Facing the Truth: Benchmarking the Techniques for
the Evolution of Variant-Rich Systems

Daniel Striiber!, Mukelabai Mukelabai!, Jacob Krl'igerz, Stefan Fischer?,

Lukas Linsbauer?, Jabier Martinez*, Thorsten Berger!
!Chalmers | University of Gothenburg, Sweden, 2University of Magdeburg, Germany, 3JKU Linz, Austria, *Tecnalia, Spain

ABSTRACT

The evolution of variant-rich systems is a challenging task. To sup-
port developers, the research community has proposed a range of
different techniques over the last decades. However, many tech-
niques have not been adopted in practice so far. To advance such
techniques and to support their adoption, it is crucial to evaluate
them against realistic baselines, ideally in the form of generally
accessible benchmarks. To this end, we need to improve our empir-
ical understanding of typical evolution scenarios for variant-rich
systems and their relevance for benchmarking. In this paper, we
establish eleven evolution scenarios in which benchmarks would
be beneficial. Our scenarios cover typical lifecycles of variant-rich
system, ranging from clone & own to adopting and evolving a con-
figurable product-line platform. For each scenario, we formulate
benchmarking requirements and assess its clarity and relevance
via a survey with experts in variant-rich systems and software
evolution. We also surveyed the existing benchmarking landscape,
identifying synergies and gaps. We observed that most scenarios,
despite being perceived as important by experts, are only partially
or not at all supported by existing benchmarks—a call to arms for
building community benchmarks upon our requirements. We hope
that our work raises awareness for benchmarking as a means to
advance techniques for evolving variant-rich systems, and that it
will lead to a benchmarking initiative in our community.

CCS CONCEPTS

« Software and its engineering — Software product lines;
Software evolution;

KEYWORDS

software evolution, software variability, product lines, benchmark

ACM Reference Format:

Daniel Stritber, Mukelabai Mukelabai, Jacob Kriiger, Stefan Fischer, Lukas
Linsbauer, Jabier Martinez, Thorsten Berger. 2019. Facing the Truth: Bench-
marking the Techniques for the Evolution of Variant-Rich Systems. In 23rd
International Systems and Software Product Line Conference - Volume A (SPLC
’19), September 9-13, 2019, Paris, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/lO.l 145/3336294.3336302

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC °19, September 9-13, 2019, Paris, France

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-7138-4/19/09...$15.00
https://doi.org/10.1145/3336294.3336302

1 INTRODUCTION

Evolving a variant-rich software system is a challenging task. Based
on feature additions, bugfixes, and customizations, a variant-rich
system evolves in two dimensions: (1) in its variability when new
variants are added over time, and (2) in each individual variant, as
variants are continuously modified. From these dimensions, var-
ious evolution scenarios arise. For example, variability may be
managed using clone & own [25], that is, by copying and modifying
existing variants. In this case, changes performed on one variant
are often propagated to other variants (variant synchronization).
When the number of variants grows, a project initially managed
using clone & own might be migrated to an integrated product-line
platform [8, 13, 50], comprising a variability model [19, 38] and im-
plementation assets with variability mechanisms (e.g., preprocessor
annotations or composable modules). In this case, all assets in all
variants that correspond to a given feature must be identified (fea-
ture location). Supporting developers during such scenarios requires
adequate techniques, many of which have been proposed in recent
years [2, 3, 7, 8, 10, 20, 27, 29, 37, 39, 48, 50, 60, 72, 77, 79, 87, 90, 94,
95].

The maturity of a research field depends on the availability of
commonly accepted benchmarks for comparing new techniques to
the state of the art. We define a benchmark as a framework or realistic
dataset that can be used to evaluate the techniques of a given domain.
Realistic means that the dataset should have been initially created
by industrial practitioners; it may be augmented with meta-data
that can come from researchers. In the case of evolving variant-rich
systems, despite the progress on developing new techniques and
tools, evaluation methodologies are usually determined ad hoc. To
evaluate available techniques in a more systematic way, a common
benchmark set has yet to emerge.

Inspired by a theory of benchmarks in software engineering [91],
we believe that the community can substantially move forward by
setting up a common set of benchmarks for evaluating techniques
for evolving variant-rich systems. With this goal in mind, we follow
typical recommendations for benchmark development [91]: to lead
the effort with a small number of primary organizers, to build on es-
tablished research results, and to incorporate community feedback
to establish a consensus on the benchmark. As such, our long-term
goal is to establish a publicly available benchmark set fulfilling
the requirements of successful benchmarks [91]: clarity, relevance,
accessibility, affordability, solvability, portability, and scalability.

In this paper, as a step towards this long-term goal, we lay the
foundations for a benchmark set for evaluating techniques for evolv-
ing variant-rich systems. We conceive the scenarios that the bench-
mark set needs to support, show the relevance and clarity of our
descriptions based on community feedback, and survey the state of
the art of related datasets to identify potential benchmarks.

https://doi.org/10.1145/3336294.3336302

SPLC ’19, September 9-13, 2019, Paris, France

We make the following contributions:

o Eleven scenarios for benchmarking the techniques that sup-
port developers when evolving variant-rich systems (Sec. 2),
including sub-scenarios, requirements, and evaluation metrics;

e A community survey with experts on software variability and
evolution, focusing on the clarity and relevance of our scenarios
(Sec. 3) and relying on an iterative, design-science approach;

e A survey of existing benchmarks for the scenarios (Sec. 4),
selected upon our experience and the community survey;

e An online appendix with further information (e.g., links to
benchmarks) and a replication package with the questionnaire
and its data: https://bitbucket.org/easelab/evobench/

We observed that various scenarios are only partially or not at all
supported by existing benchmarks. We also identified synergies
between scenarios and available benchmarks, based on the overlap
of required benchmarking assets. Based on the positive feedback re-
garding the clarity and relevance of our benchmark descriptions, we
believe that our work paves the way for a consolidated benchmark
set for techniques used to evolve variant-rich systems.

2 EVOLUTION SCENARIOS

We establish eleven scenarios for techniques that support develop-
ers during the evolution of variant-rich systems. For each scenario,
we argue how the relevant techniques can be evaluated with a
benchmark. We introduce each scenario with a description, a list
of more detailed sub-scenarios, a list of requirements for effective
benchmarks, and a list of metrics for comparing the relevant tech-
niques.

2.1 Methodology

To select the scenarios and construct the descriptions, we followed
an iterative process involving all authors. We took inspiration from
our experience as experts in software product line research, our
various studies of evolution in practice [12, 13, 15, 17, 34, 35, 37, 42,
54,56, 59, 67, 73, 74], and the mapping studies by Assungéo et al. [8]
and Laguna and Crespo [48]. Based on these sources, an initial list
of scenarios emerged in a collaborative brainstorming session. Each
scenario was assigned to a responsible author who developed an
initial description. Based on mutual feedback, the authors refined
the scenario descriptions and added, split, and merged scenarios and
their descriptions. Each scenario description was revised by at least
three authors. Eventually, a consensus on all scenario descriptions
was reached. Afterwards, we performed a community survey to
assess the clarity and relevance of the descriptions. The final version
of the descriptions, as shown below, incorporates feedback from
the survey (see the methodology description in Sec. 3).

2.2 Running Example

As a running example for the evolution of variant-rich systems,
consider the following typical situation from practice.

Initially, a developer engineers, evolves, and maintains a single
system, for instance, using a typical version-control system (e.g.,
Git). At some point, a customer requests a small adaptation. The
developer reacts by adding a configuration option and variation
points (e.g., based on if statements) in the code. Later, another
customer requests a more complex adaption. The developer reacts

Striiber et al.

by copying the initial variant (i.e., creating a clone) of the system and
adapting it to the new requirements (a.k.a., clone & own). Over time,
further customers request specific adaptations and the developer
uses either of these two strategies.

When the number of variants grows, this ad hoc reuse becomes
inefficient. Namely, it becomes challenging and error-prone to iden-
tify which existing variant to clone and which parts (i.e., features) of
other variants to incorporate in the new variant. The same applies
to maintenance, as it is not clear which variants are affected by a
bug or update. Any bug or update then needs to be fixed for each
existing variant individually. Furthermore, an increasing number
of configuration options challenges developers through intricate
dependencies that need to be managed; and variation points clutter
the source code, challenging program comprehension.

2.3 Scenario Descriptions

We now introduce our scenarios based on the running example,
providing descriptions, sub-scenarios, benchmarking requirements
and evaluation metrics. We focus on evaluation metrics that are
custom to the scenario at hand. Some additional characteristics of
interest, such as performance and usability, are important in all
scenarios and should be supported by adequate metrics as well.
Assessing the correctness or accuracy of a technique may require
a ground truth, a curated, manually produced or (at least) checked
set of assets assumed to be correct. Some scenarios involve the
design choice of picking a metric from a broader class of metrics
(e.g, similarity metrics); in these cases we specify only the class.

