency and amalgama-
tion. Mathematical Structures in Computer Science 24(04)
(2014) 240406

33. Beller, M., Zaidman, A., Karpov, A.: The last line e�ect. In:
International Conference on Program Comprehension, IEEE
Press (2015) 240�243

34. Bauer, J., Boneva, I., Kurbán, M.E., Rensink, A.: A modal-
logic based graph abstraction. In: International Conference
on Graph Transformation. Springer (2008) 321�335

35. Cuadrado, J.S., Guerra, E., De Lara, J.: Generic model trans-
formations: write once, reuse everywhere. International Con-
ference on Model Transformation (2011) 62�77

36. Störrle, H.: Towards Clone Detection in UML Domain Mod-
els. J. Software & Systems Modeling 12(2) (2013) 307�329

37. Tichy, M., Krause, C., Liebel, G.: Detecting Performance
Bad Smells for Henshin Model Transformations. AMT work-
shop 1077 (2013)

38. Störrle, H.: On the Impact of Layout Quality to Understand-
ing UML Diagrams: Size Matters. In: International Confer-
ence on Model Driven Engineering Languages and Systems,
Springer (2014) 518�534

39. Yan, X., Han, J.: gspan: Graph-Based Substructure Pattern
Mining. In: ICDM'03, IEEE (2002) 721�724

40. Pham, N.H., Nguyen, H.A., Nguyen, T.T., Al-Kofahi, J.M.,
Nguyen, T.N.: Complete and Accurate Clone Detection in
Graph-Based Models. In: International Conference on Soft-
ware Engineering, IEEE (2009) 276�286

41. Deissenboeck, F., Hummel, B., Jürgens, E., Schätz, B., Wag-
ner, S., Girard, J., Teuchert, S.: Clone Detection in Automo-
tive Model-Based Development. In: International Conference
on Software Engineering, ACM (2008) 603�612

42. Deissenboeck, F., Hummel, B., Jürgens, E., Pfaehler, M.,
Schaetz, B.: Model Clone Detection in Practice. In: Ws.
on Software Clones, ACM (2010) 57�64

43. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From Core
OCL Invariants to Nested Graph Constraints. In: Interna-
tional Conference on Graph Transformation, Springer (2014)
97�112

44. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U.,
Schürr, A.: Reasoning about product-line evolution using
complex feature model di�erences. Journal of Automated
Software Engineering (2015) 1�47

45. Strüber, D., Kehrer, T., Arendt, T., Pietsch, C., Reuling,
D.: Scalability of Model Transformations: Position Paper
and Benchmark Set. In: Workshop on Scalable Model Driven
Engineering. (2016) 21�30

46. Schae�er, S.E.: Graph clustering. Computer science review
1(1) (2007) 27�64

47. Babur, Ö., Cleophas, L., van den Brand, M.: Hierarchical
clustering of metamodels for comparative analysis and visual-
ization. In: European Conference on Modelling Foundations
and Applications. (2016) 3�18

48. Strüber, D., Schulz, S.: A tool environment for managing
families of model transformation rules. In: International Con-
ference on Graph Transformation. Springer (2016)

49. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Reg-
nell, B.: Experimentation in Software Engineering. Springer
(2012)

50. Taentzer, G.: AGG: A Graph Transformation Environment
for Modeling and Validation of Software. In: International
Workshop on Applications of Graph Transformations with
Industrial Relevance, Springer (2003) 446�453

51. Balasubramanian, D., Narayanan, A., van Buskirk, C.P.,
Karsai, G.: The Graph Rewriting and Transformation Lan-
guage: GReAT. ECEASST 1 (2006)

52. Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.: A
Systematic Approach to Metamodeling Environments and

Model Clone Detection for Rule-Based Model Transformation Languages 21

Model Transformation Systems in VMTS. Electr. Notes
Theor. Comput. Sci. 127(1) (2005) 65�75

53. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story dia-
grams: A new graph rewrite language based on the uni�ed
modeling language and java. In: International Workshop on
Theory and Application of Graph Transformations, Springer
(1998) 296�309

54. Störrle, H.: E�ective and e�cient model clone detection. In:
Software, Services, and Systems. Springer (2015) 440�457

55. Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa,
M., ter Hofstede, A.H.: Approximate clone detection in
repositories of business process models. In: Business Process
Management. Springer (2012) 302�318

56. Liang, Z., Cheng, Y., Chen, J.: A novel optimized path-based
algorithm for model clone detection. Journal of Software 9(7)
(2014) 1810�1817

57. Tairas, R., Cabot, J.: Cloning in DSLs: experiments with
OCL. In: International Conference on Software Language
Engineering, Springer (2011) 60�76

58. Cordy, J.R.: Submodel pattern extraction for simulink mod-
els. In: International Software Product Line Conference,
ACM (2013) 7�10

59. Rapos, E.J., Stevenson, A., Alal�, M.H., Cordy, J.R.: Sim-
Nav: Simulink navigation of model clone classes. In: Inter-
national Working Conference on Source Code Analysis and
Manipulation, IEEE Computer Society (2015) 241�246

60. Stephan, M., Alal�, M.H., Stevenson, A., Cordy, J.R.: To-
wards qualitative comparison of simulink model clone de-
tection approaches. In: International Workshop on Software
Clones, IEEE (2012) 84�85

61. Stephan, M.: Model clone detector evaluation using mutation
analysis. In: International Conference on Software Mainte-
nance and Evolution, IEEE (2014) 633�638

62. Van Amstel, M.F., Van Den Brand, M.G.: Model transfor-
mation analysis: staying ahead of the maintenance night-
mare. In: International Conference on Model Transforma-
tion. Springer (2011) 108�122

63. Kapová, L., Goldschmidt, T., Becker, S., Henss, J.: Evalu-
ating maintainability with code metrics for model-to-model
transformations. In: Research into Practice�Reality and
Gaps. Springer (2010) 151�166

64. Wimmer, M., Perez, S.M., Jouault, F., Cabot, J.: A catalogue
of refactorings for model-to-model transformations. Journal
of Object Technology 11(2) (2012) 1�40

65. Gerpheide, C.M., Schi�elers, R.R., Serebrenik, A.: Assess-
ing and improving quality of QVTo model transformations.
Software Quality Journal (2014) 1�38

66. Alkhazi, B., Ruas, T., Kessentini, M., Wimmer, M., Grosky,
W.I.: Automated Refactoring of ATL Model Transforma-
tions: A Search-based Approach. In: International Confer-
ence on Model Driven Engineering Languages and Systems,
ACM (2016) 295�304

67. Strüber, D.: Generating e�cient mutation operators for
search-based model-driven engineering. In: International
Conference on Model Transformation. (2017) 121�137

	Introduction
	Use cases
	Preliminaries
	Requirements
	Adapting Existing Clone Detection Techniques
	Evaluation
	Related Work
	Conclusion
	Future Work

