
Feature-Oriented Defect Prediction
Stefan Strüder

∗

University of Koblenz-Landau, Germany

Mukelabai Mukelabai

Chalmers | University of Gothenburg, Sweden

Daniel Strüber
†

Radboud University Nijmegen, Netherlands

Thorsten Berger

Chalmers | University of Gothenburg, Sweden

ABSTRACT

Software errors are a major nuisance in software development and

can lead not only to reputation damages, but also to considerable

financial losses for companies. Therefore, numerous techniques

for predicting software defects, largely based on machine learn-

ing methods, have been developed over the past decades. These

techniques usually rely on code and process metrics in order to

predict defects at the granularity of typical software assets, such

as subsystems, components, and files. In this paper, we present the

first systematic investigation of feature-oriented defect prediction:

the prediction of defects at the granularity of features—domain-

oriented entities abstractly representing (and often cross-cutting)

typical software assets. Feature-oriented prediction can be benefi-

cial, since: (i) particular features might be more error-prone than

others, (ii) characteristics of features known as defective might be

useful to predict other error-prone features, (iii) feature-specific

code might be especially prone to faults arising from feature in-

teractions. We present a dataset derived from 12 software projects

and introduce two metric sets for feature-oriented defect predic-

tion. We evaluated seven machine learning classifiers with three

different attribute sets each, using our two new metric sets as well

as an existing metric set from the literature. We observe precision

and recall values of around 85% and better robustness when more

diverse metrics sets with richer feature information are used.

CCS CONCEPTS

• Software and its engineering → Software product lines; Soft-
ware defect analysis; • Computing methodologies → Super-

vised learning by classification.

KEYWORDS

feature, defect, prediction, classification

∗
Also with Chalmers | University of Gothenburg, Sweden during a research visit for

conducting this work.

†
Also with Chalmers | University of Gothenburg, Sweden for this work before moving

to Radboud University Nijmegen.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00

https://doi.org/10.1145/3382025.3414960

ACM Reference Format:

Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger.

2020. Feature-Oriented Defect Prediction. In 24th ACM International Sys-
tems and Software Product Line Conference (SPLC ’20), October 19–23, 2020,
MONTREAL, QC, Canada. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3382025.3414960

1 INTRODUCTION

Software errors are a significant cause of financial and reputation

damage to companies. Such errors range from minor bugs to seri-

ous security vulnerabilities. Therefore, there is a high interest in

warning a developer when they release updated software code that

may be affected by errors.

To this end, over the past decade, a large variety of techniques for

error detection and prediction has been developed, largely based on

machine learning techniques [16]. These techniques use historical

data of defective and clean (defect-free) changes to software systems

in combination with a carefully compiled set of attributes (usually

called attributes or features1) to train a given classifier [5, 28]. This

can then be used to make an accurate prediction of whether a new

change to a piece of software is defective or clean. The choice of

algorithms for classification is large. Studies show that, out of the

pool of available algorithms, both tree-based (e.g., J48, CART or

Random Forest) and Bayesian algorithms (e.g., Naïve Bayes (NB),

Bernoulli-NB or multinomial NB) are the most widely used [69].

Alternatives include logistic regression, k-nearest-neighbors or ar-

tificial neural networks [16]. The vast majority of existing work

uses these techniques for defect prediction at the granularity of

sub-systems, components, and files, and does not come to a defini-

tive consensus on their usefulness—the “best” classifier generally

seems to depend on the considered prediction scenario.

In this work, we present a systematic investigation of feature-
oriented defect prediction—predicting errors on the granularity of

software features. Features are a primary unit of abstraction in

software product lines and configurable systems [7, 12, 37, 56], but

also play a crucial role in agile development processes, where orga-

nizations strive towards feature teams and organize sprints around

feature requests, for shorter release cycles [42]. Notably, features

abstract over traditional software assets (e.g., source files) and of-

ten cross-cut them [59], constituting more coherent entities from

a domain perspective. Predicting defects at feature granularity is

promising for several reasons: First, since a given feature might

be historically more or less error-prone, a change that updates the

feature may be more or less error-prone as well. Second, features

more or less likely to be error-prone might have certain character-

istics that can be harnessed for defect prediction. Third, code that

1
To avoid ambiguity, throughout this paper, we use the term “attribute” instead of

“feature” to describe dataset characteristics in the context of machine learning.

https://doi.org/10.1145/3382025.3414960
https://doi.org/10.1145/3382025.3414960
https://doi.org/10.1145/3382025.3414960

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger

contains a lot of feature-specific code (including feature-interaction

code [6, 15, 77]) might be more error-prone than others.

We make the following contributions:

• We present a dataset for feature-oriented defect prediction. The

dataset is based on twelve projects that we selected due to their

usage in previous feature-oriented research [33, 45, 61, 62]. The

dataset contains features in specific versions, labeled as either

defective or clean. Feature information was extracted from prepro-

cessor instructions (#ifdef and #ifndef) in the projects’ source

code files. The labels were determined using existing automated

heuristics targeting file-based defect prediction, which we refined

to obtain more accurate results in the considered projects.

• We introduce two metric sets designed for use in the training of

machine learning classifiers for feature-oriented defect prediction.

The first metric set is comprised of eight feature-based process

metrics, whereas the second additionally contains six feature-

based structure metrics.

• We present an evaluation of feature-oriented defect prediction,

based on our dataset, three metric sets (our proposed two and an

existing one) and seven classifiers that were selected due to their

frequent usage in the literature. A replication package with all

data and code is publicly available in our online appendix [75].

The only previous work investigating feature granularity is a

short workshop paper by Queiroz et al. [61]. This earlier work only

considered a single software project, a fixed set of five metrics

(restricted to process metrics), and three classifiers. In this paper,

we consider a significantly greater selection of projects (12), met-

rics (two fundamentally different sets, 14 in total), and classifiers

(7). Furthermore, we took a mitigation measure to deal with the

drawbacks of our inherently imbalanced dataset, and empirically

compare our results to those produced by using Queiroz et al.’s [61]

metric set on our substantially larger dataset. While we focus on

systems using annotative variability, in principle, our technique is

programming language independent and could be applied to any

system with a defined approach for feature extraction.

2 BACKGROUND AND RELATEDWORK

Software defect prediction. Defect prediction is an active re-

search area in software engineering that has been studied for the

past five decades [18, 50, 55, 64, 78], with the earliest studies begin-

ning in the 1970s by Akiyama [3], McCabe [47], and Halstead [27],

who used code complexity metrics to estimate defects (without

machine learning). The vast majority of recent studies relies on ma-

chine learning techniques [9, 14, 19, 29, 43, 50, 54] and follows stan-

dard procedures of (i) extracting instances (dataset records) from

software archives based on the chosen granularity level (e.g., file,

class, or method level), (ii) labeling the instances (e.g., as defective

or clean) and applying metrics, (iii) optionally applying preprocess-

ing techniques, such as feature selection [66] or normalization [50],

and (iv) making predictions for unknown instances—predicting

either bug-proneness of source code (classification) or the number

of defects in source code (regression).

To characterize the defect-proneness of source code, several

metrics have been proposed, including structure and process met-

rics. While structure metrics generally measure the complexity

and size of code, process metrics quantify several aspects of the

development process, such as changes of source code, code own-

ership, and developer interactions. The onset of version control

systems has facilitated the application of process metrics to de-

fect prediction [29, 43, 51, 63], which have been demonstrated to

outperform structure metrics in many cases [51, 54, 63]. Different

measures are used to assess the performance of classification mod-

els; the most common being precision, recall, and f-measure (see

Section 4.1). However, since most prediction models predict prob-

abilities of defect-proneness, these measures require the use of a

minimum probability threshold to declare an instance defective or

not. Such performance measures that require the use of threshold

values are discouraged [44], since results may vary and are hard to

reproduce [49]. A more reliable, threshold-invariant metric is the

area under the receiver operating characteristic curve (AUC-ROC).

It plots the true positive rate against the false positive rate taking

into account all possible threshold values (between 0 and 1). Thus,

AUC-ROC indicates how much a prediction model is capable of

distinguishing between classes. Furthermore, the area under cost-

effective curve (AUCEC) [8, 64] is sometimes used to measure how

many defects can be found in the top n% lines of code so as to

provide priorities to quality assurance teams and developers.

Defect prediction models may target quality assurance before

product release [63] (a.k.a., release-based), or prediction of defects

whenever the source code is changed (i.e., predicting bug-inducing

changes, a.k.a., just-in-time (JIT) defect prediction models [35, 36,

38]). In general, JIT models suffer from insufficient training data.