We visualize each scenario by means of a figure. Each figure pro-
vides a high-level overview of the respective scenario, representing
the involved assets with boxes, techniques with rounded boxes,
relationships with dashed arrows, and actions with solid arrows.
In cases where a scenario has multiple sub-scenarios with varying
kinds of assets, we show the superset of all required assets from all
sub-scenarios. Each figure includes a large arrow on its left-hand
side, indicating the direction of system evolution.
Variant Synchronization (VS). When evolving a variant-rich sys-
tem based on clone & own, the developer frequently needs to syn-
chronize variants. Bugfixes or feature implementations that are per-
formed in one variant need to be propagated to other variants—a
daunting task when performed manually. An automated technique
(illustrated in Fig. 1) could facilitate this process by propagating
changes or features contained in a variant [77, 78].
Sub-scenarios

e VS1: Propagation of changes across variants

e VS2: Propagation of features across variants

of of
Variant 1 [<---{ Implementation 1 Implementation 2 --

H

Variant 2

is changed to

of

Variant 1" [+--- Narant

Lptiementiien i synchronization

UOIIN|OAD WId)SAS

creates

2

Implementation 2 Variant 2’

Figure 1: Variant synchronization (VS)

https://bitbucket.org/easelab/evobench/

Benchmarking the Techniques for the Evolution of Variant-Rich Systems

of of
Variant 1 [<---{Implementation 1 Implementation 2 -----| Variant 2

is changed to Ykes takes
Feature Model

Variant 1' +---{Implementation 1'# . :larla:_t }7
of integration Implementation

takes creates/
updates

uoIN|oAd WajsAs

Platform

Figure 2: Variant integration (VI)

Benchmark requirements
e VS1/2: Implementation code of two or more variants
e VS1/2: Implementation code of variants after correct propaga-
tion (ground truth)
e VS1: Changes of at least one variant
e VS2: Feature locations of at least one variant

Evaluation metrics
e Accuracy: A metric for measuring the similarity between ground
truth and computed variant implementation

Variant Integration (VI). Due to the drawbacks associated with
clone & own [6, 25], a developer may deem it beneficial to manage
the variant-rich system as a product-line platform. Such a plat-
form comprises a variability model (e.g., feature [38] or decision
model [19]) and implementation assets with a variability mecha-
nism (e.g., preprocessor annotations or feature modules) that sup-
ports the on-demand generation of product variants. From the
decision to move towards a product-line platform, two major vari-
ant integration tasks (a.k.a., extractive product-line adoption [43])
arise (illustrated in Fig. 2).

The first task is to enable the transition from the cloned vari-
ants to a platform [8]. Available techniques for this purpose take
as input a set of products and produce as output a corresponding
product-line platform [60]. Yet, further evolving the resulting plat-
form can be challenging due to its variability—assets may be difficult
to comprehend and modify. Therefore, the second task is to support
extending and evolving a product line by means of individual, con-
crete product variants [51, 94]. This allows engineers to focus on
concrete products during evolution to then feed the evolved product
back into the platform to evolve it accordingly. Such techniques can
be supported by variation control systems [51, 94] and approaches
for incremental product-line adoption [6] from cloned variants.
Sub-scenarios

e VI1: Integrate a set of variants into the product-line platform
e VI2: Integrate changes to variants into the product-line plat-
form

Benchmark requirements
o VI1: Set of individual variants
e VI2: Set of revisions of a product-line platform
e VI1/2: Product-line platform after correct integration (ground
truth)
Evaluation metrics
e Accuracy: A metric for measuring the similarity between the
ground truth and the computed product-line platform

Feature Identification and Location (FIL). Both, as an aid to bet-
ter support clone & own development and to prepare the migration

SPLC 19, September 9-13, 2019, Paris, France

Assets of
(Implementation, |[------------oomeoo ~ Variants
Requirements...)

(%]

i takes takes

‘3° creates

e Feature Feature

S identification list

c

z

s takes
Feature Feature
location creates locations

Figure 3: Feature identification and location (FIL)

to a product-line platform, developers may wish to determine which
features exist in the system and which features are implemented in
which assets (e.g., source code, models, requirements or other types
of artifacts). For this purpose, they may rely on feature identification
and feature location techniques (illustrated in Fig. 3). Feature iden-
tification aims to determine which features exist, whereas feature
location aims to define the relationship of features to assets.

Feature identification is useful when the knowledge about fea-
tures is only given implicitly in the assets, rather than explic-
itly as in a feature model. The objective is to analyze assets to
extract candidate feature names. This can involve techniques to
study domain knowledge or vocabulary of the considered domain,
workshops to elicit features from experts [42], or automated tech-
niques [61, 70, 100].

When done manually, feature location is a time-consuming and
error-prone activity [45]. It has a long tradition for maintenance
tasks (e.g., narrowing the scope for debugging code related to a
feature), but is also highly relevant for identifying the boundaries of
a feature at the implementation level to extract it as a reusable asset
during re-engineering [47]. In this sense, it is related to traceability
recovery. Feature location is usually expert-driven in industrial set-
tings, however, several techniques based on static analysis, dynamic
analysis, and information retrieval, or hybrid techniques, exist [8].
Sub-scenarios

o FIL1: Feature identification in single variants

o FIL2: Feature identification in multiple variants
e FIL3: Feature location in single systems

e FIL4: Feature location in multiple variants

Benchmark requirements
e FIL1/2/3/4: Assets representing variants, such as: implemen-
tation code, requirements, documentation, issue tracker data,
change logs, version-control history
e FIL1/2/3/4: List of features (ground truth for FIL1/2)
o FIL3/4: Feature locations in sufficient granularity, such as files,
folders, code blocks (ground truth)

Evaluation metrics
e Accuracy: Precision and Recall. Some authors in the literature
use metrics, such as Mean Reciprocal Rank, that assess the
accuracy of a ranking of results [18, 99].

Constraints Extraction (CE). In a variant-rich system, some fea-
tures may be structurally or semantically related to other features.
Initially, this information is not explicitly formalized, which makes
it harder for the developer to understand these relationships. To
this end, the developer may use an automated constraints extraction
technique (illustrated in Fig. 4).

SPLC ’19, September 9-13, 2019, Paris, France

represent several
P | Configurations f-------------- - Variants [ormmmmm s Implementation
S
) ~
3 describe
g takes escribe . | Natural-language takes
g takes documents
=

Constraints extraction CaTSiE i
Formula
creates

Figure 4: Constraints extraction (CE)

Constraints extraction is a core prerequisite for feature-model
synthesis. However, even if the goal is not to obtain a model, ex-
plicitly knowing the constraints can help checking the validity of
platform configurations, reducing the search space for combinato-
rial interaction testing (CIT, see below), and documenting features
with their dependencies. The benchmark can be used to evaluate
the extraction of constraints from various inputs, specifically, the
product-line implementation (either code of individual variants
or of a platform, [68, 69]), a set of example configurations [22], or
natural-language artifacts, such as documentation. Over the de-
velopment history, when a feature model exists, the constraints
in the feature model would be annotated with their source (e.g., a
def-use dependency between function definition and function call
or domain dependency from hardware [69]). Considering cloned
systems, constraints extraction can also be helpful to compare the
variability that is implemented in different variants.

Sub-scenarios
e CE1: Constraints extraction from example configurations
o CE2: Constraints extraction from implementation code
o CE3: Constraints extraction from natural-language assets

Benchmark requirements
o CE1: Example configurations
e CE2: Implementation code of one or several variants
o CE3: Natural-language assets (e.g., documentation)
o CE1/2/3: Correct constraints formula (ground truth)

Evaluation metrics
o Accuracy: Similarity of configuration spaces (likely syntactic
approximation; semantic comparison is a hard problem)

Feature Model Synthesis (FMS). To keep an overview under-
standing of features and their relationships, developers may want
to create a feature model. Feature model synthesis (illustrated in
Fig.5) is an automated technique that can provide an initial feature
model candidate. As input, it can rely on a given set of configura-
tions, a set of variants (together with a list of features that each
variable implements) or a product matrix to produce a feature model
from which these assets can be derived.

of 1 or
represent several
Py | Configurations [-------------- ~ Variants ommmmmmonmemn e Implementation
B
o *
E] "
‘g" takes describe Product takes
E_-. takes matrix
o
=
Feature model synthesis]7 Feature Model
creates

Figure 5: Feature model synthesis (FMS)

Striiber et al.

represents

Variant booooeoe . of)
Models Variants Implementation

Extraction
creates from variants | takes
integrated into

o

<

a

o

E

@

<

-3

£ represents of
8 Platform | TTTTTTTTTT Platform |~----- Implementation

Model

creates Extraction takes
from platform

Figure 6: Architecture recovery (AR)

Various synthesis techniques [3, 86-88] are available. Their pri-
mary benefit is to identify a possible feature hierarchy, but they
can also identify feature groups. Constraints extraction (CE, see
above) can be incorporated as a component to identify constraints.
Sub-scenarios

o FMS1: Feature model synthesis from a set of configurations

e FMS2: Feature model synthesis from an implementation

e FMS3: Feature model synthesis from a product matrix

Benchmark requirements

FMS1: Example configurations

FMS2: Implementation code of one or several variants

FMS3: Product matrix

FMS1/2/3: Correct feature model (ground truth)

Evaluation metrics

e Accuracy: Precision and Recall of recovered hierarchy edges

and feature groups; similarity of the configuration spaces rep-
resented by the synthesized feature model and the input

Architecture Recovery (AR). When migrating cloned variants to
a product-line platform, the developer may want to define a ref-
erence architecture for the resulting platform, using architectural
models. Architectural models provide a different abstraction of the
system structure than feature models, focusing on details and depen-
dencies of implemented classes. Architecture recovery techniques
(illustrated in Fig. 6) can extract architectural models automatically.

