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ABSTRACT

The evolution of variant-rich systems is a challenging task. To sup-
port developers, the research community has proposed a range of
different techniques over the last decades. However, many tech-
niques have not been adopted in practice so far. To advance such
techniques and to support their adoption, it is crucial to evaluate
them against realistic baselines, ideally in the form of generally
accessible benchmarks. To this end, we need to improve our empir-
ical understanding of typical evolution scenarios for variant-rich
systems and their relevance for benchmarking. In this paper, we
establish eleven evolution scenarios in which benchmarks would
be beneficial. Our scenarios cover typical lifecycles of variant-rich
system, ranging from clone & own to adopting and evolving a con-
figurable product-line platform. For each scenario, we formulate
benchmarking requirements and assess its clarity and relevance
via a survey with experts in variant-rich systems and software
evolution. We also surveyed the existing benchmarking landscape,
identifying synergies and gaps. We observed that most scenarios,
despite being perceived as important by experts, are only partially
or not at all supported by existing benchmarks—a call to arms for
building community benchmarks upon our requirements. We hope
that our work raises awareness for benchmarking as a means to
advance techniques for evolving variant-rich systems, and that it
will lead to a benchmarking initiative in our community.
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1 INTRODUCTION

Evolving a variant-rich software system is a challenging task. Based
on feature additions, bugfixes, and customizations, a variant-rich
system evolves in two dimensions: (1) in its variability when new
variants are added over time, and (2) in each individual variant, as
variants are continuously modified. From these dimensions, var-
ious evolution scenarios arise. For example, variability may be
managed using clone & own [25], that is, by copying and modifying
existing variants. In this case, changes performed on one variant
are often propagated to other variants (variant synchronization).
When the number of variants grows, a project initially managed
using clone & own might be migrated to an integrated product-line
platform [8, 13, 50], comprising a variability model [19, 38] and im-
plementation assets with variability mechanisms (e.g., preprocessor
annotations or composable modules). In this case, all assets in all
variants that correspond to a given feature must be identified (fea-
ture location). Supporting developers during such scenarios requires
adequate techniques, many of which have been proposed in recent
years [2, 3, 7, 8, 10, 20, 27, 29, 37, 39, 48, 50, 60, 72, 77, 79, 87, 90, 94,
95].

The maturity of a research field depends on the availability of
commonly accepted benchmarks for comparing new techniques to
the state of the art. We define a benchmark as a framework or realistic
dataset that can be used to evaluate the techniques of a given domain.
Realistic means that the dataset should have been initially created
by industrial practitioners; it may be augmented with meta-data
that can come from researchers. In the case of evolving variant-rich
systems, despite the progress on developing new techniques and
tools, evaluation methodologies are usually determined ad hoc. To
evaluate available techniques in a more systematic way, a common
benchmark set has yet to emerge.

Inspired by a theory of benchmarks in software engineering [91],
we believe that the community can substantially move forward by
setting up a common set of benchmarks for evaluating techniques
for evolving variant-rich systems. With this goal in mind, we follow
typical recommendations for benchmark development [91]: to lead
the effort with a small number of primary organizers, to build on es-
tablished research results, and to incorporate community feedback
to establish a consensus on the benchmark. As such, our long-term
goal is to establish a publicly available benchmark set fulfilling
the requirements of successful benchmarks [91]: clarity, relevance,
accessibility, affordability, solvability, portability, and scalability.

In this paper, as a step towards this long-term goal, we lay the
foundations for a benchmark set for evaluating techniques for evolv-
ing variant-rich systems. We conceive the scenarios that the bench-
mark set needs to support, show the relevance and clarity of our
descriptions based on community feedback, and survey the state of
the art of related datasets to identify potential benchmarks.
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We make the following contributions:

o Eleven scenarios for benchmarking the techniques that sup-
port developers when evolving variant-rich systems (Sec. 2),
including sub-scenarios, requirements, and evaluation metrics;

e A community survey with experts on software variability and
evolution, focusing on the clarity and relevance of our scenarios
(Sec. 3) and relying on an iterative, design-science approach;

e A survey of existing benchmarks for the scenarios (Sec. 4),
selected upon our experience and the community survey;

e An online appendix with further information (e.g., links to
benchmarks) and a replication package with the questionnaire
and its data: https://bitbucket.org/easelab/evobench/

We observed that various scenarios are only partially or not at all
supported by existing benchmarks. We also identified synergies
between scenarios and available benchmarks, based on the overlap
of required benchmarking assets. Based on the positive feedback re-
garding the clarity and relevance of our benchmark descriptions, we
believe that our work paves the way for a consolidated benchmark
set for techniques used to evolve variant-rich systems.

2 EVOLUTION SCENARIOS

We establish eleven scenarios for techniques that support develop-
ers during the evolution of variant-rich systems. For each scenario,
we argue how the relevant techniques can be evaluated with a
benchmark. We introduce each scenario with a description, a list
of more detailed sub-scenarios, a list of requirements for effective
benchmarks, and a list of metrics for comparing the relevant tech-
niques.