To overcome this limitation for new projects or projects with less

historical data, the notion of cross-project defect prediction has

been studied as well [31, 55, 79]. To achieve better performance,

cross-project predictions generally require careful selection of train-

ing data [35, 79], e.g., from similar projects to create a large training

dataset, or they require ensembles of models from several projects.

Defect prediction models have been constructed at various gran-

ularity levels, including sub-system [22, 29, 39], component/pack-

age [44, 54, 78], file/class [46, 50, 55, 57, 79], method [26, 30], and

change (hunk) [38] level. Only one study [61] has considered the

feature granularity level. Yet, developers commonly use features to

develop, maintain, and evolve software systems [7, 12]. In fact, al-

most all agile software developmentmethodologies, such as SCRUM

and XP organize teams, sprints, and releases around features [42].

Therefore, our study investigates defect prediction for features and

takes into account feature process and structure metrics to charac-

terize the defect-proneness of features. We use release-based predic-

tion and combine data from several pre-processor-based projects.

We rely on the AUC-ROC measure to assess the performance of

our selected classification algorithms.

Machine learning and software product lines. Defect predic-

tion presents a natural application avenue for machine learning

in product line engineering. Most existing work in this area has

focused on the sampling of configurations for various use cases;

the recent survey by Pereira et al. [60] provides an overview. Focus-

ing on performance predictions, Siegmund et al. [73] use machine

learning and sampling techniques to build performance influence

models, quantifying the performance impact of specific features

and interactions. Temple et al. [74] use machine learning to infer

missing product line constraints [53], based on a random sampling

Feature-Oriented Defect Prediction SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Figure 1: Dataset creation

of products and an oracle that assesses whether a particular configu-

ration leads to a valid product. In contrast to us, they are interested

in faulty feature combinations, rather than erroneous features. The

same authors also investigated the use of learned adversarial con-

figurations in the context of quality assurance [73]. Considering the

reverse direction of applying variability concepts to machine learn-

ing, Ghofrani et al. [25] propose to investigate product lines of deep

neural networks, which establish reuse of existing trained networks

by identifying features and composing them. They investigate the

reuse potential in an associated empirical study [24].

Feature metrics. Several variability-aware feature metrics have

been proposed in the literature [11, 21, 45, 58] that measure charac-

teristics of feature specifications (variability models) [37, 56], code,

or of the mapping between the feature specification and code ar-

tifacts. These metrics target specific variability implementation

mechanisms, typically classified [72] into annotative mechanisms—

such as the C preprocessor (e.g., #ifdef [48])—and compositional

mechanisms—such as feature modules (e.g., AHEAD [10]). Using

metrics allows conceiving lightweight analysis techniques [52] for

systems as complex systems as product lines.

Common among annotation-based metrics are code-related met-

rics [33, 45, 62] that measure the nesting depth of features, lines of

feature code, feature scattering degree (to what extent a feature’s

implementation is spread across the codebase [59]), and tangling

degree (to what extent a feature’s implementation is mixed with

that of other features, implying feature interactions [6, 15, 77]). We

use these four kinds of structural metrics to characterize the defect-

proneness of a feature, hypothesizing that the higher the value of

each metric is, the more likely a feature is to be defective. All of

these existing metrics are structure-based. With the exception of

Queiroz et al. ’s defect prediction work [61] (which we consider

during metric engineering), no existing work proposes dedicated

process metrics for features.

3 METHODOLOGY

Our methodology comprises: (i) creating a dataset of feature labels

over the history of 12 software projects; (ii) creating two newmetric

sets designed for feature-oriented defect prediction; and (iii) select-

ing and training seven classifiers we considered for our evaluation.

3.1 Dataset Creation

Our study aims to create a machine learning model for predicting

the defect-proneness of software features. To this end, we created

training and test datasets whose instances are features, in contrast

with commonly used granularity levels such as components, files or

methods. For this purpose, we relied on software projects with avail-

able revision histories, and use preprocessor macros (e.g., #ifdef)

to annotate source code with features. We followed the process out-

lined in Figure 1 to extract feature references (by pattern matching

preprocessor macros) in files that were modified during commits,

and labeling these features as defective or clean based on whether

one or more files implementing each feature was identified to be

defective. Below, we describe this process in more detail.

Software projects. We generated datasets based on data from the

full revision histories of 12 preprocessor-based software projects—

these projects have been subjects of prior research on features

and software product lines [45, 61? , 62]. From these papers, we ob-

tained an initial set of 44 projects, which we filtered by applying the

following inclusion criteria: First, the project’s source code uses pre-

processor directives as variability mechanism. Second, meta-data

on release versions is available in the form of several tags speci-

fying release versions. Third, the project has a nontrivial (greater

than 5) number of features. Fourth, the project’s commit messages

are given in English—a prerequisite for the heuristics we used for

detecting bug-fixing commits. We checked these criteria manually,

yielding a selection of 12 projects, which we list in Table 1, together

with context, repository sources, and additional information.

Retrieval. To retrieve our subject projects’ revision histories, we

used the library PyDriller [70]). It allows easy data extraction from

Git repositories to obtain commits, commit messages, commit au-

thors, diffs, and more (called "metadata" in the following). To this

end, we created Python scripts for receiving the commit metadata,

including the release number to which each commit belonged.

For each modified file within a commit, we collected metadata,

such as commit hash (unique commit identifier), commit author, com-
mit message, filename, and diff (changeset), that we used for calcu-

lating metrics (Section 3.2) and labeling of instances in our datasets.

This metadata was saved in a MySQL database, available as part of

our online appendix [75]. For each of our subject projects, we create

a separate table in the database in which we store the above meta-

data for each file, including the name of the project and the release

number associated with the commit in which the file was changed.

Feature reference extraction and cleaning. Using regular ex-

pressions, we extracted feature references in each modified file

within a commit changeset, by pattern-matching the preprocessor

macros #ifdef and #ifndef. Combinations of features (e.g., #ifdef A

& B) are stored in their identified form.

This way of identification has some obstacles. In some C pro-

gramming paradigms, it is common to include header files in the

source code using preprocessor directives, in the same way as fea-

tures. However, we ignored these "header macros", as they will be

referred to in the remainder, as they do not represent actual fea-

tures. In general, these header macros are identifiable through their

suffix _h_ to the name, such as macroname_h_. Through a manual

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger

Table 1: Subject systems

project description corrective
commits

bug-introducing
commits

features training-set
releases

test-set releases split ratio1 URL

Blender 3D-modeling
tool

7,760 3,776 1,400 2.70 - 2.77 2.78 - 2.80 73 : 27 github.com/sobotka/blender

Busybox UNIX toolkit 1,236 802 628 1_16_0 - 1_25_0 1_26_0 - 1_30_0 71 : 29 git.busybox.net/busybox/

Emacs text editor 4,269 2,532 718 25.0 - 26.0 26.1 - 26.2 71 : 29 github.com/emacs-

mirror/emacs

GIMP graphics editor 1,380 854 204 2_8_2 - 2_10_4 2_10_6 -
2_10_12

71 : 29 gitlab.gnome.org/GNOME/

gimp

Gnumeric spreadsheet 1,498 1,191 637 1_10_0 -
1_12_10

1_12_20 -
1_12_30

75 : 25 gitlab.gnome.org/GNOME/

gnumeric

gnuplot plotting tool 854 1,215 558 4.0.0 - 4.6.0 5.0.0 80 : 20 github.com/gnuplot/gnuplot

Irssi IRC client 52 22 9 1.0.0 - 1.0.4 1.0.5 - 1.0.6 71 : 29 github.com/irssi/irssi

libxml2 XML parser 324 88 200 2.9.0 - 2.9.7 2.9.8 - 2.9.9 80 : 20 gitlab.gnome.org/GNOME/

libxml2

lighttpd web server 1,078 929 230 1.3.10 - 1.4.20 1.4.30 - 1.4.40 67 : 33 git.lighttpd.net/lighttpd/

lighttpd1.4.git/

MPSolve polynom solver 151 211 54 3.0.1 - 3.1.5 3.1.6 - 3.1.7 75 : 25 github.com/robol/MPSolve

Parrot virtual machine 3,109 3,072 397 1_0_0 - 5_0_0 6_0_0 - 7_0_0 71 : 29 github.com/parrot/parrot

Vim text editor 371 696 1,158 7.0 - 7.4 8.0 - 8.1 71 : 29 github.com/vim/vim

1 percentage of training and test releases

review of the identified feature references, we also ignored feature

references when the preprocessor directives occurred in comments.