Various works [26, 41, 84, 92] focus on reverse engineering and
comparing architectures from cloned variants to propose architec-
tural models as a starting point for product-line adoption. Such
models can include class, component, and collaboration diagrams
that may be refined later on. For instance, the initial models may be
used as input for a model-level variant integration technique, pro-
ducing a platform model with explicit commonality and variability.
Additional use cases include analyzing and comparing models to
identify commonality and variability, or performing an automated
analysis based on models.
Sub-scenarios

o ARI: Architecture extraction from a configurable platform

e AR2: Architecture extraction from a set of variants
Benchmark requirements

o ARI: Implementation code of one or several variants

e AR2: Implementation code of product line platform

e AR1/2: Correct architectural models (ground truth)
Evaluation metrics

e Accuracy: Similarity of extracted to ground truth models

Benchmarking the Techniques for the Evolution of Variant-Rich Systems

Feature implements
o RS Implementation
< model
2 Transformation
E] specification 3
2 taked P takes | rbeplaced
% takes . Y
g Transformation .
. Implementation
technique

creates

Figure 7: Transformations (TR)

Transformations (TR). To reduce manual effort during evolution
tasks, such as refactoring or synchronization of multiple depen-
dent assets in a variant-rich system, the developer may rely on
transformation techniques. Transformation techniques are used to
change system assets in an automated way. Tool support ranges
from light-weight refactoring tools in IDEs to advanced model
transformation languages with dedicated execution engines. Model
transformations are used for manifold practical purposes, including
translation, migration, and synchronization of assets [55].

When transforming a product-line platform (illustrated in Fig. 7),
three sub-scenarios arise: First, to refactor the platform, improv-
ing its structure while behavior preservation is ensured for each
variant [82]. Second, to partially refactor the platform [72] in such
a way that only a controlled subset of all variants is changed. Third,
to lift a given transformation from the single-product case to the
platform, changing all variants consistently [80].

Sub-scenarios

o TR1: Refactoring of a product-line platform

o TR2: Partial refactoring of a product-line platform

e TR3: Lifting of a model transformation to a product-line plat-

form

Benchmark requirements
e TR1/2: Product-line platform with feature model and imple-
mentation code
o TR3: Product-line platform with feature model and implemen-
tation model
e TR1/2/3: Transformation specification; for example, reference
implementation
e TR1/2/3: Transformed implementation (ground truth)
Evaluation metrics
e Correctness: Number of errors
o Conciseness: Number of elements or lines of code of the given
transformation

Functional Testing (FT). After evolving the variant-rich system,
it is important to ensure it still behaves in the expected way. For in-
stance, the variants that were available before the evolution should

creates validate of
& Lot Tests Variants +----1 Implementation
ry generation
o
2 replaced ! replaced
H takes | by validate | by
3 4 4
=
o 5
3 Jlost co Tests’ Variants’ [+----1 Implementation’
evolution
creates validate of

Figure 8: Functional testing (FT)

SPLC 19, September 9-13, 2019, Paris, France

Feature
model

,,,,,,,,,,,,,, Implementation
P Property

) T

Pl representedin | .-~~~ obtained from ntlenceliode]
) Pt

E]

2 Quality q Optimal

g information tak LOElEE Configuration
§, akes

creates Inter-Relationship

Model

Figure 9: Analysis of non-functional properties (ANF)

still work after evolving the system. Regression testing aims to
identify faults that may arise after the system has been changed
and functionality does no longer work as before. Functional testing
of variable software (illustrated in Fig. 8) adds challenges compared
to conventional software testing, due to the variability that can
influence the functionality of the variants.

For a product-line platform, we can divide testing into two
phases: First, domain testing of common parts of the system. Second,
application testing of variant-specific parts and interactions [24, 49].
In the case of clone & own, we can only do application testing for
individual variants. To reduce testing effort, existing techniques
aim to reuse test assets as much as possible. Assets from domain
testing are reused in application testing, while trying to only test
parts that are specific to selected variants to avoid redundancies.
Similarly, it is useful to avoid redundancies after the evolution of
the system, to test only parts relevant for the changes that have
been applied. Moreover, for application testing it is unrealistic to
test all possible variants. The most common technique used for
the selection of variants is Combinatorial Interaction Testing (CIT),
which identifies a subset of variants where interaction faults are
most likely to occur, based on some coverage criteria [23]. Finally,
evolution potentially makes some test cases outdated, because they
no longer fit the evolved system. In such cases, system and tests
must co-evolve [44].

Sub-scenarios

e FT1: Test generation for domain testing

o FT2: Test generation for application testing

o FT3: Test co-evolution

Benchmark requirements
e FT1/2/3: Implementation code from product line platform
e FT1/2/3: Known faults (ground truth)
o FT3: Tests to be co-evolved

Evaluation metrics
o Efficiency: Number of faults detected in relation to number of
known faults
o Test effort: Number of tested variants, number of executed
tests, execution time of tests only if all tests are executed on
the same system, reuse of test assets

Analysis of Non-Functional Properties (ANF). Various non-
functional or quality properties can be important for variant-rich
systems, for example, performance in a safety-critical system [33],
memory consumption in an embedded system with resource limi-
tations [32], and usability aspects in human-computer interaction
systems [58]. Therefore, the analysis of non-functional properties

SPLC ’19, September 9-13, 2019, Paris, France

obtained Foat

; eature

implements . from L
% Featjurle S Implementation |<-------------- traceability and
i OCE variability
3 information
S takes Toof
EX -]
S pishalzation Visualization

technique creates

Figure 10: Visualization (VZ)

in variant-rich systems (illustrated in Fig. 9) is crucial [67], as con-
straints on non-functional properties can be violated when the
system evolves.

Developers would like to know the effect of specific features
and feature interactions on the investigated quality property, par-
ticularly to identify possible improvements or regressions when
changes were introduced. Such effects can be captured using a
property influence model for the quality property under study, for
instance, a performance influence model in the case of Siegmund
et al. [89]. Also, an important analysis scenario is to identify optimal
configurations that maximize one or multiple quality criteria while
satisfying certain quality constraints [90]. This analysis is relevant
for evolution when trying to balance various conflicting quality
properties and understanding their relationships and trade-offs [76].
To this end, an inter-relationship model can be derived by analyzing
the pareto front obtained during multi-criteria optimization. The
considered analyses can be expensive, not only because of the com-
binatorial explosion in large systems, but also because computing
non-funcional properties can be a resource-intensive task.
Sub-scenarios

o ANF1: Analysis of impacts of features and feature interactions
on quality properties

o ANF2: Optimization of configurations towards given quality
criteria

e ANF3: Analysis of trade-offs between relationships among non-
functional properties

Benchmark requirements
o ANF1/2/3: Feature model
e ANF1/2/3: Quality information, either given by annotations
(e.g., extended feature models [11]), or by a method to calculate
or estimate for a given product the quality metrics under study
e ANF1: Reference property influence model (ground truth)
o ANF2: Reference configuration (ground truth)
e ANF3: Reference inter-relationship model (ground truth)
Evaluation metrics
e Accuracy: Similarity between computed and reference model
(ANF1/3), fitness of computed configuration in comparison to
reference configuration (ANF2)

Visualization (VZ). To facilitate incremental migration [6] of clone
& own-based variants to a product-line platform, the developer may
want to visually inspect relations between features and implemen-
tation assets. Such a relation-visual inspection can be provided by
visualization techniques (illustrated in Fig. 10).

During product-line engineering, visualizing variability in soft-
ware assets can be useful for scenarios, such as product configu-
ration [71, 76], testing (e.g., pairwise testing) [53], and constraint
discovery [62]. Andam et al. [5] propose several feature-oriented

Striiber et al.