2.1 Methodology

To select the scenarios and construct the descriptions, we followed
an iterative process involving all authors. We took inspiration from
our experience as experts in software product line research, our
various studies of evolution in practice [12, 13, 15, 17, 34, 35, 37, 42,
54,56, 59, 67, 73, 74], and the mapping studies by Assungéo et al. [8]
and Laguna and Crespo [48]. Based on these sources, an initial list
of scenarios emerged in a collaborative brainstorming session. Each
scenario was assigned to a responsible author who developed an
initial description. Based on mutual feedback, the authors refined
the scenario descriptions and added, split, and merged scenarios and
their descriptions. Each scenario description was revised by at least
three authors. Eventually, a consensus on all scenario descriptions
was reached. Afterwards, we performed a community survey to
assess the clarity and relevance of the descriptions. The final version
of the descriptions, as shown below, incorporates feedback from
the survey (see the methodology description in Sec. 3).

2.2 Running Example

As a running example for the evolution of variant-rich systems,
consider the following typical situation from practice.

Initially, a developer engineers, evolves, and maintains a single
system, for instance, using a typical version-control system (e.g.,
Git). At some point, a customer requests a small adaptation. The
developer reacts by adding a configuration option and variation
points (e.g., based on if statements) in the code. Later, another
customer requests a more complex adaption. The developer reacts
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by copying the initial variant (i.e., creating a clone) of the system and
adapting it to the new requirements (a.k.a., clone & own). Over time,
further customers request specific adaptations and the developer
uses either of these two strategies.

When the number of variants grows, this ad hoc reuse becomes
inefficient. Namely, it becomes challenging and error-prone to iden-
tify which existing variant to clone and which parts (i.e., features) of
other variants to incorporate in the new variant. The same applies
to maintenance, as it is not clear which variants are affected by a
bug or update. Any bug or update then needs to be fixed for each
existing variant individually. Furthermore, an increasing number
of configuration options challenges developers through intricate
dependencies that need to be managed; and variation points clutter
the source code, challenging program comprehension.

2.3 Scenario Descriptions

We now introduce our scenarios based on the running example,
providing descriptions, sub-scenarios, benchmarking requirements
and evaluation metrics. We focus on evaluation metrics that are
custom to the scenario at hand. Some additional characteristics of
interest, such as performance and usability, are important in all
scenarios and should be supported by adequate metrics as well.
Assessing the correctness or accuracy of a technique may require
a ground truth, a curated, manually produced or (at least) checked
set of assets assumed to be correct. Some scenarios involve the
design choice of picking a metric from a broader class of metrics
(e.g, similarity metrics); in these cases we specify only the class.

We visualize each scenario by means of a figure. Each figure pro-
vides a high-level overview of the respective scenario, representing
the involved assets with boxes, techniques with rounded boxes,
relationships with dashed arrows, and actions with solid arrows.
In cases where a scenario has multiple sub-scenarios with varying
kinds of assets, we show the superset of all required assets from all
sub-scenarios. Each figure includes a large arrow on its left-hand
side, indicating the direction of system evolution.
Variant Synchronization (VS). When evolving a variant-rich sys-
tem based on clone & own, the developer frequently needs to syn-
chronize variants. Bugfixes or feature implementations that are per-
formed in one variant need to be propagated to other variants—a
daunting task when performed manually. An automated technique
(illustrated in Fig. 1) could facilitate this process by propagating
changes or features contained in a variant [77, 78].
Sub-scenarios

e VS1: Propagation of changes across variants

e VS2: Propagation of features across variants
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Figure 1: Variant synchronization (VS)
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Figure 2: Variant integration (VI)

Benchmark requirements
e VS1/2: Implementation code of two or more variants
e VS1/2: Implementation code of variants after correct propaga-
tion (ground truth)
e VS1: Changes of at least one variant
e VS2: Feature locations of at least one variant

Evaluation metrics
e Accuracy: A metric for measuring the similarity between ground
truth and computed variant implementation

Variant Integration (VI). Due to the drawbacks associated with
clone & own [6, 25], a developer may deem it beneficial to manage
the variant-rich system as a product-line platform. Such a plat-
form comprises a variability model (e.g., feature [38] or decision
model [19]) and implementation assets with a variability mecha-
nism (e.g., preprocessor annotations or feature modules) that sup-
ports the on-demand generation of product variants. From the
decision to move towards a product-line platform, two major vari-
ant integration tasks (a.k.a., extractive product-line adoption [43])
arise (illustrated in Fig. 2).

The first task is to enable the transition from the cloned vari-
ants to a platform [8]. Available techniques for this purpose take
as input a set of products and produce as output a corresponding
product-line platform [60]. Yet, further evolving the resulting plat-
form can be challenging due to its variability—assets may be difficult
to comprehend and modify. Therefore, the second task is to support
extending and evolving a product line by means of individual, con-
crete product variants [51, 94]. This allows engineers to focus on
concrete products during evolution to then feed the evolved product
back into the platform to evolve it accordingly. Such techniques can
be supported by variation control systems [51, 94] and approaches
for incremental product-line adoption [6] from cloned variants.
Sub-scenarios

e VI1: Integrate a set of variants into the product-line platform
e VI2: Integrate changes to variants into the product-line plat-
form

Benchmark requirements
o VI1: Set of individual variants
e VI2: Set of revisions of a product-line platform
e VI1/2: Product-line platform after correct integration (ground
truth)
Evaluation metrics
e Accuracy: A metric for measuring the similarity between the
ground truth and the computed product-line platform

Feature Identification and Location (FIL). Both, as an aid to bet-
ter support clone & own development and to prepare the migration
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Figure 3: Feature identification and location (FIL)

to a product-line platform, developers may wish to determine which
features exist in the system and which features are implemented in
which assets (e.g., source code, models, requirements or other types
of artifacts). For this purpose, they may rely on feature identification
and feature location techniques (illustrated in Fig. 3). Feature iden-
tification aims to determine which features exist, whereas feature
location aims to define the relationship of features to assets.