Label calculation. For each identified feature in each revision, we

calculated a label, specifying if the feature is defective or clean. To
this end, we relied on a common automated heuristic for identifying

corrective and bug-introducing commits [80]. We modified it for

our purpose and mapped the results to features, as explained below.

The heuristic scans commit messages for the presence of the key-

words "bug," "bugs," "bugfix," "error," "fail," "fix," "fixed," and "fixes." In

a manual inspection of the results, we noticed many false positives.

Especially in lengthy commit messages, we noticed an increased

probability that our keywords are used in an irrelevant context,

e.g., handling of "fixed fonts" in the implementation of emacs. We

modified the heuristic to only consider the first line of each commit

since the main purpose of the commit is usually stated in the first

line or sentence. We then took a sample of about 50-100 commits

per project (approx 500 in total) to evaluate the modified heuristic,

and found that it decreased the number of false positives signifi-

cantly. However, as a general limitation of our technique (similar

to other techniques used in defect prediction studies) we do not

guarantee that a commit does not have bugs, but instead focus on

confirmed bugs specified by developers.

We used the corrective commits to identify the corresponding

bug-introducing commits. The state-of-the-art algorithm for this

purpose is the SZZ algorithm according to Sliwerski, Zimmermann

and Zeller [68, 70], which uses heuristics to identify the commits in

which the lines leading to the later-fixed bug have been introduced.

We used the available SZZ implementation of PyDriller. Table 1

gives an overview of the number of corrective and bug-introducing

commits and the number of features identified per project.

Finally, for labeling, we first compute labels for files, and then

use these labels to calculate the labels for associated features. A

file is labeled as defective in a particular release if there is at least

one bug-introducing commit that changes the file, and as clean

Table 2: Key characteristics of the dataset

instances defective clean

14, 735 2, 988 11, 747

otherwise. A feature is labeled as defective in a particular release if

it is associated with at least one defective file, and as clean otherwise.
Corrective commits are not reflected directly in labels, since we are

interested in the error-proneness of particular features. Key figures

giving an overview of the created dataset are listed in Table 2.

Figure 3 shows the diffs of a corrective (A) and a bug-introducing

(B) commit to a feature FEAT_TEXT_PROP from the project Vim. The

diff of commit A shows that the arguments of the method call

vim_memset have been replaced. According to the associated com-

mit message, the original method call caused a "memory access

error." Commit A was, therefore, identified as corrective because the

commit message contains the keyword "error." To identify the bug-

introducing commit B of the file concerned, we specify the hash of

the corrective commit A to the SZZ algorithm. In its portion of the

diff, we can see that commit B has put the feature FEAT_TEXT_PROP
in the file with the incorrect method call. Consequently, we con-

sider the commit to be bug-introducing, and the associated file and

feature to be defective in that particular release.

3.2 Selection of Metrics

Selecting an effective set of attributes for classifier training (a.k.a.,

feature engineering) is commonly considered the decisive factor

for the success or failure of machine learning applications [20]. To

reflect this crucial role, we iteratively designed a suitable set of

attributes, following a design-science approach [32].

Metrics as attributes. To map the available feature information to

attributes, we need to design a set of software metrics—numerical

values that quantify properties of a software project. We consider

both structure metrics, which are used to measure certain qualities

of the software code of a specific revision, and process metrics, which
are used to measure properties of metadata taken from software

Process metrics (8) Structure metrics (6)

PROCMET
PROCSTRUCTMET

QUEIROZMET

Figure 2: Metric sets

github.com/sobotka/blender
git.busybox.net/busybox/
github.com/emacs-mirror/emacs
github.com/emacs-mirror/emacs
gitlab.gnome.org/GNOME/gimp
gitlab.gnome.org/GNOME/gimp
gitlab.gnome.org/GNOME/gnumeric
gitlab.gnome.org/GNOME/gnumeric
github.com/gnuplot/gnuplot
github.com/irssi/irssi
gitlab.gnome.org/GNOME/libxml2
gitlab.gnome.org/GNOME/libxml2
git.lighttpd.net/lighttpd/lighttpd1.4.git/
git.lighttpd.net/lighttpd/lighttpd1.4.git/
github.com/robol/MPSolve
github.com/parrot/parrot
github.com/vim/vim

Feature-Oriented Defect Prediction SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

SZZ

LineOffset = new_LineOffset;
LineWraps = new_LineWraps;
TabPageIdxs = new_TabPageIdxs;

+#ifdef FEAT_TEXT_PROP
+ popup_mask = new_popup_mask;
+ vim_memset(popup_mask, 0, screen_Rows * screen_Columns * sizeof(short));
+ popup_mask_refresh = TRUE;
+#endif

TabPageIdxs = new_TabPageIdxs;
#ifdef FEAT_TEXT_PROP

popup_mask = new_popup_mask;
- vim_memset(popup_mask, 0, screen_Rows * screen_Columns * sizeof(short));
+ vim_memset(popup_mask, 0, Rows * Columns * sizeof(short));

popup_mask_refresh = TRUE;
#endif

280 280
281 281
282 282
283 283
35 284
36 285
37 286
38 287

2 2
3 3
4 4
5 5
6 6
7 7
8 8

@@ -9242,6 +9343,11 @@

@@ -9345,7 +9345,7 @@

A

B

Figure 3: Example of a defect with corrective (A) and bug-

introducing (B) commit

repositories [63], or take the evaluation of characteristics over revi-

sions into account. In the context of features, an example structure

metric is: scattering degree (counting all preprocessor macro refer-

ences to the feature—e.g., #ifdef A). An example process metric is:

the number of committers who changed the feature in the release.

Metric sets.We obtained three metric sets: an existing one from

the literature (QueirozMet) and two new metric sets (ProcMet,

ProcStructMet) we obtained by incrementally refining the avail-

able metrics. ProcMet augments QueirozMet with additional

process metrics, whereas ProcStructMet extends ProcMet with

structure metrics. Figure 2 illustrates the metric sets and their rela-

tionships. Table 3 gives a detailed overview of the resulting fourteen

metrics and their descriptions.

• QueirozMet: The original metric set by Queiroz et al. [61]

consists of five process metrics, based on the rationale that pro-

cess metrics are deemed particularly beneficial in defect predic-

tion [63]. The included metrics quantify basic information such

as the number of commits associated with the feature, developers

contributing to the feature’s implementation, and the experience

of these developers (based on previous involvement).

• ProcMet: In the first iteration, we systematically investigated

additional process metrics. In the absence of dedicated feature

process metrics in the literature (see Section 2), we derived three

new ones from existing non-feature process metrics. These met-

rics quantify more involved feature-related process information,

such as the average number of lines of code added to the files

associated with the feature in the release. The original, file-based

versions of these metrics were assessed as beneficial for defect

prediction in earlier work [63]. Consequently, we obtained a new

metric set ProcMet, consisting of eight process metrics.

• ProcStructMet: In the second iteration, we systematically

investigated feature structure metrics, aiming to benefit from two

complementary types of metrics by bundling them. We added six

structure metrics: four custom feature structure metrics identi-

fied in related work (see Section 2), and two new ones we derived

from particularly common structure metrics. The custom metrics

include metrics such as the nesting depth of a feature (number

of other preprocessor macros nested within the macro of a given

feature). The newly derived metrics, based on LoC and cyclo-

matic complexity, represent the two main dimensions usually

considered by structure metrics: size and complexity. Overall,

our metric set ProcStructMet comprises eight process and six

structure metrics.

Generally, the metric values for each feature are aggregated

over a release as described in Table 3. The values of the metrics are

calculated for the data of each subject project, in some cases directly

using SQL queries, in some cases by combining SQL queries and a

Python script, and in other cases by using an available tool.

3.3 Selection and Training of Classifiers

We selected seven classifiers based on their use in previous studies.

Table 4 provides an overview. A key informative work for our selec-

tionwas the empirical study by Son et al. [69], who determine the six

most commonly used classifier types in 156 defect-prediction stud-

ies: Decision Tree, Random Forest, Bayesian, Regression, Support

Vector Machines and Neural Networks. We used typical representa-

tive learners for each of the broader categories: J48 (Decision Tree),

LR (Regression), NB (Bayesian). As an example for learners that are

commonly used in classification, but less so in defect prediction,

we included k-Nearest Neighbor (KNN).