Eeatire represents) of)
Model | T Variants «+------oooo- Implementation
w
»
1%} H :
) :) !
3 i coordinates coordinates
g replaced ! Co-evolution technique replaced
g by | | by
o ; :
= * Y
represents of
ﬁg&iﬁ? """""""" Variants’ Variants” +---{ Implementation’

Figure 11: Co-evolution of problem and solution space (CPS)

views that exploit feature annotations [37] embedded by developers
in the source code during development for tracing feature loca-
tions. A benchmark could be used to evaluate the effectiveness of
several visualization techniques addressing the same sub-scenario.
The main goal of benchmarking is to assess developer performance
when using different techniques, which requires experimentation
with human participants on selected development tasks.
Sub-scenarios

e VZ1: Visualizations for feature evolution and maintenance

e VZ2: Visualizations for constraint discovery

e VZ3: Visualizations for feature interaction assessment

Benchmark requirements
e VZ1/2/3: Implementation code with feature locations (prefer-
ably embedded feature traceability annotations, instead of only
variability annotations for optional parts of source code)
e VZ1/2/3: Scenario-related tasks for developers, such as code
comprehension and bug-finding tasks, based on generated vi-
sualizations

Evaluation metrics
o Developer performance: correctness, completion time in scenario-
related tasks

Co-Evolution of Problem Space and Solution Space (CPS). Af-
ter migrating the variant-rich system to a product-line platform
and to further evolve it, the developer has to evolve both, the prob-
lem space (feature model) and the solution space (assets, such as
architecture models and code). Evolving the solution space first
can lead to outdated feature models that are inconsistent with the
implementation. Evolving the problem space first limits the effects
that changes to the implementation are allowed to have. To address
these issues, an automated technique (illustrated in Fig. 11) may
recommend co-evolution steps to keep both in sync.

For instance, when evolving the solution space first, the tech-
nique could extract updated feature dependencies (e.g., an addi-
tional dependency on another feature) based on their modified
implementation (e.g., due to an additional method call) and suggest
modifications to the problem space that reflect the changes made
to the solution space. An important property is that problem space
and solution space are consistent after every evolution step.
Sub-scenarios

e CPS1: Co-evolving the solution space based on problem space
evolution

e CPS2: Co-evolving the problem space based on solution space
evolution

Benchmark requirements

Benchmarking the Techniques for the Evolution of Variant-Rich Systems

e CPS1/2: Product-line platform with feature model and imple-
mentation code

e CPS1/2: Sequence of revisions for feature model and implemen-
tation code (ground truths: implementation revisions for CPS1,
feature model revisions for CPS2)

Evaluation metrics
e Accuracy: Similarity of computed and ground truth asset at a
certain revision
e Correctness: Consistency between feature model and code

3 COMMUNITY SURVEY

To develop benchmarks, Sim et al. [91] suggest that incorporating
community feedback is essential to establish consensus. We fol-
lowed this recommendation by performing a questionnaire survey
with members from the community on software variability and
evolution. To gather feedback on the clarity and relevance of our
scenario descriptions, two crucial quality criteria for a successful
benchmark [91], our survey focused on two research questions:

RQ; How clear are our scenario descriptions?
RQ> How relevant are the described scenarios?

In the following, we report the details on our methodology, the
results, and threats to validity.

3.1 Methodology

We performed our questionnaire survey in March 2019. The partici-
pants for our survey were recruited from two sources: First, we con-
tacted all participants (excluding ourselves) of a Dagstuhl seminar
on variability and evolution, the two most relevant research areas
(https://dagstuhl.de/en/program/calendar/semhp/?semnr=19191). Second,
we contacted authors of recent papers on the same topic. We in-
vited 71 individuals, 41 of them Dagstuhl participants. A total of 20
individuals completed our survey in the given timeframe.

Our questionnaire comprised three parts. First, we presented the
general context of our benchmark, including the running example
description we introduced in Sec. 2.2. Second, we described the
eleven scenarios that we presented in Sec. 2. For each, we included
the textual description as well as the list of sub-scenarios. We asked
the participants to rate the clarity (using a 5-point Likert scale) of
each scenario description (RQ1) with the question: To which extent
do you agree that the scenario is clearly described with respect to its
usage context and purpose for benchmarking? Then, we asked the
participants to assess the relevance of each overall scenario and its
sub-scenarios (RQ2) with the question: To which extent do you agree
that supporting the following sub-scenarios is important? To assess
the completeness of our descriptions, we asked the participants
to name relevant sub-scenarios not yet considered. Finally, as a
prerequisite for our survey of benchmarks (cf. Sec. 4), we asked the
participants to name relevant benchmarks they were aware of. A
replication package with the questionnaire and all data is found at:
https://bitbucket.org/easelab/evobench/.

The initial responses to our survey pointed out a number of
shortcomings in the scenario descriptions with respect to clarity.
We used these responses to revise the questionnaire after the first
12 responses, presenting an improved version of the scenario de-
scriptions to the remaining eight participants. This intervention is

SPLC 19, September 9-13, 2019, Paris, France

justified by the methodological framework of design science [75],
which emphasizes the continuous improvement of research artifacts
based on actionable feedback, thus presenting a best-effort approach.
The most significant change was to remove two sub-scenarios (one
from the variant synchronization and one from the transformation
scenario). In other cases, we reworded the scenario descriptions to
add more explanations, examples, and avoid potentially confusing
wording. To make sure that our revision indeed led to an improve-
ment, we checked the clarity scores after the revision. We found
that the clarity scores improved in all cases.

3.2 Results

Figure 12 provides an overview of the results. For each scenario,
we show the distribution of answers to our questions about clarity
(RQ1) and relevance (RQ2). We further explain the results based
on the textual feedback provided along with the answers.

RQ1: Clarity. For all scenarios, a majority of the participants gave
a positive score for clarity. A ratio between 55 % and 90 % gave an
agree or strongly agree. The scenario receiving the most negative
scores (21 %) was variant synchronization. From the textual feedback
provided for this scenario, we observed that several participants
struggled to understand a sub-scenario related to the classification
of changes into either evolutionary or functional. For example, one
participant stated that “it is not entirely clear how an evolutionary
change differs from a functional one.” After we removed this sub-
scenario and its description in the revision, we found that 86 % of
the remaining participants gave a positive score. For the transfor-
mation scenario, we observed the same increase of positive scores
(to 86 %) after we removed a sub-scenario related to the replacement
of the used variability mechanism. For the other scenarios with
comparatively many neutral or negative answers, we did not find
any repeated issues occurring in the textual explanations.

RQ3: Relevance. A majority of participants (between 55 % and
95 %) assessed the relevance of each scenario positively. Interest-
ingly, despite the lower scores for clarity, variant synchronization
is among the two scenarios deemed relevant by 95 % of all partic-
ipants. To study this discrepancy further, we analyzed the scores
per sub-scenario. We found that most participants considered the
sub-scenario that we removed in the revision (classify changes, 33 %
positive responses) less relevant than the remaining variant synchro-
nization sub-scenarios. Likewise, transformations attracted 100 %
positive scores for overall relevance after we removed the least rel-
evant sub-scenario (exchange variability mechanism, 33 % positive
responses). In other cases with comparatively fewer positive scores
(architecture recovery and problem-solution space co-evolution; 60 %
and 63 % positive scores, respectively), it was not obvious from the
textual comments how these scores can be explained. An interesting
case is visualization. Despite the overall mid-range responses, two
participants deemed it particularly relevant, but hard to benchmark:
"I believe visualization has much potential to improve many tasks in
evolution of variant-rich systems. [...] Evaluation itself, in terms of
measuring the impact, is harder.”

The participants’ feedback confirms the clarity and relevance of
our benchmark descriptions. The scenarios variant synchronization,
feature identification & location, and constraints extraction were
considered most relevant.

https://dagstuhl.de/en/program/calendar/semhp/?semnr=19191
https://bitbucket.org/easelab/evobench/

SPLC ’19, September 9-13, 2019, Paris, France

Clarity
Vs | 21% 16%
VI 1% 21%
AL 5% 15%
CE| 0% 35%
FMS | 0% 20%
AR | 0% 45%
TR 5% 30%
FT 5% 5‘.%
ANF 5% 5:’/0
vz, 0% 28%
cPS | 5% 11%
100 50 0 50
Response strongly disagree

63%
68%
80%
65%
80%
55%
63%
90%
89%
2%
84%

100

disagree

Striiber et al.

Relevance

0% 5% 95%
5% 11% 84%
5% 0% 95%
5% 5% 89%
5% 21% 74%
5% 35% 60%
0% 42% 58%
0% 21% 79%
0% 20% 80%
5% 26% 68%
5% 32% 63%
100 50 0 50 100
neutral agree strongly agree

Figure 12: Results of the survey concerning clarity and relevance for scenarios: Variant Synchronization, Feature Identification
and Location, Constraints Extraction, Feature Model Synthesis, Variant Integration, Architecture Recovery, Functional Testing,
Analysis of Non-Functional Properties, Visualization, and Co-Evolution of Problem & Solution Space.