Feature identification is useful when the knowledge about fea-
tures is only given implicitly in the assets, rather than explic-
itly as in a feature model. The objective is to analyze assets to
extract candidate feature names. This can involve techniques to
study domain knowledge or vocabulary of the considered domain,
workshops to elicit features from experts [42], or automated tech-
niques [61, 70, 100].

When done manually, feature location is a time-consuming and
error-prone activity [45]. It has a long tradition for maintenance
tasks (e.g., narrowing the scope for debugging code related to a
feature), but is also highly relevant for identifying the boundaries of
a feature at the implementation level to extract it as a reusable asset
during re-engineering [47]. In this sense, it is related to traceability
recovery. Feature location is usually expert-driven in industrial set-
tings, however, several techniques based on static analysis, dynamic
analysis, and information retrieval, or hybrid techniques, exist [8].
Sub-scenarios

o FIL1: Feature identification in single variants

o FIL2: Feature identification in multiple variants
e FIL3: Feature location in single systems

e FIL4: Feature location in multiple variants

Benchmark requirements
e FIL1/2/3/4: Assets representing variants, such as: implemen-
tation code, requirements, documentation, issue tracker data,
change logs, version-control history
e FIL1/2/3/4: List of features (ground truth for FIL1/2)
o FIL3/4: Feature locations in sufficient granularity, such as files,
folders, code blocks (ground truth)

Evaluation metrics
e Accuracy: Precision and Recall. Some authors in the literature
use metrics, such as Mean Reciprocal Rank, that assess the
accuracy of a ranking of results [18, 99].

Constraints Extraction (CE). In a variant-rich system, some fea-
tures may be structurally or semantically related to other features.
Initially, this information is not explicitly formalized, which makes
it harder for the developer to understand these relationships. To
this end, the developer may use an automated constraints extraction
technique (illustrated in Fig. 4).
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Constraints extraction is a core prerequisite for feature-model
synthesis. However, even if the goal is not to obtain a model, ex-
plicitly knowing the constraints can help checking the validity of
platform configurations, reducing the search space for combinato-
rial interaction testing (CIT, see below), and documenting features
with their dependencies. The benchmark can be used to evaluate
the extraction of constraints from various inputs, specifically, the
product-line implementation (either code of individual variants
or of a platform, [68, 69]), a set of example configurations [22], or
natural-language artifacts, such as documentation. Over the de-
velopment history, when a feature model exists, the constraints
in the feature model would be annotated with their source (e.g., a
def-use dependency between function definition and function call
or domain dependency from hardware [69]). Considering cloned
systems, constraints extraction can also be helpful to compare the
variability that is implemented in different variants.

Sub-scenarios
e CE1: Constraints extraction from example configurations
o CE2: Constraints extraction from implementation code
o CE3: Constraints extraction from natural-language assets

Benchmark requirements
o CE1: Example configurations
e CE2: Implementation code of one or several variants
o CE3: Natural-language assets (e.g., documentation)
o CE1/2/3: Correct constraints formula (ground truth)

Evaluation metrics
o Accuracy: Similarity of configuration spaces (likely syntactic
approximation; semantic comparison is a hard problem)

Feature Model Synthesis (FMS). To keep an overview under-
standing of features and their relationships, developers may want
to create a feature model. Feature model synthesis (illustrated in
Fig.5) is an automated technique that can provide an initial feature
model candidate. As input, it can rely on a given set of configura-
tions, a set of variants (together with a list of features that each
variable implements) or a product matrix to produce a feature model
from which these assets can be derived.
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Figure 5: Feature model synthesis (FMS)
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Various synthesis techniques [3, 86-88] are available. Their pri-
mary benefit is to identify a possible feature hierarchy, but they
can also identify feature groups. Constraints extraction (CE, see
above) can be incorporated as a component to identify constraints.
Sub-scenarios

o FMS1: Feature model synthesis from a set of configurations

e FMS2: Feature model synthesis from an implementation

e FMS3: Feature model synthesis from a product matrix

Benchmark requirements

FMS1: Example configurations

FMS2: Implementation code of one or several variants

FMS3: Product matrix

FMS1/2/3: Correct feature model (ground truth)

Evaluation metrics

e Accuracy: Precision and Recall of recovered hierarchy edges

and feature groups; similarity of the configuration spaces rep-
resented by the synthesized feature model and the input

Architecture Recovery (AR). When migrating cloned variants to
a product-line platform, the developer may want to define a ref-
erence architecture for the resulting platform, using architectural
models. Architectural models provide a different abstraction of the
system structure than feature models, focusing on details and depen-
dencies of implemented classes. Architecture recovery techniques
(illustrated in Fig. 6) can extract architectural models automatically.

Various works [26, 41, 84, 92] focus on reverse engineering and
comparing architectures from cloned variants to propose architec-
tural models as a starting point for product-line adoption. Such
models can include class, component, and collaboration diagrams
that may be refined later on. For instance, the initial models may be
used as input for a model-level variant integration technique, pro-
ducing a platform model with explicit commonality and variability.
Additional use cases include analyzing and comparing models to
identify commonality and variability, or performing an automated
analysis based on models.
Sub-scenarios

o ARI: Architecture extraction from a configurable platform

e AR2: Architecture extraction from a set of variants
Benchmark requirements

o ARI: Implementation code of one or several variants

e AR2: Implementation code of product line platform

e AR1/2: Correct architectural models (ground truth)
Evaluation metrics

e Accuracy: Similarity of extracted to ground truth models
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Transformations (TR). To reduce manual effort during evolution
tasks, such as refactoring or synchronization of multiple depen-
dent assets in a variant-rich system, the developer may rely on
transformation techniques. Transformation techniques are used to
change system assets in an automated way. Tool support ranges
from light-weight refactoring tools in IDEs to advanced model
transformation languages with dedicated execution engines. Model
transformations are used for manifold practical purposes, including
translation, migration, and synchronization of assets [55].