Tool and configuration. To train and test our classifiers, we used

the WEKA workbench
2
due to its widespread application in scien-

tific studies, including defect prediction [28, 61, 65]. WEKA offers a

large collection of machine learning algorithms and preprocessing

tools for use via a graphical user interface. All classification algo-

rithms presented above are already integrated in the WEKA tool.

WEKA takes as input the dataset (saved in CSV or the proprietary

ARFF format) and executes it against selected classifiers.

We trained each classification algorithm in WEKA with the re-

spective standard settings, except for NN and RF. For RF, we set the

number of decision trees for parallel processing to 200. There are no

clear recommendations on how many trees should be specified. We,

therefore, select the value of 200 independently, taking into account

the scope of the datasets and the high number of attributes. For the

NN algorithm, we independently specify a hidden layer structure

of (13,13,13). This means that the artificial neural network has

three hidden layers of 13 hidden layer neurons each. This allows

them to process the large number of attributes more efficiently.

We trained each of these seven classifiers using the dataset with

each of the three metric sets, leading to 21 instances of training in

total. We used a Windows 10 system (Intel Core i7-6500U, 16GB

RAM) for all experiments. Depending on the metric set, the training

times (given in Table 5) were between a few seconds and a bit more

than a minute for the entire dataset. Specifically, the longest time

taken was for NN (between 52 and 65 seconds) and the shortest

was for KNN (1 to 2 seconds).

The results obtained using the test data, which reflect the perfor-

mance of the individual classifiers, are presented in the following

section as part of the evaluation.

Test vs. training set. Before conducting the training, we deter-

mined the ratio of training data to test data for each individual

project based on the number of available releases. We aimed to

approximate the commonly used split ratios of between 80 : 20%

and 70 : 30%. The resulting ratio splits, as shown in Table 2, range

from 67 : 33% to 80 : 20%.

In general, we assigned earlier releases to the training data and

later ones to test data. In doing so, we avoid the implausible situation

of "using the future to predict the past", which is unrealistic in

2
https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger

Table 3: Metrics of metric sets ProcMet (process metrics) and ProcStructMet (process and structure metrics)

Legend: Let 𝑅 = {𝑐1, 𝑐2, ...𝑐𝑞} be a release set consisting of 𝑞 commits; 𝐶 be the set of all commits from previous releases plus those in 𝑅;

𝐹 = {𝑓1, 𝑓2, ...𝑓𝑝 } be the set of all files changed by commits in 𝑅. Let 𝑇 = {feat1, feat2, ...feat𝑛} be the set of all features affected by changes in

𝑅 (i.e., features included in diffs), where each feature feat∈𝑇 has a set 𝐴 = {featfile1, featfile2, ...featfile𝑚} of files implementing it, and 𝐴 ⊆ 𝐹 .
We define our metrics for each feature feat, with respect to release 𝑅 as follows:

metric1 description function signature

pr
oc

es
s

m
et

ri
cs

𝐹𝐶𝑂𝑀𝑀 Count of all commits in which a feature was changed within a release. 𝑐𝑜𝑚𝑚(feat, 𝑅)
𝐹𝐴𝐷𝐸𝑉 Count of all developers who changed a feature within a release. 𝑎𝑑𝑒𝑣 (feat, 𝑅)
𝐹𝐷𝐷𝐸𝑉 Count of all distinct developers who changed the feature up to the current release 𝑑𝑑𝑒𝑣 (feat,𝐶)
𝐹𝐸𝑋𝑃2 Average experience3 of all developers who changed a feature within a release. 𝑒𝑥𝑝 (feat, 𝑅)
𝐹𝑂𝐸𝑋𝑃 Average experience of the developer who changed the features of a file most often within a release. 𝑜𝑒𝑥𝑝 (feat, 𝑅)
𝐹𝑀𝑂𝐷𝐷 Average scattering degree of a feature in changesets within a release—counts number of #ifdef

references to a feature within each changeset and averages this over the release
𝑚𝑜𝑑𝑑 (feat, 𝑅)

𝐹𝐴𝐷𝐷𝐿 Average number of lines of code added to the files associated with a feature within a release. 𝑎𝑑𝑑𝑙 (feat, 𝐴)
𝐹𝑅𝐸𝑀𝐿 Average number of lines of code deleted from the files associated with a feature within a release. 𝑟𝑒𝑚𝑙 (feat, 𝐴)

st
ru

ct
ur

e
m

et
ri

cs

𝐹𝑁𝐿𝑂𝐶 Average number of lines of code of the files associated with a feature within a release. 𝑛𝑙𝑜𝑐 (feat, 𝐴)
𝐹𝐶𝑌𝐶𝑂 Average cyclomatic complexity of the files associated with a feature within a release. 𝑐𝑦𝑐𝑜 (feat, 𝐴)
𝐿𝑂𝐹𝐶 Number of lines of code associated with a feature in a release (calculated from the last commit in 𝑅) lofc(feat,𝑐𝑞)
𝑁𝐷𝐸𝑃 Maximum nesting depth of #ifdef directives that the feature is involved in (calculated from the last

commit in 𝑅)
ndep((feat,𝑐𝑞)

𝑆𝐶𝐴𝑇 Scattering degree of a feature—count of all #ifdef references to the feature (calculated from the last
commit in 𝑅)

scat(feat,𝑐𝑞)

𝑇𝐴𝑁𝐺𝐴 Tangling degree of a feature—count of all other features mentioned the #ifdef reference as the feature,
e.g., #ifdef featA & featB (calculated from the last commit in 𝑅)

tang(feat,𝑐𝑞)

1 The first five process metrics (FCOMM, FADEV, FDDEV, FEXP, and FOEXP) were introduced by Queiroz et al. [61] with a slight
modification in names; here we prefixed them with F to indicate that they are calculated over features unlike commonly done with files
e.g., by Rahman et al. [63]. We refer to this set of metrics as QUEIROZMET.

2 𝑒𝑥𝑝 (feat, 𝑅) returns the geometric mean of the experience3 of all developers who changed the feature within a release.
3 Experience is the sum of the changed, deleted or added lines in the commits associated with the files (set 𝐴) implementing feat.

practice [34]. For the same reason, we do not use cross-validation

to evaluate our selected classifiers.

Inbalanced dataset. Table 2 reveals that our dataset is imbalanced:

clean instances outnumberdefective ones by a factor of 4.14. Using

imbalanced datasets for training is generally known to skew the

classifier towards misclassification of the under-represented class.

A common mitigation strategy is to apply over-sampling, by gen-

erating synthetic examples of the minority class. To this end, we

apply the SMOTE [17] algorithm to our training dataset by using the

available implementation in WEKA, in its standard configuration.

4 EVALUATION

Using the classifiers we trained based on our dataset (see subsec-

tion 3.1) and the three considered metric sets (see subsection 3.2),

we studied two research questions:

• RQ1: What is the effect of using different types of feature metrics

(structural and process) on prediction quality?

Table 4: Selection of classification algorithms

classifier abbreviation

J48 Decision Trees J48

k-Nearest-Neighbors KNN

Logistic Regression LR

Naïve Bayes Bayes NB

Artificial Neural Networks NN

Random Forest RF

Support Vector Machines SVM

• RQ2: Which particular feature metrics contribute most strongly

to prediction quality?

• RQ3: What is the effect of using different classifiers on prediction

quality?

Within RQ1, we implicitly compare our contribution to the most

closely related work: our two new metric sets are compared to the

one from Queiroz et al.

,[61], who proposed the only other dedicated metric set for feature-

oriented defect prediction.

In what follows, first, we present our evaluation metrics, second,

we present our results and discuss their implications.

4.1 Evaluation Metrics

To compare the classifiers with regard to prediction quality, we

consider two types of evaluation metrics, commonly used for this

purpose in the field of information retrieval [1]. First, precision, re-
call, and F-score, which quantify information about the percentage

of true and false predictions, based on an available confusion matrix.
Second, receiver operating characteristic (ROC) curves and the as-

sociated area under curve (AUC), which provide a visual and more

robust way for assessing prediction quality than confusion-matrix-

based metrics.

All our evaluation metrics assume a ground truth, specifying
for each given class the entries that belong to it (positives) and

those that do not (negatives). In our case, entries are features with

regard to a given release. The classes are defective and clean. The
ground truth was constructed in the labeling step during dataset

construction (see Sect. 3.1).