3.3 Threats to Validity

The external validity of our survey is threatened by the number
of participants. However, since we focus on a highly specialized
population—the community of variability and evolution experts—
valid conclusions about that population can be supported by a
smaller sample than a large population would require. By inviting
the attendees of a relevant Dagstuhl seminar, we benefit from a
pre-selection of experts in this area. Regarding conclusion validity,
the confidence in our clarity scores could be improved by asking the
participants to solve comprehension tasks, rather than having them
rate the description clarity. However, such an experiment would
have taken much more time and, therefore, would have risked to
affect the completion rate.

4 SURVEYING EXISTING BENCHMARKS

In this section, we survey a selection of benchmarks with regard to
their applicability to the scenarios we introduced in Sec. 2.

4.1 Methodology

Selection. As starting point for our selection of benchmarks, we
collected a list of benchmarks that we were aware of, due to our
familiarity with the field (convenience sampling). To get a more
complete overview in a systematic way, we gathered additional
benchmarks using a dedicated question in our community survey,
in which we asked the participants to name benchmarks that they
are aware of. Finally, since we found that a dedicated benchmark
was not available for each scenario, we also considered benchmarks
from related areas, such as traceability research, and identified
whether they match our scenarios. From these steps, we derived an
initial list of 17 benchmark candidates.

Based on our definition of benchmark, as given in Sec. 1, we
defined the following inclusion criteria:

I1 The availability of a dataset based on one or more systems
created by industrial practitioners, and
I2a The availability of a ground truth for assessing the correctness
of a given technique, or
I2b The availability of a framework for assessing other properties
of interest.

From the initial 17 benchmark candidates, nine satisfied the
inclusion criteria, meaning that they provided a suitable dataset,
and either a ground truth or a framework for assessing a relevant
technique. We focused on these nine benchmarks in our survey
and excluded eight additional ones that did not satisfy all criteria.
The excluded candidates can be considered as notable datasets, as
they may still offer some value for benchmarking. We discuss the
selected benchmarks in Sec. 4.2, and the notable datasets in Sec. 5.
Assessment. To determine how well our eleven scenarios are sup-
ported by the identified benchmarks and to identify synergies be-
tween benchmarks and scenarios, we assessed the suitability of each
benchmark for each scenario. To this end, for a given benchmark
candidate, we considered the requirements given in the benchmark
descriptions (Sec. 2) and checked whether it fulfills the requirements
and provides the artifacts that we defined.

4.2 Results

In Table 1, we provide an overview of the considered benchmarks
and scenarios. The area from which the benchmark originally stems
is given as original context in the table. A full circle indicates full
support for at least one sub-scenario, a half-filled circle indicates
partial support (i.e., a subset of the required artifacts is available) for
at least one sub-scenario, and an empty circle indicates no support
of the given scenario by means of the given benchmark. In the
following, we briefly introduce the benchmarks and explain the
cases in which a scenario is fully or partially supported.

ArgoUML-SPL FLBench [57] has a long tradition as benchmark
for feature location in single systems and in families of systems [56].
The ground truth consists of feature locations for eight optional
features of ArgoUML at the granularity of Java classes and methods.
A feature model is available. The framework allows to generate
predefined scenarios (a set of configurations representing a family)
and to calculate metrics reports for a given feature location result.
Given that this benchmark only contains eight optional features, we
argue that it only partially satisfies the needs for feature location.
Drupal [81] is a dataset of functional faults in the variable content
management system Drupal. For each of the faults, it contains the
feature or feature interaction responsible for triggering the fault.
Moreover, the faults are reported over two different versions of

Benchmarking the Techniques for the Evolution of Variant-Rich Systems

SPLC 19, September 9-13, 2019, Paris, France

Table 1: Mapping of existing benchmarks to scenarios, with circles indicating fulfillment of scenario requirements

Benchmark Original Context Vs vI FIL CE FMS AR TR FI ANF VZ CPS
ArgoUML-SPL FLBench. [57] Feature location O O) O O O O O O O O
Drupal [81] Bug detection O O O O O O O o O ® O
Eclipse FLBench [63] Feature location O O))) O O O O O O
LinuxKernel FLBench. [98] Feature location O O @ @ @ O O O O O O
Marlin & BCWallet [42] Feature location O O ® O O O O O O ® O
ClaferWebTools [37] Traceability O O @ O @ O O O O) O
DoSC [101] Change discovery O @ @ O @ O @ O O ® O
SystemsSwVarModels [15] FM synthesis O @ O [[O O O O @ O
TraceLab CoEST [40] Traceability O O @ O O O O O O O O
Variability bug database [1] Bug detection O O @ O O O O [O v O

Drupal, which may indicate faults that were introduced by the
evolution of the system. This dataset is useful for the scenario of
functional testing, to evaluate whether the selected variants for ap-
plication testing cover relevant feature interactions that are known
to contain faults. Moreover, the information of feature interactions
could be used to partially benchmark visualization.

Eclipse FLBench [63] is a benchmarking framework for feature lo-
cation techniques in single systems and in families of systems. Since
the ground-truth traces map features to components (i.e., Eclipse
plugins), the granularity is coarse and there are no cross-cutting
features, thus justifying only partial support of feature location.
This benchmark supports different Eclipse releases, each containing
around 12 variants, 500 features, and 2,500 components. The Eclipse
FLBench also contains information about feature dependencies and
hierarchy, but only “requires” constraints, thus justifying partial
support of constraints extraction and FM synthesis.

Linux Kernel FL Bench [98] is a database containing the ground-
truth traces from a selection of features of the Linux Kernel to
corresponding C code. It contains the locations of optional features
within 12 product variants derived from three Linux kernel re-
leases. For each variant, we have around 2,400 features and 160,000
ground-truth links between features and code units. The database
contains information about “requires” and “excludes” feature con-
straints, as well as the feature model hierarchy, making it a suitable
ground truth for constraints extraction and feature-model synthesis.
However, as it was not its intended usage, more complex feature
constraints are not captured.

Marlin & BCWallet [42] is a dataset of feature locations (repre-
sented as embedded code annotations), feature models, and feature
fact sheets of two open-source systems, all of which can serve as
ground truth for feature identification and location techniques. It
comprises both mandatory and optional features. The annotations
can also serve as input for feature dashboards that provide visualiza-
tions with several metrics [5], for instance, assets related to a feature,
scattering degrees, and developers associated with each feature.
ClaferWebTools [37] is a dataset with feature locations of both
mandatory and optional features, as well as feature models, together
with an evolution history. ClaferWebTools is a clone & own-based
system that evolved in four variants. Like Marlin & BCWallet, the
locations are embedded into the source code. It can be used to eval-
uate feature-location techniques exploiting historical information,
or visualization techniques showing the evolution of features.

DoSC (Detection of Semantic Changes [101]) is a dataset with re-
vision histories of eight Java projects for benchmarking semantic
change detection tools. Semantic changes are commits that corre-
spond to entries from an issue tracking system; they can be consid-
ered as features in a broader sense. Traces from semantic changes
to implementation elements are included, thus providing a ground
truth for feature location (partially supported, since only optional
features are considered) and a basis for visualization. The revision
histories also provide a rich data source for benchmarking transfor-
mation and variant integration. However, full support is prohibited
by the lack of a feature model and available ground truths.
SystemsSwVarModels [15] comprises a corpus of 128 extracted
real-world variability models from open-source systems-software,
such as the Linux kernel, the eCos operating system, BusyBox,
and 12 others. The models are represented in the variability mod-
eling languages Kconfig [85] and CDL [14], with the benchmark
providing tools to analyze and transform these models into their
configuration space semantics (expressed as Boolean, arithmetic,
and string constraints), abstracted as propositional logics formulas.
As such, these formulas can be used to benchmark constraints ex-
traction from codebases and feature model synthesizes. To some
extent, the corpus can be used to benchmark feature-oriented vi-
sualizations (e.g., slicing feature models) and problem & solution
space co-evolution.

TraceLab CoEST [40] is an initiative of the Center of Excellence for
Software and Systems Traceability gathering a set of case studies on
traceability recovery with their corresponding ground-truth traces.
We can find benchmarks with traces from requirements to source
code, from requirements to components, from high- to low-level
requirements, from use cases to source code, and other types of
traces that partially satisfy the needs of evaluating feature location
techniques in single systems.

Variability Bug Database [1] is an online database of 98 variability-
related bugs in four open-source repositories: The Linux kernel,
BusyBox, Marlin, and Apache. The meta-data provided for bug
entries include a description, a type (e.g., “expected behavior vio-
lation”), a configuration, and pointers to a revision where the bug
appears and where it is fixed. This database is especially useful
for functional testing, as it provides a ground truth in the form
of faults together with the configurations in which they appear.
The projects contain #ifdef directives that can be considered as

SPLC ’19, September 9-13, 2019, Paris, France

variability annotations, rendering the database partially suitable
for benchmarking feature location and visualization.