When transforming a product-line platform (illustrated in Fig. 7),
three sub-scenarios arise: First, to refactor the platform, improv-
ing its structure while behavior preservation is ensured for each
variant [82]. Second, to partially refactor the platform [72] in such
a way that only a controlled subset of all variants is changed. Third,
to lift a given transformation from the single-product case to the
platform, changing all variants consistently [80].

Sub-scenarios

o TR1: Refactoring of a product-line platform

o TR2: Partial refactoring of a product-line platform

e TR3: Lifting of a model transformation to a product-line plat-

form

Benchmark requirements
e TR1/2: Product-line platform with feature model and imple-
mentation code
o TR3: Product-line platform with feature model and implemen-
tation model
e TR1/2/3: Transformation specification; for example, reference
implementation
e TR1/2/3: Transformed implementation (ground truth)
Evaluation metrics
e Correctness: Number of errors
o Conciseness: Number of elements or lines of code of the given
transformation

Functional Testing (FT). After evolving the variant-rich system,
it is important to ensure it still behaves in the expected way. For in-
stance, the variants that were available before the evolution should
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Figure 8: Functional testing (FT)
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still work after evolving the system. Regression testing aims to
identify faults that may arise after the system has been changed
and functionality does no longer work as before. Functional testing
of variable software (illustrated in Fig. 8) adds challenges compared
to conventional software testing, due to the variability that can
influence the functionality of the variants.

For a product-line platform, we can divide testing into two
phases: First, domain testing of common parts of the system. Second,
application testing of variant-specific parts and interactions [24, 49].
In the case of clone & own, we can only do application testing for
individual variants. To reduce testing effort, existing techniques
aim to reuse test assets as much as possible. Assets from domain
testing are reused in application testing, while trying to only test
parts that are specific to selected variants to avoid redundancies.
Similarly, it is useful to avoid redundancies after the evolution of
the system, to test only parts relevant for the changes that have
been applied. Moreover, for application testing it is unrealistic to
test all possible variants. The most common technique used for
the selection of variants is Combinatorial Interaction Testing (CIT),
which identifies a subset of variants where interaction faults are
most likely to occur, based on some coverage criteria [23]. Finally,
evolution potentially makes some test cases outdated, because they
no longer fit the evolved system. In such cases, system and tests
must co-evolve [44].

Sub-scenarios

e FT1: Test generation for domain testing

o FT2: Test generation for application testing

o FT3: Test co-evolution

Benchmark requirements
e FT1/2/3: Implementation code from product line platform
e FT1/2/3: Known faults (ground truth)
o FT3: Tests to be co-evolved

Evaluation metrics
o Efficiency: Number of faults detected in relation to number of
known faults
o Test effort: Number of tested variants, number of executed
tests, execution time of tests only if all tests are executed on
the same system, reuse of test assets

Analysis of Non-Functional Properties (ANF). Various non-
functional or quality properties can be important for variant-rich
systems, for example, performance in a safety-critical system [33],
memory consumption in an embedded system with resource limi-
tations [32], and usability aspects in human-computer interaction
systems [58]. Therefore, the analysis of non-functional properties
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in variant-rich systems (illustrated in Fig. 9) is crucial [67], as con-
straints on non-functional properties can be violated when the
system evolves.

Developers would like to know the effect of specific features
and feature interactions on the investigated quality property, par-
ticularly to identify possible improvements or regressions when
changes were introduced. Such effects can be captured using a
property influence model for the quality property under study, for
instance, a performance influence model in the case of Siegmund
et al. [89]. Also, an important analysis scenario is to identify optimal
configurations that maximize one or multiple quality criteria while
satisfying certain quality constraints [90]. This analysis is relevant
for evolution when trying to balance various conflicting quality
properties and understanding their relationships and trade-offs [76].
To this end, an inter-relationship model can be derived by analyzing
the pareto front obtained during multi-criteria optimization. The
considered analyses can be expensive, not only because of the com-
binatorial explosion in large systems, but also because computing
non-funcional properties can be a resource-intensive task.
Sub-scenarios

o ANF1: Analysis of impacts of features and feature interactions
on quality properties

o ANF2: Optimization of configurations towards given quality
criteria

e ANF3: Analysis of trade-offs between relationships among non-
functional properties

Benchmark requirements
o ANF1/2/3: Feature model
e ANF1/2/3: Quality information, either given by annotations
(e.g., extended feature models [11]), or by a method to calculate
or estimate for a given product the quality metrics under study
e ANF1: Reference property influence model (ground truth)
o ANF2: Reference configuration (ground truth)
e ANF3: Reference inter-relationship model (ground truth)
Evaluation metrics
e Accuracy: Similarity between computed and reference model
(ANF1/3), fitness of computed configuration in comparison to
reference configuration (ANF2)

Visualization (VZ). To facilitate incremental migration [6] of clone
& own-based variants to a product-line platform, the developer may
want to visually inspect relations between features and implemen-
tation assets. Such a relation-visual inspection can be provided by
visualization techniques (illustrated in Fig. 10).