Feature-Oriented Defect Prediction SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Recall, Precision, and F-score. We follow the standard defini-

tion of precision, recall, and F-score. Intuitively, recall quantifies

how exhaustively the classifier identified all entries of the class,

comprised of true positives (TP) and false negatives (FN), respec-

tively. Precision quantifies the percentage of true positives (TP)

among all entries assigned to a particular class (also including false

negatives, FN). The F-score is the harmonic mean of precision and

recall, representing a balance between both. In contrast to other

confusion-based-matrix (e.g., accuracy), these metrics are consid-

ered as useful on imbalanced datasets, such as ours. These metrics

are computed as follows:

Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁 Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 F-score = 2𝑇𝑃
2𝑇𝑃+𝐹𝑃+𝐹𝑁

ROC-AUC. We determined the ROCs and AUCs of the individual

classifiers. These have the benefit that they represent performance

in a visual, understandable way, while at the same time making the

quality assessment more robust: Precision, recall, and F measure

depend on a predefined threshold, which is used in the classifiers

to assign each instance to a class. A robust classifier shows good

predictive ability regardless of the chosen threshold value.

ROC curves encode this intuition, by describing the relationship

between the TP rate (a.k.a. recall, y axis) and the FP rate (x axis), in-

dicating the proportion of predictions that are incorrectly evaluated

as positive [1, 4]. The FP rate is calculated as follows:

FP rate =
𝐹𝑃

𝐹𝑃+𝑇𝑁

Datapoints on the curve are obtained by taking into account all

possible values for the threshold that determines when an instance

is assigned to a particular class.

The AUC area indicates the extent to which a classifier is able

to make correct predictions under a changing threshold value. The

higher this value is, the more robust the classifier is in making

correct predictions. The ideal value is 1.0, whereas a value of 0.5

indicates a predictive ability on the same level as random guessing.

4.2 Results

Table 7 and Fig. 4 in combination give an overview of our results.

Table 7 provides all calculated precision, recall, F-score, and AUC

values. For each classifier and evaluation metric, the top value

(best-perfoming metric set) is highlighted in bold. Figure 4 shows

ROCs for three representative classifiers (top performer, average

performer, worst performer in terms of AUC) in combination with

all three metrics sets. For reference, AUC values of all cases are

shown in the table.

Table 5: Training times per metric set (in seconds)

QueirozMet ProcMet ProcStructMet

J48 0.44 0.24 0.46

KNN 0.01 0.02 0.01

LR 0.29 0.09 0.14

NB 0.03 0.03 0.03

NN 51.85 53.13 65.34

RF 10.89 6.04 5.83

SVM 0.6 0.75 1.65

RQ1: Effect ofmetric sets. Based on precision, recall, and F-score,

we generally observe a moderate tendency that classifiers per-

formed best when using ProcStructMet, for which we observed

weighted averages between 0.66–0.85, 0.70–0.85 and 0.68–0.83 re-

spectively. The corresponding ranges for the case of ProcMet and

QueirozMet are 0.58–0.84, 0.70–0.83 and 0.63–0.82, and 0.55–0.84,

0.71–0.84 and 0.61–0.82, respectively. The quality difference is par-

ticularly pronounced when considering the top values (printed in

bold): In all classifiers except for SVM, ProcStructMet shows

the top value for precision, recall, and F-score. Two noteworthy

observations are the case of NB, where all evaluation metrics take

the same values over all metrics sets, and SVM, whereQueirozMet

outperforms ProcMet and ProcStructMet. Considering the two

classes clean and defective, we generally find higher F-scores in the

more advanced metric sets, and a better ability to predict clean than

defective instances for all metric sets.

Considering ROCs and AUCs sheds light on the effect of the

metric sets on robustness. We generally find a clear tendency of

ProcStructMet to highest robustness, i.e., more stability with

regard to different values for the threshold used for assigning in-

stances to classes (reflected by a steeper initial incline in the ROC

curves). In 5 out of 7 cases, the AUC for ProcStructMet shows a

solid value between 0.74 and 0.82. The AUC for ProcStructMet

is consistently greater or equal to that of ProcMet in some cases

strongly so, including the top performer NN (0.79 vs. 0.61). The high-

est achieved value forQueirozMet is 0.64. The SVM classifier is

an exception to all other cases: for ProcMet and ProcStructMet

we observe worse performance (0.49) than from random guessing

(0.5); corresponding to a nearly-linear ROC. A possible explanation

for the preferable robustness of ProcStructMet in most classi-

fiers is the availability of more diverse metrics, providing a richer

information source for predictions.

RQ2: Effect of individual metrics.We determined the effect of

individual metrics by applying an attribute selection method. Such

methods heuristically determine the effect of attributes, in our case

metrics, with regard to a classifier’s predictive ability. We used a

standard method provided by Weka (weka.attributeSelection.
ClassifierAttributeEval together with the Ranker class). This

method runs the considered classifier several times with different

subsets of the entire metric set, and outputs an influence measure

between 1.0 and -1.0 for each considered metric, quantifying the

influence of the metric to the prediction result. We applied the

method to all 21 classifier instances (7 classifiers with 3 metric sets).

We present an overview of the results in Table 7, showing the

three top performers from RQ1 and the average over all 21 clas-

sifier instances. The most influential metric for each classifier is

highlighted in bold. Generally, the obtained values are very similar

for RF and J48, perhaps unsurprisingly, since RF and J48 are both

based on the decision tree paradigm. For NN, only three non-zero

values are reported, which, however, agree with the reported values

for the other two top classifiers. We observe striking cases of large

standard deviations, most pronounced in the case of FADDL, which

has the most positive impact for the RF classifier (0.058), while, on

average, leading to a strong negative influence (-0.03). Despite the

observation in RQ1 that the inclusion of structure metrics leads

to improved results compared to only process metrics, the effect

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger

Table 6: Results RQ1 and RQ3: evaluation metrics for the classes “defective” and “clean,” and the weighted average “w.a.”

Metric set

QueirozMet ProcMet ProcStructMet

Classifier Eval. metric defective clean w.a. defective clean w.a. defective clean w.a.

J48

Recall 0.57 0.66 0.64 0.61 0.85 0.80 0.65 0.85 0.81

Precision 0.27 0.87 0.77 0.47 0.91 0.83 0.49 0.92 0.84

F score 0.37 0.75 0.68 0.53 0.88 0.81 0.56 0.88 0.82

AUC area 0.57 0.57 0.57 0.79 0.79 0.79 0.78 0.78 0.78

KNN

Recall 0.53 0.56 0.55 0.57 0.58 0.58 0.55 0.81 0.77

Precision 0.21 0.84 0.73 0.23 0.86 0.75 0.39 0.89 0.80

F score 0.30 0.67 0.61 0.33 0.69 0.63 0.46 0.85 0.78

AUC area 0.50 0.50 0.50 0.52 0.52 0.52 0.74 0.74 0.74

LR

Recall 0.40 0.73 0.67 0.43 0.72 0.67 0.45 0.72 0.67

Precision 0.25 0.85 0.74 0.25 0.85 0.74 0.26 0.85 0.75

F score 0.30 0.78 0.70 0.32 0.78 0.70 0.33 0.78 0.70

AUC area 0.64 0.64 0.64 0.60 0.60 0.60 0.60 0.60 0.60

NB

Recall 0.38 0.94 0.84 0.40 0.93 0.84 0.37 0.94 0.84

Precision 0.58 0.87 0.82 0.57 0.88 0.82 0.57 0.87 0.82

F score 0.50 0.91 0.82 0.47 0.90 0.82 0.45 0.90 0.82

AUC area 0.61 0.61 0.61 0.77 0.77 0.77 0.78 0.78 0.78

NN

Recall 0.28 0.75 0.66 0.30 0.75 0.67 0.33 0.97 0.85

Precision 0.20 0.82 0.71 0.21 0.83 0.72 0.69 0.87 0.84

F score 0.23 0.78 0.68 0.25 0.79 0.69 0.45 0.92 0.83

AUC area 0.55 0.55 0.55 0.61 0.61 0.61 0.79 0.79 0.79

RF

Recall 0.57 0.63 0.62 0.62 0.83 0.80 0.68 0.85 0.82

Precision 0.26 0.87 0.76 0.45 0.91 0.83 0.51 0.92 0.85

F score 0.35 0.73 0.66 0.52 0.87 0.81 0.58 0.89 0.83

AUC area 0.59 0.59 0.59 0.75 0.75 0.75 0.82 0.82 0.82

SVM

Recall 0.12 1.00 0.84 0.22 0.76 0.66 0.23 0.76 0.66
Precision 0.83 0.84 0.84 0.17 0.82 0.70 0.17 0.82 0.70
F score 0.21 0.91 0.78 0.19 0.79 0.68 0.20 0.79 0.68
AUC area 0.56 0.56 0.56 0.49 0.49 0.49 0.49 0.49 0.49

of each individual structure metric is moderate compared to the

process metrics. This indicates that structure metrics seem to play

a non-negligible, but supplementary role for the observed results.