While we identified synergies between the scenarios and existing
benchmarks, the overall coverage is still low: A complete bench-
mark is only available for three of the eleven considered tech-
niques. Four scenarios lack any benchmark: variant synchroniza-
tion, analysis of non-functional properties, architecture recovery,
and co-evolution of problem & solution space. The former two
were deemed as particularly relevant in our community survey.

5 RELATED WORK

Besides the benchmarks we analyzed in the previous section, we
are aware of several datasets and proposals that aim to achieve
similar ideas, and benchmarks from related areas.

Repositories. Some repositories collect artifacts or full projects
in the domain of software-product-line engineering. For example,
spl2go (http://spl2go.cs.ovgu.de/) provides a set of various software
product lines. However, most of these systems are based on stu-
dent projects and they provide solely downloadable code. A more
extensive overview especially on extractive software-product-line
adoption is offered by the ESPLA catalog [56]. ESPLA collects in-
formation from existing papers, rather than providing data or an
infrastructure by itself. Similarly, tools like FeatureIDE [65] and
PEoPL [9] provide some complete example product lines, but are
neither industrial nor do they have ground truths.

Case Studies and Datasets. Some case studies have been intro-
duced that partly aimed to provide the basis for establishing bench-
marks. The potentially best-known and first of such studies is the
graph product line introduced by Lopez-Herrejon and Batory [52].
McGregor [64] reports experiences of using the fictional arcade
product line in teaching, but focuses solely on reporting established
practices. Recently, several case studies have been reported that
particularly aim to provide suitable data sets for evaluating tech-
niques for the evolution and extraction for software product lines.
For example, Martinez et al. [59] extracted a software product line
from educational robotic variants. The Apo-Games [46] are a set
of real-world games, realized using clone & own, with which the
authors aim to provide a benchmark for the extraction of software
product lines based on community contributions. Two recent works
in fact provide datasets detailing the migration of dedicated subsets
of the cloned games into product line platforms [4, 21]. BeT Ty [83]
is a feature model generator, focused on benchmarking and testing
automated analysis techniques for feature models. Tzoref-Brill and
Maoz [96] provide a dataset for assessing co-evolution techniques
for combinatorial models and tests. A combinatorial model, similar
to a configuration, is a set of bindings of parameters to concrete
values. Finally, SPLOT [66] provides a set of 1,073 feature models
and constraints, also including an editor and analysis framework. It
mostly includes academic feature models and toy examples. None
of these works represent a benchmark according to our criteria,
namely that they are based on assets created by practitioners and
provided together with a ground truth or assessment framework.

Benchmarks in Related Areas. Various benchmarks have been
proposed in areas that are closely related to variability engineering.

Striiber et al.

SAT solvers are often applied in the context of software variabil-
ity, specially for family-based analyses. The annual SAT competi-
tions [36] provide various benchmarks and are important enablers
for the SAT community. In the area of software-language engineer-
ing, the language workbench challenge [28] is an annual contest
with the goal of promoting knowledge exchange on language work-
benches. Model transformations provide the capability to represent
product composition as transformation problem and have several
established benchmarks, for instance, on graph transformation [97]
and scalable model transformations [93]. While these benchmarks
are complementary to the ones we consider in this paper, they
report best practices that should be applied when implementing
our envisioned benchmark set.

6 CONCLUSION AND ROADMAP

In this paper, we aimed to pave the way for a consolidated set
of benchmark for techniques that support developers during the
evolution of variant-rich systems. We studied relevant scenarios,
investigated the clarity and relevance of the scenarios in a survey
with variability and evolution experts, and surveyed the state of
the art in benchmarking of these techniques.

Results. In summary, our main results are:

e We identified 11 scenarios covering the evolution of variant-
rich systems, together with requirements for benchmarking the
relevant techniques.

e Community feedback shows that our scenarios are clearly defined
and important to advance benchmarking in the area.

e Only three out of the 11 scenarios are completely supported by
existing benchmarks, highlighting the need for a consolidated
benchmark set with full support for all scenarios.

Roadmap. Our results suggest the following research roadmap to
eventually achieve such an envisioned benchmark set.

As a key goal, we aim to set up a common infrastructure for all
scenarios presented in this paper. This way, we can utilize synergies
between benchmarks, specifically by means of shared datasets and
assets. Where available, we may reuse publicly available implemen-
tations of benchmark frameworks and integrate them.

Most scenarios require a manually curated ground truth. There-
fore, creating ground truths for the available datasets is a substantial
effort, a call for investing more resources into benchmarking. A
further important goal is to broaden the scope of datasets. Most
available datasets are based on open-source projects from tradi-
tional embedded systems. It is worthwhile to include datasets from
upcoming domains that need variability handling, including data-
analytics software [30], service robotics [31], and cyber-physical
systems [16].

Raising awareness for the challenges and opportunities for bench-
marking takes a concerted effort. Developers of new techniques
shall be encouraged to use our benchmark infrastructure, articulate
gaps in the benchmark literature, and fill them by contributing
their own benchmarks. We plan to advertise our initiative in the
appropriate mailing lists and social media.

Acknowledgments. Supported by ITEA project REVaMP? funded
by Vinnova Sweden (2016-02804). We thank the participants of
Dagstuhl seminar 19191, all survey participants, and Tewfik Ziadi
for input and comments on earlier versions of this paper.

http://spl2go.cs.ovgu.de/

Benchmarking the Techniques for the Evolution of Variant-Rich Systems

REFERENCES

(1]

=

G

7

[10

(11]

[12

[13

[14

oy
&

[16]

(17]

[18

=
X2

[20

[21

[22

[24

Tago Abal, Jean Melo, Stefan Stanciulescu, Claus Brabrand, Marcio Ribeiro, and
Andrzej Wasowski. 2018. Variability Bugs in Highly Configurable Systems: A
Qualitative Analysis. ACM Transactions on Software Engineering and Methodol-
ogy 26, 3 (2018), 10:1-10:34.

Hadil Abukwaik, Andreas Burger, Berima Andam, and Thorsten Berger. 2018.
Semi-Automated Feature Traceability with Embedded Annotations. In ICSME.
IEEE.

Mathieu Acher, Anthony Cleve, Gilles Perrouin, Patrick Heymans, Charles
Vanbeneden, Philippe Collet, and Philippe Lahire. 2012. On Extracting Feature
Models from Product Descriptions. In VaMoS. ACM.

Jonas Akesson, Sebastian Nilsson, Jacob Kriiger, and Thorsten Berger. 2019.
Migrating the Android Apo-Games into an Annotation-Based Software Product
Line. In 23rd International Systems and Software Product Line Conference (SPLC),
Challenge Track.

Berima Andam, Andreas Burger, Thorsten Berger, and Michel R. V. Chaudron.
2017. Florida: Feature Location Dashboard for Extracting and Visualizing Feature
Traces. In VaMoS. ACM.

Michatl Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas
Schmorleiz, Ralf Lammel, EYtefan Stinciulescu, Andrzej Wasowski, and Ina
Schaefer. 2014. Flexible Product Line Engineering with a Virtual Platform. In
ICSE. ACM.

Patrizia Asirelli, Maurice H. Ter Beek, Alessandro Fantechi, and Stefania Gnesi.
2010. A Logical Framework to Deal with Variability. In IFM. Springer.

Wesley K. G. Assuncao, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering
22, 6 (2017), 2972-3016.

Benjamin Behringer, Jochen Palz, and Thorsten Berger. 2017. PEoPL: Projectional
Editing of Product Lines. In ICSE. IEEE.

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (2010), 615-636.

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. 2005. Automated
Reasoning on Feature Models. In CAISE. Springer.

Thorsten Berger, Daniela Lettner, Julia Rubin, Paul GrAijnbacher, Adeline Silva,
Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a
Feature? A Qualitative Study of Features in Industrial Software Product Lines.
In SPLC. ACM.

Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wasowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In VaMoS. ACM.

Thorsten Berger and Steven She. 2010. Formal Semantics of the CDL Language.
Technical Report. Department of Computer Science, University of Leipzig, Ger-
many.

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. 2013. A Study of Variability Models and Languages in the Systems
Software Domain. IEEE Transactions on Software Engineering 39, 12 (2013),
1611-1640.

Hamid Mirzaei Buini, Steffen Peter, and Tony Givargis. 2015. Including variabil-
ity of physical models into the design automation of cyber-physical systems. In
ACM/EDAC/IEEE Design Automation Conference (DAC). ACM, 1-6.

John Businge, Openja Moses, Sarah Nadi, Engineer Bainomugisha, and Thorsten
Berger. 2018. Clone-Based Variability Management in the Android Ecosystem.
In ICSME. IEEE.

Daniel Cruz, Eduardo Figueiredo, and Jabier Martinez. 2019. A Literature Review
and Comparison of Three Feature Location Techniques using ArgoUML-SPL. In
VaMoS. ACM.

Krzysztof Czarnecki, Paul Grinbacher, Rick Rabiser, Klaus Schmid, and An-
drzej Wasowski. 2012. Cool Features and Tough Decisions: A Comparison of
Variability Modeling Approaches. In VaMoS. ACM.

Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, John D. McGre-
gor, Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. 2011. A
Systematic Mapping Study of Software Product Lines Testing. Information and
Software Technology 53, 5 (2011), 407-423.

Jamel Debbiche, Oskar Lignell, Jacob Kriiger, and Thorsten Berger. 2019. Mi-
grating the Java-Based Apo-Games into a Composition-Based Software Product
Line. In 23rd International Systems and Software Product Line Conference (SPLC),
Challenge Track.

Christian Dietrich, Reinhard Tartler, Wolfgang Schréder-Preikschat, and Daniel
Lohmann. 2012. A Robust Approach for Variability Extraction from the Linux
Build System. In SPLC. ACM.

Ivan do Carmo Machado, John D. McGregor, Yguaratd Cerqueira Cavalcanti, and
Eduardo Santana de Almeida. 2014. On Strategies for Testing Software Product
Lines: A Systematic Literature Review. Information and Software Technology 56,

10 (2014), 1183-1199.
Ivan do Carmo Machado, John D. McGregor, and Eduardo Santana de Almeida.

2012. Strategies for Testing Products in Software Product Lines. ACM SIGSOFT

SPLC 19, September 9-13, 2019, Paris, France

Software Engineering Notes 37, 6 (2012), 1-8.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin
Becker, and Krzysztof Czarnecki. 2013. An Exploratory Study of Cloning in
Industrial Software Product Lines. In CSMR. IEEE.

Wolfgang Eixelsberger, Michaela Ogris, Harald Gall, and Berndt Bellay. 1998.
Software Architecture Recovery of a Program Family. In ICSE. IEEE.

Sina Entekhabi, Anton Solback, Jan-Philipp Steghdofer, and Thorsten Berger.
2019. Visualization of Feature Locations with the Tool FeatureDashboard. In
23rd International Systems and Software Product Line Conference (SPLC), Tools
Track.

Sebastian Erdweg, Tijs van der Storm, Markus Vélter, Meinte Boersma, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, Gabriél D. P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser,
Kevin van der Vlist, Guido H. Wachsmuth, and Jimi van der Woning. 2013. The
State of the Art in Language Workbenches. In SLE. Springer.

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In ICSME. IEEE.

Amir Gandomi and Murtaza Haider. 2015. Beyond the hype: Big data concepts,
methods, and analytics. International Journal of Information Management 35, 2
(2015), 137-144.

Sergio Garcia, Daniel Striiber, Davide Brugali, Alessandro Di Fava, Philipp
Schillinger, Patrizio Pelliccione, and Thorsten Berger. 2019. Variability Modeling
of Service Robots: Experiences and Challenges. In VaMoS. ACM, 8:1-6.
Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A
Genetic Algorithm for Optimized Feature Selection with Resource Constraints
in Software Product Lines. Journal of Systems and Software 84, 12 (2011), 2208-
2221.

Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel
Valov, Krzysztof Czarnecki, Andrzej Wasowski, and Huiqun Yu. 2018. Data-
Efficient Performance Learning for Configurable Systems. Empirical Software
Engineering 23, 3 (2018), 1826-1867.

Haitham S. Hamza, Jabier Martinez, and Carmen Alonso. 2010. Introducing
Product Line Architectures in the ERP Industry: Challenges and Lessons Learned.
In SPLC.

Daniel Hinterreiter, Herbert Prihofer, Lukas Linsbauer, Paul Griinbacher, Florian
Reisinger, and Alexander Egyed. 2018. Feature-Oriented Evolution of Automa-
tion Software Systems in Industrial Software Ecosystems. In ETFA. IEEE.
Matti Jarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. 2012. The
International SAT Solver Competitions. AI Magazine 33, 1 (2012), 89-92.
Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. 2015.
Maintaining Feature Traceability with Embedded Annotations. In SPLC. ACM.
Kyo Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson.
1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report. Carnegie-Mellon University, Pittsburgh, PA, USA.

Christian Késtner, Alexander Dreiling, and Klaus Ostermann. 2014. Variability
Mining: Consistent Semi-Automatic Detection of Product-Line Features. IEEE
Transactions on Software Engineering 40, 1 (2014), 67-82.

Ed Keenan, Adam Czauderna, Greg Leach, Jane Cleland-Huang, Yonghee Shin,
Evan Moritz, Malcom Gethers, Denys Poshyvanyk, Jonathan Maletic, Jane
Huffman Hayes, Alex Dekhtyar, Daria Manukian, Shervin Hossein, and Derek
Hearn. 2012. TraceLab: An Experimental Workbench for Equipping Researchers
to Innovate, Synthesize, and Comparatively Evaluate Traceability Solutions. In
ICSE. IEEE.

Rainer Koschke, Pierre Frenzel, Andreas P. J. Breu, and Karsten Angstmann.
2009. Extending the Reflexion Method for Consolidating Software Variants into
Product Lines. Software Quality Journal 17, 4 (2009), 331-366.

Jacob KrAijger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and
Thorsten Berger. 2019. Where is my Feature and What is it About? A Case
Study on Recovering Feature Facets. Journal of Systems and Software 152 (2019),
239-253.

Charles W. Krueger. 2002. Easing the Transition to Software Mass Customization.
In SPFE. Springer.

Jacob Kriiger, Mustafa Al-Hajjaji, Sandro Schulze, Gunter Saake, and Thomas
Leich. 2018. Towards Automated Test Refactoring for Software Product Lines.
In SPLC. ACM.

[45] Jacob Kriiger, Thorsten Berger, and Thomas Leich. 2019. Software Engineering

for Variability Intensive Systems. CRC Press, Chapter Features and How to Find
Them: A Survey of Manual Feature Location, 153-172.

[46] Jacob Kriiger, Wolfram Fenske, Thomas Thiim, Dirk Aporius, Gunter Saake,

and Thomas Leich. 2018. Apo-Games: A Case Study for Reverse Engineering
Variability from Cloned Java Variants. In SPLC. ACM.

[47] Jacob Kriiger, Louis Nell, Wolfram Fenske, Gunter Saake, and Thomas Leich.

2017. Finding Lost Features in Cloned Systems. In SPLC. ACM.
Miguel A. Laguna and Yania Crespo. 2013. A Systematic Mapping Study on
Software Product Line Evolution: From Legacy System Reengineering to Product

SPLC ’19, September 9-13, 2019, Paris, France

[49

[50

[51

(52

o
3

[54

[55

[56

[57

o
&,

(59

(60

[61

[64]

[65]

[66

(67

[68

[69

[70

(71]

[73

Line Refactoring. Science of Computer Programming 78, 8 (2013), 1010-1034.
Jihyun Lee, Sungwon Kang, and Danhyung Lee. 2012. A Survey on Software
Product Line Testing. In SPLC. ACM.

Max Lillack, Stefan Stanciulescu, Wilhelm Hedman, Thorsten Berger, and An-
drzej Wasowski. 2019. Intention-Based Integration of Software Variants. In ICSE.
ACM.

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher. 2017. A Classification
of Variation Control Systems. In GPCE. ACM.

Roberto E. Lopez-Herrejon and Don Batory. 2001. A Standard Problem for
Evaluating Product-Line Methodologies. In GPCE. Springer.

Roberto E. Lopez-Herrejon and Alexander Egyed. 2013. Towards Interactive
Visualization Support for Pairwise Testing Software Product Lines. In VISSOFT.
IEEE.

Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wasowski. 2010. Evolution of the Linux Kernel Variability Model. In SPLC.
Springer.

Levi Lucio, Moussa Amrani, Jirgen Dingel, Leen Lambers, Rick Salay, Gehan
M. K. Selim, Eugene Syriani, and Manuel Wimmer. 2016. Model Transformation
Intents and Their Properties. Software and Systems Modeling 15, 3 (2016), 647—
684.

Jabier Martinez, Wesley K. G. Assuncéo, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In SPLC. ACM.

Jabier Martinez, Nicolas Ordofiez, Xhevahire Térnava, Tewfik Ziadi, Jairo
Aponte, Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature Loca-
tion Benchmark with ArgoUML SPL. In SPLC. ACM.

Jabier Martinez, Jean-Sébastien Sottet, Alfonso Garcia Frey, Tewfik Ziadi,
Tegawendé F. Bissyandé, Jean Vanderdonckt, Jacques Klein, and Yves Le Traon.
2017. Variability Management and Assessment for User Interface Design. In
Human Centered Software Product Lines. Springer.

Jabier Martinez, Xhevahire Térnava, and Tewfik Ziadi. 2018. Software Product
Line Extraction from Variability-Rich Systems: The Robocode Case Study. In
SPLC. ACM.

Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. 2015. Bottom-Up Adoption of Software Product Lines: A Generic and
Extensible Approach. In SPLC. ACM.

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. 2016. Name Suggestions During Feature Identification: The
Variclouds Approach. In SPLC. ACM.