During product-line engineering, visualizing variability in soft-
ware assets can be useful for scenarios, such as product configu-
ration [71, 76], testing (e.g., pairwise testing) [53], and constraint
discovery [62]. Andam et al. [5] propose several feature-oriented
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views that exploit feature annotations [37] embedded by developers
in the source code during development for tracing feature loca-
tions. A benchmark could be used to evaluate the effectiveness of
several visualization techniques addressing the same sub-scenario.
The main goal of benchmarking is to assess developer performance
when using different techniques, which requires experimentation
with human participants on selected development tasks.
Sub-scenarios

e VZ1: Visualizations for feature evolution and maintenance

e VZ2: Visualizations for constraint discovery

e VZ3: Visualizations for feature interaction assessment

Benchmark requirements
e VZ1/2/3: Implementation code with feature locations (prefer-
ably embedded feature traceability annotations, instead of only
variability annotations for optional parts of source code)
e VZ1/2/3: Scenario-related tasks for developers, such as code
comprehension and bug-finding tasks, based on generated vi-
sualizations

Evaluation metrics
o Developer performance: correctness, completion time in scenario-
related tasks

Co-Evolution of Problem Space and Solution Space (CPS). Af-
ter migrating the variant-rich system to a product-line platform
and to further evolve it, the developer has to evolve both, the prob-
lem space (feature model) and the solution space (assets, such as
architecture models and code). Evolving the solution space first
can lead to outdated feature models that are inconsistent with the
implementation. Evolving the problem space first limits the effects
that changes to the implementation are allowed to have. To address
these issues, an automated technique (illustrated in Fig. 11) may
recommend co-evolution steps to keep both in sync.

For instance, when evolving the solution space first, the tech-
nique could extract updated feature dependencies (e.g., an addi-
tional dependency on another feature) based on their modified
implementation (e.g., due to an additional method call) and suggest
modifications to the problem space that reflect the changes made
to the solution space. An important property is that problem space
and solution space are consistent after every evolution step.
Sub-scenarios

e CPS1: Co-evolving the solution space based on problem space
evolution

e CPS2: Co-evolving the problem space based on solution space
evolution

Benchmark requirements
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e CPS1/2: Product-line platform with feature model and imple-
mentation code

e CPS1/2: Sequence of revisions for feature model and implemen-
tation code (ground truths: implementation revisions for CPS1,
feature model revisions for CPS2)

Evaluation metrics
e Accuracy: Similarity of computed and ground truth asset at a
certain revision
e Correctness: Consistency between feature model and code

3 COMMUNITY SURVEY

To develop benchmarks, Sim et al. [91] suggest that incorporating
community feedback is essential to establish consensus. We fol-
lowed this recommendation by performing a questionnaire survey
with members from the community on software variability and
evolution. To gather feedback on the clarity and relevance of our
scenario descriptions, two crucial quality criteria for a successful
benchmark [91], our survey focused on two research questions:

RQ; How clear are our scenario descriptions?
RQ> How relevant are the described scenarios?

In the following, we report the details on our methodology, the
results, and threats to validity.

3.1 Methodology

We performed our questionnaire survey in March 2019. The partici-
pants for our survey were recruited from two sources: First, we con-
tacted all participants (excluding ourselves) of a Dagstuhl seminar
on variability and evolution, the two most relevant research areas
(https://dagstuhl.de/en/program/calendar/semhp/?semnr=19191). Second,
we contacted authors of recent papers on the same topic. We in-
vited 71 individuals, 41 of them Dagstuhl participants. A total of 20
individuals completed our survey in the given timeframe.

Our questionnaire comprised three parts. First, we presented the
general context of our benchmark, including the running example
description we introduced in Sec. 2.2. Second, we described the
eleven scenarios that we presented in Sec. 2. For each, we included
the textual description as well as the list of sub-scenarios. We asked
the participants to rate the clarity (using a 5-point Likert scale) of
each scenario description (RQ1) with the question: To which extent
do you agree that the scenario is clearly described with respect to its
usage context and purpose for benchmarking? Then, we asked the
participants to assess the relevance of each overall scenario and its
sub-scenarios (RQ2) with the question: To which extent do you agree
that supporting the following sub-scenarios is important? To assess
the completeness of our descriptions, we asked the participants
to name relevant sub-scenarios not yet considered. Finally, as a
prerequisite for our survey of benchmarks (cf. Sec. 4), we asked the
participants to name relevant benchmarks they were aware of. A
replication package with the questionnaire and all data is found at:
https://bitbucket.org/easelab/evobench/.

The initial responses to our survey pointed out a number of
shortcomings in the scenario descriptions with respect to clarity.
We used these responses to revise the questionnaire after the first
12 responses, presenting an improved version of the scenario de-
scriptions to the remaining eight participants. This intervention is
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justified by the methodological framework of design science [75],
which emphasizes the continuous improvement of research artifacts
based on actionable feedback, thus presenting a best-effort approach.
The most significant change was to remove two sub-scenarios (one
from the variant synchronization and one from the transformation
scenario). In other cases, we reworded the scenario descriptions to
add more explanations, examples, and avoid potentially confusing
wording. To make sure that our revision indeed led to an improve-
ment, we checked the clarity scores after the revision. We found
that the clarity scores improved in all cases.

3.2 Results

Figure 12 provides an overview of the results. For each scenario,
we show the distribution of answers to our questions about clarity
(RQ1) and relevance (RQ2). We further explain the results based
on the textual feedback provided along with the answers.