RQ3: Effect of classifiers.As a general observation, in most cases,

the prediction quality of the same classifier varied strongly based

Table 7: Results RQ2: Influence of metrics for top classifiers

(RF, NN, J48 with ProcStructMet) and all classifiers

All classifiers

Metric RF NN J48 mean std.dv

p
r
o
c
e
s
s
m
e
t
r
i
c
s

𝐹𝐶𝑂𝑀𝑀 0.048 0 0.049 0.034 0.02

𝐹𝐴𝐷𝐸𝑉 0.025 0.024 0.025 0.022 0.004

𝐹𝐷𝐷𝐸𝑉 0.009 0.008 0.01 0.009 0.003

𝐹𝐸𝑋𝑃 0.047 0 0.018 0.006 0.036

𝐹𝑂𝐸𝑋𝑃 0.057 0 0.036 0.021 0.026

𝐹𝑀𝑂𝐷𝐷 0.042 0 0.041 0.028 0.019

𝐹𝐴𝐷𝐷𝐿 0.058 0 0.035 -0.03 0.142

𝐹𝑅𝐸𝑀𝐿 0.03 0 0.016 0.011 0.014

s
t
r
u
c
t
u
r
e
m
e
t
r
i
c
s

𝐹𝑁𝐿𝑂𝐶 0.014 0 0.002 0.004 0.006

𝐹𝐶𝑌𝐶𝑂 0.013 0 0.007 0.004 0.005

𝐿𝑂𝐹𝐶 0.002 0 0 0 0.001

𝑁𝐷𝐸𝑃 0.002 0 0 0 0.001

𝑆𝐶𝐴𝑇 0.005 -0.001 0 0.001 0.002

𝑇𝐴𝑁𝐺𝐴 0 0 0 0 0

on the considered metrics set (see RQ1). It is, therefore, more mean-

ingful to compare combinations of classifiers and metrics, rather

than classifiers alone. Considering weighted averages, we observe

values for precision between 0.70–0.85, for recall between 0.62–

0.85, and for F-measure between 0.61–0.83. The best-performing

classifiers with regard to F-measure were NN and RF, both in com-

bination with ProcStructMet showing an F-measure of 0.83. NN

also shows the best average-weighted recall (0.85), while RF shows

the top average-weighted precision (0.85). With a value of 0.82 for

ProcStructMet, J48 also achieved above-average performance.

Considering individual classes, similar to the comparison be-

tween metrics, the results for the label defective are generally worse
than those of the label clean. The best precision for predicting clean

files, 0.83, is observed for SVM in combination withQueirozMet.

However, this value is traded off for the worst observed recall for

that label (0.12). Note that the seemingly contra-intuitive average

score of 0.78 for this combination results from averaging over the

individual F-scores for class labels (0.21 and 0.91).

Considering ROC curves and AUC areas, we again observe a

large inter-classifier variability. Still, the two top classifiers with

regard to precision, recall, and F-balance also have the two highest

observed AUC values: RF with 0.82, and NN with 0.79, indicating

that these classifiers a good robustness while ensuring high pre-

dictive ability. An interesting observation is that the minimal AUC

value achieved per classifier was never higher than 0.61, close to

random guessing. In contrast, in four out of seven cases, a maximal

Feature-Oriented Defect Prediction SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

(a) RF + QueirozMet (b) RF + ProcMet (c) RF + ProcStructMet

(d) KNN + QueirozMet (e) KNN + ProcMet (f) KNN + ProcStructMet

(g) SVM +QueirozMet (h) SVM + ProcMet (i) SVM + ProcStructMet

Figure 4: Results RQ1 and RQ3: ROC curves for three selected classifiers (top, average, worst)

value of 0.78 could be observed – illustrating again that the choice

of metric set is a key decisive factor for the success or failure of a

particular predictor.

Summary.We find a strong effect of metric selection on the classi-

fier performance. Remarkably, some classifiers become only feasible

alternatives when used in combination with a suitable metric set. In

most cases, we notice that considering a greater selection of more

diverse metrics (that we introduce in this paper) lead to improved

performance, including the identified top performers NN and RF.

However, this tendency does not apply to all cases: a remarkable

counterexample are SVMs, where the predictive ability declines

with the availability of more metrics. Hence, identifying a metric set

that improves the performance of the considered classifier appears

to be a key prerequisite to successful adoption of machine learning

techniques for feature-based defect prediction.

4.3 Threats to Validity

External validity. To mitigate overfitting of our models, a key

threat in machine learning, we used the typical separation of the

dataset into test data and training data [20]. Another standard tech-

nique to mitigate overfitting, cross validation, is not applicable to

scenario, since it leads to the problematic situation of "using the

future to predict the past", which is unrealistic for practical appli-

cations [34]. While providing improved techniques for avoiding

overfitting in defect prediction contexts is an open research issue,

we observe good predictive ability for 12 systems of diverse context

and size, which gives us some confidence that our models are not

severely affected by overfitting.

Despite diversity and size of the projects in our dataset, studying

a broader selection of software projects is desirable, as it would

increase the generalizability of our findings. We intend to aggregate

larger datasets in future work, which would also contribute to our

ongoing community initiative towards more mature benchmarks

for techniques in the context of evolving variant-rich systems [71].

Internal validity. As observed in Section 3.1, we observed that

some of our automatically retrieved features were not meaningful,

as they represented "header features", in the style of a certain C pat-

tern. While we manually processed all identified features to remove

header features, it is possible that in some projects header features

are not explicitly identified by names. A possible solution could

be enabled by a tool that automatically analyses the code to detect

header features. Such a tool does not exist at the moment. Still, the

manual removal of the recognizable header features allowed us to

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger

reduce the amount of these noise datapoints. Furthermore, we take

a conservative approach by considering only features referenced

through #ifdefand #ifndef. We also do not explicitly exclude stan-

dard predefined macros such as __FILE__, __LINE__, etc., since we

treat them as features with associated code if they are referenced

through our selected preprocessor macros above.

During dataset creation, we rely on a mapping from all features

changed in a particular release to the associated files. This mapping

is obtained from analyzing all commit change sets within the release.

Thus, a feature is considered relevant if it is mentioned in a diff

(either within a changed line or in the context provided with change

lines, which, per default, extends to three lines before and after

changed lines). This heuristic is subject to imprecision related to pre-

processor macros outside the provided context. Extending the im-

plementation to take into account all files is subject to future work.

Construct validity. Our ground truth for the identification of de-

fective and clean features relies on an available heuristic technique,

the SZZ algorithm. An associated threat is concerned with possible

imprecisions of this algorithm. According to a recent study [76],

available implementations of SZZ, including those of PyDriller,

can identify only about 69% of all bug-introducing commits. In

addition, about 64% of the identified commits were found to be

incorrectly identified. These imprecisions arise from violations to

implicit assumptions of the SZZ algorithm. Furthermore, the au-

thors of the study empirically found that the results of eight out

of ten earlier studies were significantly influenced by the impre-

cise algorithm [76]. This may, therefore, also apply to this work.

However, there is currently no alternative method for identifying

bug-introducing commits. Whenever an improved method becomes

available, we will repeat the main steps of this work, taking the

new method into account, and compare with our results.

5 PERSPECTIVES AND DIRECTIONS

Our results give rise to the following research directions.

Compare file-based and feature-based defect prediction. To

understand the benefits of feature-oriented defect prediction, we

shall compare the performance of classifiers on the same set of

projects at the two granularity levels (file and feature), and the num-

ber of files predicted defective at each level. We shall also investi-

gate whether any correlations exist between project characteristics

(e.g., language, average feature size, frequency of changes, sizes

of changes, etc.) and performance to investigate project-specific

characteristics that may affect performance.

Apply feature metrics to file-granularity defect prediction.

Even when just performing defect prediction at the granularity of

files, we believe that taking information about features into account

(with dedicated feature metrics) might improve prediction accuracy.

To study this conjecture, a feasible direction is to map our feature

metrics back to relevant files, derive ametrics set withmixed file and

feature information, and study the impact on prediction quality. To

this end, we plan to perform a further study, in which we compare

this setup to traditional file-based feature prediction.