Jabier Martinez, Tewfik Ziadi, Raul Mazo, Tegawendé F. Bissyandé, Jacques
Klein, and Yves Le Traon. 2014. Feature Relations Graphs: A Visualisation
Paradigm for Feature Constraints in Software Product Lines. In VISSOFT. IEEE.
Jabier Martinez, Tewfik Ziadi, Mike Papadakis, Tegawendé F. Bissyandé, Jacques
Klein, and Yves Le Traon. 2018. Feature Location Benchmark for Extractive
Software Product Line Adoption Research Using Realistic and Synthetic Eclipse
Variants. Information and Software Technology 104 (2018), 46-59.

John D. McGregor. 2014. Ten Years of the Arcade Game Maker Pedagogical
Product Line. In SPLC. ACM.

Jens Meinicke, Thomas Thiim, Reimar Schréter, Fabian Benduhn, Thomas Le-
ich, and Gunter Saake. 2017. Mastering Software Variability with FeatureIDE.
Springer.

Marcilio Mendonca, Moises Branco, and Donald Cowan. 2009. SPLOT: Software
Product Lines Online Tools. In OOPSLA. ACM.

Mukelabai Mukelabai, Damir Nesi¢, Salome Maro, Thorsten Berger, and Jan-
Philipp Steghofer. 2018. Tackling Combinatorial Explosion: A Study of Industrial
Needs and Practices for Analyzing Highly Configurable Systems. In ASE. ACM.
Sarah Nadi, Thorsten Berger, Christian Késtner, and Krzysztof Czarnecki. 2014.
Mining Configuration Constraints: Static Analyses and Empirical Results. In
ICSE. ACM.

Sarah Nadi, Thorsten Berger, Christian Késtner, and Krzysztof Czarnecki. 2015.
Where do Configuration Constraints Stem From? An Extraction Approach and
an Empirical Study. IEEE Transactions on Software Engineering 41, 8 (2015),
820-841.

Sana Ben Nasr, Guillaume Bécan, Mathieu Acher, Jodao Bosco Ferreira Filho,
Nicolas Sannier, Benoit Baudry, and Jean-Marc Davril. 2017. Automated Ex-
traction of Product Comparison Matrices from Informal Product Descriptions.
Journal of Systems and Software 124 (2017), 82-103.

Daren Nestor, Steffen Thiel, Goetz Botterweck, Ciaran Cawley, and Patrick
Healy. 2008. Applying Visualisation Techniques in Software Product Lines. In
SoftVis. ACM.

Lais Neves, Leopoldo Teixeira, Demdstenes Sena, Vander Alves, Uira Kulezsa,
and Paulo Borba. 2011. Investigating the Safe Evolution of Software Product
Lines. ACM SIGPLAN Notices 47, 3 (2011), 33-42.

Leonardo Passos, Jesus Padilla, Thorsten Berger, Sven Apel, Krzysztof Czarnecki,
and Marco Tulio Valente. 2015. Feature Scattering in the Large: A Longitudinal
Study of Linux Kernel Device Drivers. In MODULARITY. ACM.

[74]

[75]

[76

[77

[78]

[79]

[80]

[81]

[82

[83

[84

[85

[86

[87

[88

[89]

[90

[o1

[92

[93

[94

[95

[96

[97

[98]

[99

[100

[101

Striiber et al.

Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven
Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A Study of Feature Scattering

in the Linux Kernel. IEEE Transactions on Software Engineering (2018).
Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatter-

jee. 2007. A Design Science Research Methodology for Information Systems
Research. Journal of Management Information Systems 24, 3 (2007), 45-77.
Juliana Alves Pereira, Jabier Martinez, Hari Kumar Gurudu, Sebastian Krieter,
and Gunter Saake. 2018. Visual Guidance for Product Line Configuration using
Recommendations and Non-Functional Properties. In SAC. ACM.

Tristan Pfofe, Thomas Thiim, Sandro Schulze, Wolfram Fenske, and Ina Schaefer.
2016. Synchronizing Software Variants with VariantSync. In SPLC. ACM.

Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing Cloned
Variants: A Framework and Experience. In SPLC. ACM.

Andrey Sadovykh, Tewfik Ziadi, Jacques Robin, Elena Gallego, Jan-Philipp
Steghoefer, Thorsten Berger, Alessandra Bagnato, and Raul Mazo. 2019. RE-
VAMP2 Project: Towards Round-Trip Engineering of Software Product Lines —
Approach, Intermediate Results and Challenges. In TOOLS 50 + 1.

Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Marsha Chechik.
2014. Lifting Model Transformations to Product Lines. In ICSE. ACM.

Ana B. Sanchez, Sergio Segura, José Antonio Parejo, and Antonio Ruiz Cortés.
2017. Variability Testing in the Wild: The Drupal Case Study. Software and
System Modeling 16, 1 (2017), 173-194.

Sandro Schulze, Thomas Thiim, Martin Kuhlemann, and Gunter Saake. 2012.
Variant-Preserving Refactoring in Feature-Oriented Software Product Lines. In
VaMoS. ACM.

Sergio Segura, José A. Galindo, David Benavides, José Antonio Parejo, and
Antonio Ruiz Cortés. 2012. BeT Ty: Benchmarking and Testing on the Automated
Analysis of Feature Models. In VaMoS. ACM.

Anas Shatnawi, Abdelhak-Djamel Seriai, and Houari Sahraoui. 2017. Recovering
Software Product Line Architecture of a Family of Object-Oriented Product
Variants. Journal of Systems and Software 131 (2017), 325-346.

Steven She and Thorsten Berger. 2010. Formal Semantics of the Kconfig Language.
Technical Report. Electrical and Computer Engineering, University of Waterloo,
Canada.

Steven She, Krzysztof Czarnecki, and Andrzej Wasowski. 2012. Usage Scenarios
for Feature Model Synthesis. In VARY. ACM.

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. 2011. Reverse Engineering Feature Models. In ICSE. ACM.

Steven She, Uwe Ryssel, Nele Andersen, Andrzej Wasowski, and Krzysztof
Czarnecki. 2014. Efficient Synthesis of Feature Models. Information and Software
Technology 56, 9 (2014), 1122-1143.

Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Késtner. 2015.
Performance-Influence Models for Highly Configurable Systems. In ESEC/FSE.
ACM.

Norbert Siegmund, Marko Rosenmiiller, Martin Kuhlemann, Christian Késtner,
Sven Apel, and Gunter Saake. 2012. SPL Conqueror: Toward Optimization of
Non-Functional Properties in Software Product Lines. Software Quality Journal
20, 3-4 (2012), 487-517.

Susan Elliott Sim, Steve Easterbrook, and Richard C. Holt. 2003. Using Bench-
marking to Advance Research: A Challenge to Software Engineering. In ICSE.
IEEE.

Zipani Tom Sinkala, Martin Blom, and Sebastian Herold. 2018. A Mapping Study
of Software Architecture Recovery for Software Product Lines. In ECSA. ACM.
Daniel Striiber, Timo Kehrer, Thorsten Arendt, Christopher Pietsch, and Den-
nis Reuling. 2016. Scalability of Model Transformations: Position Paper and
Benchmark Set. In BigMDE.

Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej Wasowski.
2016. Concepts, Operations, and Feasibility of a Projection-Based Variation
Control System. In ICSME. IEEE.

Pablo Trinidad, David Benavides, Antonio Ruiz-Cortés, Sergio Segura, and
Alberto Jimenez. 2008. FAMA Framework. In SPLC. IEEE.

Rachel Tzoref-Brill and Shahar Maoz. 2018. Modify, Enhance, Select: Co-
Evolution of Combinatorial Models and Test Plans. In ESEC/FSE. ACM.
Gergely Varrd, Andy Schiirr, and Daniel Varré. 2005. Benchmarking for Graph
Transformation. In VL/HCC. IEEE.

Zhenchang Xing, Yinxing Xue, and Stan Jarzabek. 2013. A Large Scale Linux-
Kernel based Benchmark for Feature Location Research. In ICSE. ACM.
Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. 2012. Feature Location in a
Collection of Product Variants. In WCRE. IEEE.

Shurui Zhou, Stefan Stanciulescu, Olaf LeBenich, Yingfei Xiong, Andrzej Wa-
sowski, and Christian Kastner. 2018. Identifying Features in Forks. In ICSE.
IEEE.

Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A Dataset
for Dynamic Discovery of Semantic Changes in Version Controlled Software
Histories. In MSR. IEEE.

	Abstract
	1 Introduction
	2 Evolution Scenarios
	2.1 Methodology
	2.2 Running Example
	2.3 Scenario Descriptions

	3 Community survey
	3.1 Methodology
	3.2 Results
	3.3 Threats to Validity

	4 Surveying Existing Benchmarks
	4.1 Methodology
	4.2 Results

	5 Related Work
	6 Conclusion and Roadmap
	References