RQ1: Clarity. For all scenarios, a majority of the participants gave
a positive score for clarity. A ratio between 55 % and 90 % gave an
agree or strongly agree. The scenario receiving the most negative
scores (21 %) was variant synchronization. From the textual feedback
provided for this scenario, we observed that several participants
struggled to understand a sub-scenario related to the classification
of changes into either evolutionary or functional. For example, one
participant stated that “it is not entirely clear how an evolutionary
change differs from a functional one.” After we removed this sub-
scenario and its description in the revision, we found that 86 % of
the remaining participants gave a positive score. For the transfor-
mation scenario, we observed the same increase of positive scores
(to 86 %) after we removed a sub-scenario related to the replacement
of the used variability mechanism. For the other scenarios with
comparatively many neutral or negative answers, we did not find
any repeated issues occurring in the textual explanations.

RQ3: Relevance. A majority of participants (between 55 % and
95 %) assessed the relevance of each scenario positively. Interest-
ingly, despite the lower scores for clarity, variant synchronization
is among the two scenarios deemed relevant by 95 % of all partic-
ipants. To study this discrepancy further, we analyzed the scores
per sub-scenario. We found that most participants considered the
sub-scenario that we removed in the revision (classify changes, 33 %
positive responses) less relevant than the remaining variant synchro-
nization sub-scenarios. Likewise, transformations attracted 100 %
positive scores for overall relevance after we removed the least rel-
evant sub-scenario (exchange variability mechanism, 33 % positive
responses). In other cases with comparatively fewer positive scores
(architecture recovery and problem-solution space co-evolution; 60 %
and 63 % positive scores, respectively), it was not obvious from the
textual comments how these scores can be explained. An interesting
case is visualization. Despite the overall mid-range responses, two
participants deemed it particularly relevant, but hard to benchmark:
"I believe visualization has much potential to improve many tasks in
evolution of variant-rich systems. [... ] Evaluation itself, in terms of
measuring the impact, is harder.”

The participants’ feedback confirms the clarity and relevance of
our benchmark descriptions. The scenarios variant synchronization,
feature identification & location, and constraints extraction were
considered most relevant.
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Relevance
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Figure 12: Results of the survey concerning clarity and relevance for scenarios: Variant Synchronization, Feature Identification
and Location, Constraints Extraction, Feature Model Synthesis, Variant Integration, Architecture Recovery, Functional Testing,
Analysis of Non-Functional Properties, Visualization, and Co-Evolution of Problem & Solution Space.

3.3 Threats to Validity

The external validity of our survey is threatened by the number
of participants. However, since we focus on a highly specialized
population—the community of variability and evolution experts—
valid conclusions about that population can be supported by a
smaller sample than a large population would require. By inviting
the attendees of a relevant Dagstuhl seminar, we benefit from a
pre-selection of experts in this area. Regarding conclusion validity,
the confidence in our clarity scores could be improved by asking the
participants to solve comprehension tasks, rather than having them
rate the description clarity. However, such an experiment would
have taken much more time and, therefore, would have risked to
affect the completion rate.

4 SURVEYING EXISTING BENCHMARKS

In this section, we survey a selection of benchmarks with regard to
their applicability to the scenarios we introduced in Sec. 2.

4.1 Methodology

Selection. As starting point for our selection of benchmarks, we
collected a list of benchmarks that we were aware of, due to our
familiarity with the field (convenience sampling). To get a more
complete overview in a systematic way, we gathered additional
benchmarks using a dedicated question in our community survey,
in which we asked the participants to name benchmarks that they
are aware of. Finally, since we found that a dedicated benchmark
was not available for each scenario, we also considered benchmarks
from related areas, such as traceability research, and identified
whether they match our scenarios. From these steps, we derived an
initial list of 17 benchmark candidates.

Based on our definition of benchmark, as given in Sec. 1, we
defined the following inclusion criteria:

I1 The availability of a dataset based on one or more systems
created by industrial practitioners, and
I2a The availability of a ground truth for assessing the correctness
of a given technique, or
I2b The availability of a framework for assessing other properties
of interest.

From the initial 17 benchmark candidates, nine satisfied the
inclusion criteria, meaning that they provided a suitable dataset,
and either a ground truth or a framework for assessing a relevant
technique. We focused on these nine benchmarks in our survey
and excluded eight additional ones that did not satisfy all criteria.
The excluded candidates can be considered as notable datasets, as
they may still offer some value for benchmarking. We discuss the
selected benchmarks in Sec. 4.2, and the notable datasets in Sec. 5.
Assessment. To determine how well our eleven scenarios are sup-
ported by the identified benchmarks and to identify synergies be-
tween benchmarks and scenarios, we assessed the suitability of each
benchmark for each scenario. To this end, for a given benchmark
candidate, we considered the requirements given in the benchmark
descriptions (Sec. 2) and checked whether it fulfills the requirements
and provides the artifacts that we defined.

4.2 Results

In Table 1, we provide an overview of the considered benchmarks
and scenarios. The area from which the benchmark originally stems
is given as original context in the table. A full circle indicates full
support for at least one sub-scenario, a half-filled circle indicates
partial support (i.e., a subset of the required artifacts is available) for
at least one sub-scenario, and an empty circle indicates no support
of the given scenario by means of the given benchmark. In the
following, we briefly introduce the benchmarks and explain the
cases in which a scenario is fully or partially supported.