Predict unwanted feature interactions. Unwanted feature in-

teractions [6] are a special kind of bug, which, when taken into ac-

count, may improve the predictive ability of defect prediction tech-

niques, as well as provide meaningful insights regarding whether

some machine learning classifiers perform better than others on

specific kinds of bugs. While there is work on predicting feature

interactions [23], predicting unwanted feature interactions has not

been attempted yet, to the best of our knowledge. To identify un-

wanted feature interaction bugs, one possible direction is to apply

techniques for identifying variability-aware bugs, such as the one

proposed by Abal et al. [2]. Another is to automatically generate

test cases for features and use these as partial specifications of a

feature behavior (similar to what has recently been done for seman-

tic merge-conflict detection [67]), then exploit these test cases for

revealing unwanted feature behavior when features interact.

Change-based defect prediction for features.While our study

has focused on release-based defect prediction, investigating the

prediction of defective features whenever developers commit a

new change would contribute to defect prediction techniques that

provide immediate feedback to developers.

Rich feature metrics. We used feature metrics calculated upon

code structure and project history. However, features carry more

semantics and richer information, referred to as features facets (e.g.,

position in the hierarchy or architectural responsibility) [13, 40, 41].

We conjecture crafting metrics taking such facets into account can

improve prediction accuracy further.

Improve generalizability. Expanding our dataset to include more

software projects, as well as considering other machine learning

techniques, such as deep learning, can improve our classification

results and the generalizability of our technique. Furthermore, in-

vestigating cross-project defect prediction is one other possible

direction. Here, we hope to gain insights such as whether develop-

ers can reuse classification models for unseen projects or classifiers

need to be retrained for such projects.

6 CONCLUSION

We presented a systematic investigation of feature-based defect

prediction. Aiming to predict possible software defects on the gran-

ularity of features, we construct a dataset based on 12 real revision

histories of feature-based software projects. Using a design science

approach, we systematically investigated feature engineering, and

finally derived two new carefully crafted metric sets, one solely

based on process metrics, one based on a combination of process

and structure metrics. We evaluated the predictive ability of seven

classifiers in combination with our new metric sets and an addi-

tional metric set from a previous work. We conclude:

• Using a more diverse metrics set leads to more robustness and

on-average better prediction results.

• Simple classifiers, such as NB, in combination with a simpler

metric set (process metrics only) can produce high-quality results;

however, at the cost of robustness.

• Enabled by our most advanced metric set, we find two best-

performing models (precision, recall, robustness): one based on a

random forest classifier, the other based on a neutral network.

ACKNOWLEDGMENTS

This work has been supported by the Swedish Research Council

Vetenskapsrådet and the Wallenberg Academy.

Feature-Oriented Defect Prediction SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES

[1] 2017. Encyclopedia of Machine Learning and Data Mining. Springer US.
[2] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 variability bugs in

the linux kernel: a qualitative analysis. In ASE. 421–432.
[3] Fumio Akiyama. 1971. An Example of Software System Debugging.. In IFIP

Congress (1), Vol. 71. 353–359.
[4] Ethem Alpaydin. 2010. Introduction to Machine Learning (second edition ed.).

The MIT Press, Cambridge, Massachusetts.

[5] AbdullahAlsaeedi andMohammadZubair Khan. 2019. SoftwareDefect Prediction

Using Supervised Machine Learning and Ensemble Techniques: A Comparative

Study. Journal of Software Engineering and Applications 12, 05 (2019), 85–100.
[6] Sven Apel, Joanne M Atlee, Luciano Baresi, and Pamela Zave. 2014. Feature

interactions: the next generation (dagstuhl seminar 14281). In Dagstuhl Reports,
Vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[8] Erik Arisholm, Lionel C Briand, and Magnus Fuglerud. 2007. Data mining tech-

niques for building fault-proneness models in telecom Java software. In ISSRE.
IEEE, 215–224.

[9] Alberto Bacchelli, Marco D’Ambros, andMichele Lanza. 2010. Are popular classes

more defect prone?. In FASE. 59–73.
[10] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. 2004. Scaling Step-Wise

Refinement. IEEE Transactions on Software Engineering 30, 6 (2004), 355–371.

[11] Thorsten Berger and Jianmei Guo. 2013. Towards SystemAnalysis with Variability

Model Metrics. In Eighth International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS ’14). ACM, New York, NY, USA, Article 23,

8 pages.

[12] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,

Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a

feature? a qualitative study of features in industrial software product lines. In

SPLC. 16–25.
[13] Thorsten Berger, Daniela Lettner, Julia Rubin, Paul Grünbacher, Adeline Silva,

Martin Becker, Marsha Chechik, and Krzysztof Czarnecki. 2015. What is a

Feature? A Qualitative Study of Features in Industrial Software Product Lines. In

International Software Product Line Conference (SPLC). ACM, 16–25.

[14] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and

Premkumar Devanbu. 2011. Don’t touch my code! Examining the effects of

ownership on software quality. In ESEC/FSE. 4–14.
[15] Glenn Bruns. 2005. Foundations for Features. In Feature Interactions in Telecom-

munications and Software System. IOS Press, 3–11.

[16] Venkata Udaya B. Challagulla, Farokh B. Bastani, I. Ling Yen, and Raymond A.

Paul. 2008. Empirical assessment of machine learning based software defect

prediction techniques. International Journal on Artificial Intelligence Tools 17, 2
(2008), 389–400.

[17] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE:

Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence
Research 16 (June 2002), 321–357.

[18] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2010. An extensive com-

parison of bug prediction approaches. In MSR. 31–41.
[19] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating defect

prediction approaches: a benchmark and an extensive comparison. Empirical
Software Engineering 17, 4-5 (2012), 531–577.

[20] Pedro Domingos. 2012. A few useful things to know about machine learning.

Commun. ACM 55, 10 (2012), 78–87.

[21] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. 2019. Metrics

for analyzing variability and its implementation in software product lines: A

systematic literature review. Information and Software Technology 106 (2019),

1–30.

[22] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Łukasz Radliński,

and Paul Krause. 2008. On the effectiveness of early life cycle defect prediction

with Bayesian Nets. Empirical Software Engineering 13, 5 (2008), 499.

[23] Stefan Fischer, Lukas Linsbauer, Alexander Egyed, and Roberto Erick Lopez-

Herrejon. 2018. Predicting higher order structural feature interactions in variable

systems. In ICSME.
[24] Javad Ghofrani, Ehsan Kozegar, Arezoo Bozorgmehr, and Mohammad Divband

Soorati. 2019. Reusability in artificial neural networks: an empirical study. In

SPLC. 122–129.
[25] Javad Ghofrani, Ehsan Kozegar, Anna Lena Fehlhaber, and Mohammad Divband

Soorati. 2019. Applying Product Line Engineering Concepts to Deep Neural

Networks. In SPLC. 72–77.
[26] Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C Gall. 2012.

Method-level bug prediction. In EASE. IEEE, 171–180.
[27] Maurice Howard Halstead et al. 1977. Elements of software science. Vol. 7. Elsevier

New York.

[28] Awni Hammouri, Mustafa Hammad, Mohammad Alnabhan, and Fatima Al-

sarayrah. 2018. Software Bug Prediction using Machine Learning Approach.

International Journal of Advanced Computer Science and Applications 9, 2 (2018).

[29] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.

In ICSE. IEEE, 78–88.
[30] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. 2012. Bug prediction based on

fine-grained module histories. In ICSE. IEEE, 200–210.
[31] Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. 2012. An investi-

gation on the feasibility of cross-project defect prediction. Automated Software
Engineering 19, 2 (2012), 167–199.

[32] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. 2004. Design

science in information systems research. MIS quarterly (2004), 75–105.

[33] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich,

Martin Becker, and Sven Apel. 2016. Preprocessor-based variability in open-

source and industrial software systems: An empirical study. Empirical Software
Engineering 21, 2 (2016), 449–482.

[34] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves

Le Traon, and Mark Harman. 2019. The importance of accounting for real-world

labelling when predicting software vulnerabilities. In FSE. 695–705.
[35] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita,

Naoyasu Ubayashi, and Ahmed E Hassan. 2016. Studying just-in-time defect

prediction using cross-project models. Empirical Software Engineering 21, 5 (2016),
2072–2106.

[36] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E Hassan, Audris Mockus,

Anand Sinha, and Naoyasu Ubayashi. 2012. A large-scale empirical study of

just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6

(2012), 757–773.

[37] Kyo C. Kang, Sholom Cohen, James Hess, William Nowak, and Spencer Peterson.

1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical

Report CMU/SEI-90-TR-21. Carnegie-Mellon University.

[38] Sunghun Kim, E James Whitehead Jr, and Yi Zhang. 2008. Classifying software

changes: Clean or buggy? IEEE Transactions on Software Engineering 34, 2 (2008),

181–196.

[39] Michael Kläs, Frank Elberzhager, Jürgen Münch, Klaus Hartjes, and Olaf von

Graevemeyer. 2010. Transparent combination of expert and measurement data

for defect prediction: an industrial case study. In ICSE. 119–128.
[40] Jacob Krueger, Wanzi Gu, Hui Shen, Mukelabai Mukelabai, Regina Hebig, and

Thorsten Berger. 2018. Towards a Better Understanding of Software Features and

Their Characteristics: A Case Study of Marlin. In Twelfth International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS).

[41] Jacob Krüger, Mukelabai Mukelabai, Wanzi Gu, Hui Shen, Regina Hebig, and

Thorsten Berger. 2019. Where is my feature and what is it about? a case study on

recovering feature facets. Journal of Systems and Software 152 (2019), 239–253.
[42] Craig Larman. 2008. Scaling lean & agile development: thinking and organizational

tools for large-scale Scrum. Pearson Education India.

[43] Taek Lee, Jaechang Nam, DongGyun Han, Sunghun Kim, and Hoh Peter In. 2011.

Micro interaction metrics for defect prediction. In ESEC/FSE. 311–321.
[44] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. 2008.

Benchmarking classification models for software defect prediction: A proposed

framework and novel findings. IEEE Transactions on Software Engineering 34, 4

(2008), 485–496.

[45] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael

Schulze. 2010. An analysis of the variability in forty preprocessor-based software

product lines. In ICSE.
[46] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. 2008. Using the con-

ceptual cohesion of classes for fault prediction in object-oriented systems. IEEE
Transactions on Software Engineering 34, 2 (2008), 287–300.

[47] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[48] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi.

2015. The Love/Hate Relationship with the C Preprocessor - An Interview Study.

In ECOOP. 495–518.
[49] Thilo Mende. 2010. Replication of defect prediction studies: problems, pitfalls

and recommendations. In PROMISE. 1–10.
[50] Tim Menzies, Jeremy Greenwald, and Art Frank. 2006. Data mining static code

attributes to learn defect predictors. IEEE Transactions on Software Engineering
33, 1 (2006), 2–13.

[51] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative

analysis of the efficiency of change metrics and static code attributes for defect

prediction. In ICSE. 181–190.
[52] Mukelabai Mukelabai, Damir Nešić, Salome Maro, Thorsten Berger, and Jan-

Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study of Industrial

Needs and Practices for Analyzing Highly Configurable Systems. In International
Conference on Automated Software Engineering (ASE). ACM, 155–166.

[53] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. 2015.

Where do Configuration Constraints Stem From? An Extraction Approach and an

Empirical Study. IEEE Transactions on Software Engineering 41, 8 (2015), 820–841.
[54] Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn mea-

sures to predict system defect density. In ICSE. 284–292.
[55] Jaechang Nam, Sinno Jialin Pan, and Sunghun Kim. 2013. Transfer defect learning.

In ICSE. IEEE, 382–391.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Stefan Strüder, Mukelabai Mukelabai, Daniel Strüber, and Thorsten Berger

[56] Damir Nesic, Jacob Krueger, Stefan Stanciulescu, and Thorsten Berger. 2019.

Principles of Feature Modeling. In 27th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE).

[57] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. 2005. Predicting the

location and number of faults in large software systems. IEEE Transactions on
Software Engineering 31, 4 (2005), 340–355.

[58] Leonardo Passos, Krzysztof Czarnecki, Sven Apel, Andrzej Wąsowski, Christian

Kästner, and Jianmei Guo. 2013. Feature-Oriented Software Evolution. In VAMOS.
[59] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai, Thorsten Berger, Sven

Apel, Krzysztof Czarnecki, and Jesus Padilla. 2018. A Study of Feature Scattering

in the Linux Kernel. IEEE Transactions on Software Engineering (2018). Preprint.

[60] Juliana Alves Pereira, Hugo Martin, Mathieu Acher, Jean-Marc Jézéquel, Goetz

Botterweck, and Anthony Ventresque. 2019. Learning Software Configuration

Spaces: A Systematic Literature Review. arXiv preprint arXiv:1906.03018 (2019).
[61] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. 2016. Towards

predicting feature defects in software product lines. In FOSD. ACM Press, 58–62.

[62] Rodrigo Queiroz, Leonardo Passos, Marco Tulio Valente, Claus Hunsen, Sven

Apel, and Krzysztof Czarnecki. 2015. The shape of feature code: an analysis of

twenty C-preprocessor-based systems. Software & Systems Modeling 16, 1 (July

2015), 77–96.

[63] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics

are better. In ICSE. IEEE, 432–441.
[64] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar De-

vanbu. 2011. BugCache for inspections: hit or miss?. In ESEC/FSE. 322–331.
[65] Jacek Ratzinger, Thomas Sigmund, and Harald C. Gall. 2008. On the relation of

refactorings and software defect prediction. In MSE. ACM Press, 35–38.

[66] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. 2012. Re-

ducing features to improve code change-based bug prediction. IEEE Transactions
on Software Engineering 39, 4 (2012), 552–569.

[67] Leuson Da Silva, Paulo Borba, Wardah Mahmood, Thorsten Berger, and Joao

Moisakis. 2020. Detecting Semantic Conflicts Via Automated Behavior Change

Detection. In 36th IEEE International Conference on Software Maintenance and
Evolution (ICSME).

[68] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do

changes induce fixes? ACM SIGSOFT Software Engineering Notes 30, 4 (July 2005),

1.

[69] Le Son, Nakul Pritam, Manju Khari, Raghvendra Kumar, Pham Phuong, and

Pham Thong. 2019. Empirical Study of Software Defect Prediction: A Systematic

Mapping. Symmetry 11, 2 (Feb. 2019), 212.

[70] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python

framework for mining software repositories. In ESEC/FSE. ACM Press, 908–911.

[71] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Lins-

bauer, JabierMartinez, and Thorsten Berger. 2019. Facing the truth: benchmarking

the techniques for the evolution of variant-rich systems. In SPLC. 26:1–26:12.
[72] Daniel Strueber, Anthony Anjorin, and Thorsten Berger. 2020. Variability Repre-

sentations in Class Models: An Empirical Assessment. In ACM/IEEE 23rd Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS).

[73] Paul Temple, Mathieu Acher, Gilles Perrouin, Battista Biggio, Jean-Marc Jézéquel,

and Fabio Roli. 2019. Towards quality assurance of software product lines with

adversarial configurations. In SPLC. 277–288.
[74] Paul Temple, José A. Galindo, Mathieu Acher, and Jean-Marc Jézéquel. 2016.

Using machine learning to infer constraints for product lines. In SPLC. 209–218.
[75] The Authors. 2020. Online Appendix. https://bitbucket.org/easelab/

onlineappendixdefectpred.

[76] Ming Wen, Rongxin Wu, Yepang Liu, Yongqiang Tian, Xuan Xie, Shing-Chi

Cheung, and Zhendong Su. 2019. Exploring and exploiting the correlations

between bug-inducing and bug-fixing commits. In ESEC/FSE. ACM Press, 326–

337.

[77] Pamela Zave. 2004. FAQ Sheet on Feature Interactions. Available at http://www.

research.att.com/~pamela/faq.html.

[78] Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects using

network analysis on dependency graphs. In ICSE. 531–540.
[79] Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and

Brendan Murphy. 2009. Cross-project defect prediction: a large scale experiment

on data vs. domain vs. process. In ESEC/FSE. 91–100.
[80] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting

Defects for Eclipse. In PROMISE. IEEE, 1–7.

https://bitbucket.org/easelab/onlineappendixdefectpred
https://bitbucket.org/easelab/onlineappendixdefectpred
http://www.research.att.com/~pamela/faq.html
http://www.research.att.com/~pamela/faq.html

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Dataset Creation
	3.2 Selection of Metrics
	3.3 Selection and Training of Classifiers

	4 Evaluation
	4.1 Evaluation Metrics
	4.2 Results
	4.3 Threats to Validity

	5 Perspectives and Directions
	6 Conclusion
	Acknowledgments
	References