ArgoUML-SPL FLBench [57] has a long tradition as benchmark
for feature location in single systems and in families of systems [56].
The ground truth consists of feature locations for eight optional
features of ArgoUML at the granularity of Java classes and methods.
A feature model is available. The framework allows to generate
predefined scenarios (a set of configurations representing a family)
and to calculate metrics reports for a given feature location result.
Given that this benchmark only contains eight optional features, we
argue that it only partially satisfies the needs for feature location.
Drupal [81] is a dataset of functional faults in the variable content
management system Drupal. For each of the faults, it contains the
feature or feature interaction responsible for triggering the fault.
Moreover, the faults are reported over two different versions of
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Table 1: Mapping of existing benchmarks to scenarios, with circles indicating fulfillment of scenario requirements

Benchmark  Original Context Vs vI FIL CE FMS AR TR FI ANF VZ CPS
ArgoUML-SPL FLBench. [57] Feature location O O ) O O O O O O O O
Drupal [81] Bug detection O O O O O O O o O ® O
Eclipse FLBench [63] Feature location O O ) ) ) O O O O O O
LinuxKernel FLBench. [98] Feature location O O @ @ @ O O O O O O
Marlin & BCWallet [42] Feature location O O ® O O O O O O ® O
ClaferWebTools [37] Traceability O O @ O @ O O O O ) O
DoSC [101] Change discovery O @ @ O @ O @ O O ® O
SystemsSwVarModels [15]  FM synthesis O @ O [ [ O O O O @ O
TraceLab CoEST [40] Traceability O O @ O O O O O O O O
Variability bug database [1]  Bug detection O O @ O O O O [ O v O

Drupal, which may indicate faults that were introduced by the
evolution of the system. This dataset is useful for the scenario of
functional testing, to evaluate whether the selected variants for ap-
plication testing cover relevant feature interactions that are known
to contain faults. Moreover, the information of feature interactions
could be used to partially benchmark visualization.

Eclipse FLBench [63] is a benchmarking framework for feature lo-
cation techniques in single systems and in families of systems. Since
the ground-truth traces map features to components (i.e., Eclipse
plugins), the granularity is coarse and there are no cross-cutting
features, thus justifying only partial support of feature location.
This benchmark supports different Eclipse releases, each containing
around 12 variants, 500 features, and 2,500 components. The Eclipse
FLBench also contains information about feature dependencies and
hierarchy, but only “requires” constraints, thus justifying partial
support of constraints extraction and FM synthesis.

Linux Kernel FL Bench [98] is a database containing the ground-
truth traces from a selection of features of the Linux Kernel to
corresponding C code. It contains the locations of optional features
within 12 product variants derived from three Linux kernel re-
leases. For each variant, we have around 2,400 features and 160,000
ground-truth links between features and code units. The database
contains information about “requires” and “excludes” feature con-
straints, as well as the feature model hierarchy, making it a suitable
ground truth for constraints extraction and feature-model synthesis.
However, as it was not its intended usage, more complex feature
constraints are not captured.

Marlin & BCWallet [42] is a dataset of feature locations (repre-
sented as embedded code annotations), feature models, and feature
fact sheets of two open-source systems, all of which can serve as
ground truth for feature identification and location techniques. It
comprises both mandatory and optional features. The annotations
can also serve as input for feature dashboards that provide visualiza-
tions with several metrics [5], for instance, assets related to a feature,
scattering degrees, and developers associated with each feature.
ClaferWebTools [37] is a dataset with feature locations of both
mandatory and optional features, as well as feature models, together
with an evolution history. ClaferWebTools is a clone & own-based
system that evolved in four variants. Like Marlin & BCWallet, the
locations are embedded into the source code. It can be used to eval-
uate feature-location techniques exploiting historical information,
or visualization techniques showing the evolution of features.

DoSC (Detection of Semantic Changes [101]) is a dataset with re-
vision histories of eight Java projects for benchmarking semantic
change detection tools. Semantic changes are commits that corre-
spond to entries from an issue tracking system; they can be consid-
ered as features in a broader sense. Traces from semantic changes
to implementation elements are included, thus providing a ground
truth for feature location (partially supported, since only optional
features are considered) and a basis for visualization. The revision
histories also provide a rich data source for benchmarking transfor-
mation and variant integration. However, full support is prohibited
by the lack of a feature model and available ground truths.
SystemsSwVarModels [15] comprises a corpus of 128 extracted
real-world variability models from open-source systems-software,
such as the Linux kernel, the eCos operating system, BusyBox,
and 12 others. The models are represented in the variability mod-
eling languages Kconfig [85] and CDL [14], with the benchmark
providing tools to analyze and transform these models into their
configuration space semantics (expressed as Boolean, arithmetic,
and string constraints), abstracted as propositional logics formulas.
As such, these formulas can be used to benchmark constraints ex-
traction from codebases and feature model synthesizes. To some
extent, the corpus can be used to benchmark feature-oriented vi-
sualizations (e.g., slicing feature models) and problem & solution
space co-evolution.

TraceLab CoEST [40] is an initiative of the Center of Excellence for
Software and Systems Traceability gathering a set of case studies on
traceability recovery with their corresponding ground-truth traces.
We can find benchmarks with traces from requirements to source
code, from requirements to components, from high- to low-level
requirements, from use cases to source code, and other types of
traces that partially satisfy the needs of evaluating feature location
techniques in single systems.

Variability Bug Database [1] is an online database of 98 variability-
related bugs in four open-source repositories: The Linux kernel,
BusyBox, Marlin, and Apache. The meta-data provided for bug
entries include a description, a type (e.g., “expected behavior vio-
lation”), a configuration, and pointers to a revision where the bug
appears and where it is fixed. This database is especially useful
for functional testing, as it provides a ground truth in the form
of faults together with the configurations in which they appear.
The projects contain #ifdef directives that can be considered as
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variability annotations, rendering the database partially suitable
for benchmarking feature location and visualization.

While we identified synergies between the scenarios and existing
benchmarks, the overall coverage is still low: A complete bench-
mark is only available for three of the eleven considered tech-
niques. Four scenarios lack any benchmark: variant synchroniza-
tion, analysis of non-functional properties, architecture recovery,
and co-evolution of problem & solution space. The former two
were deemed as particularly relevant in our community survey.

5 RELATED WORK

Besides the benchmarks we analyzed in the previous section, we
are aware of several datasets and proposals that aim to achieve
similar ideas, and benchmarks from related areas.

Repositories. Some repositories collect artifacts or full projects
in the domain of software-product-line engineering. For example,
spl2go (http://spl2go.cs.ovgu.de/) provides a set of various software
product lines. However, most of these systems are based on stu-
dent projects and they provide solely downloadable code. A more
extensive overview especially on extractive software-product-line
adoption is offered by the ESPLA catalog [56]. ESPLA collects in-
formation from existing papers, rather than providing data or an
infrastructure by itself. Similarly, tools like FeatureIDE [65] and
PEoPL [9] provide some complete example product lines, but are
neither industrial nor do they have ground truths.

Case Studies and Datasets. Some case studies have been intro-
duced that partly aimed to provide the basis for establishing bench-
marks. The potentially best-known and first of such studies is the
graph product line introduced by Lopez-Herrejon and Batory [52].
McGregor [64] reports experiences of using the fictional arcade
product line in teaching, but focuses solely on reporting established
practices. Recently, several case studies have been reported that
particularly aim to provide suitable data sets for evaluating tech-
niques for the evolution and extraction for software product lines.
For example, Martinez et al. [59] extracted a software product line
from educational robotic variants. The Apo-Games [46] are a set
of real-world games, realized using clone & own, with which the
authors aim to provide a benchmark for the extraction of software
product lines based on community contributions. Two recent works
in fact provide datasets detailing the migration of dedicated subsets
of the cloned games into product line platforms [4, 21]. BeT Ty [83]
is a feature model generator, focused on benchmarking and testing
automated analysis techniques for feature models. Tzoref-Brill and
Maoz [96] provide a dataset for assessing co-evolution techniques
for combinatorial models and tests. A combinatorial model, similar
to a configuration, is a set of bindings of parameters to concrete
values. Finally, SPLOT [66] provides a set of 1,073 feature models
and constraints, also including an editor and analysis framework. It
mostly includes academic feature models and toy examples. None
of these works represent a benchmark according to our criteria,
namely that they are based on assets created by practitioners and
provided together with a ground truth or assessment framework.

Benchmarks in Related Areas. Various benchmarks have been
proposed in areas that are closely related to variability engineering.

Striiber et al.

SAT solvers are often applied in the context of software variabil-
ity, specially for family-based analyses. The annual SAT competi-
tions [36] provide various benchmarks and are important enablers
for the SAT community. In the area of software-language engineer-
ing, the language workbench challenge [28] is an annual contest
with the goal of promoting knowledge exchange on language work-
benches. Model transformations provide the capability to represent
product composition as transformation problem and have several
established benchmarks, for instance, on graph transformation [97]
and scalable model transformations [93]. While these benchmarks
are complementary to the ones we consider in this paper, they
report best practices that should be applied when implementing
our envisioned benchmark set.

6 CONCLUSION AND ROADMAP

In this paper, we aimed to pave the way for a consolidated set
of benchmark for techniques that support developers during the
evolution of variant-rich systems. We studied relevant scenarios,
investigated the clarity and relevance of the scenarios in a survey
with variability and evolution experts, and surveyed the state of
the art in benchmarking of these techniques.

Results. In summary, our main results are:

e We identified 11 scenarios covering the evolution of variant-
rich systems, together with requirements for benchmarking the
relevant techniques.

e Community feedback shows that our scenarios are clearly defined
and important to advance benchmarking in the area.

e Only three out of the 11 scenarios are completely supported by
existing benchmarks, highlighting the need for a consolidated
benchmark set with full support for all scenarios.

Roadmap. Our results suggest the following research roadmap to
eventually achieve such an envisioned benchmark set.

As a key goal, we aim to set up a common infrastructure for all
scenarios presented in this paper. This way, we can utilize synergies
between benchmarks, specifically by means of shared datasets and
assets. Where available, we may reuse publicly available implemen-
tations of benchmark frameworks and integrate them.

Most scenarios require a manually curated ground truth. There-
fore, creating ground truths for the available datasets is a substantial
effort, a call for investing more resources into benchmarking. A
further important goal is to broaden the scope of datasets. Most
available datasets are based on open-source projects from tradi-
tional embedded systems. It is worthwhile to include datasets from
upcoming domains that need variability handling, including data-
analytics software [30], service robotics [31], and cyber-physical
systems [16].

Raising awareness for the challenges and opportunities for bench-
marking takes a concerted effort. Developers of new techniques
shall be encouraged to use our benchmark infrastructure, articulate
gaps in the benchmark literature, and fill them by contributing
their own benchmarks. We plan to advertise our initiative in the
appropriate mailing lists and social media.
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