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Abstract. Software product lines continuously undergo model transfor-
mations, such as refactorings, refinements, and translations. In product
line transformations, the dedicated management of variability can help
to control complexity and to benefit maintenance and performance. How-
ever, since no existing approach is geared for situations in which both the
product line and the transformation specification are affected by variabil-
ity, substantial maintenance and performance obstacles remain. In this
paper, we introduce a methodology that addresses such multi-variability
situations. We propose to manage variability in product lines and rule-
based transformations consistently by using annotative variability mech-
anisms. We present a staged rule application technique for applying a
variability-intensive transformation to a product line. This technique en-
ables considerable performance benefits, as it avoids enumerating prod-
ucts or rules upfront. We prove the correctness of our technique and show
its ability to improve performance in a software engineering scenario.

1 Introduction

Software product line engineering [1] enables systematic reuse of software ar-
tifacts through the explicit management of variability. Representing a software
product line (SPL) in terms of functionality increments called features, and map-
ping these features to development artifacts such as domain models and code
allows to generate custom-tailored products on demand, by retrieving the corre-
sponding artifacts for a given feature selection. Companies such as Bosch, Boe-
ing, and Philips use SPLs to deliver tailor-made products to their customers [2].

Despite these benefits, a growing amount of variability leads to combinatorial
explosions of the product space and, consequently, to severe challenges. Notably,
this applies to software engineering tasks such as refactorings [3], refinements [4],
and evolution steps [5], which, to support systematic management, are often ex-
pressed as model transformations. When applying a given model transformation
to a SPL, a key challenge is to avoid enumerating and considering all possible
products individually. To this end, Salay et al. [6] have proposed an algorithm
that “lifts” regular transformation rules to a whole product line. The algorithm
transforms the SPL, represented as a variability-annotated domain model, in
such way as if each product had been considered individually.



Yet, in complex transformation scenarios as increasingly found in practice [7],
not only the considered models include variations: The transformation system can
contain variability as well, for example, due to desired optional behavior of rules,
or for rule variants arising from the sheer complexity of the involved meta-
models. While a number of works [8–10] support systematic reuse to improve
maintainability, variability-based model transformation (VB) [11, 12] also aims
to improve the performance when a transformation system with many similar
rules is executed. To this end, these rules are represented as a single rule with
variability annotations, called VB rule. During rule applications, a special VB
rule application technique [13] saves redundant effort by considering common
rule parts only once. In summary, for cases where either the model or the trans-
formation system alone contains variability, solid approaches are available.

However, a more challenging case occurs when a variability-intensive trans-
formation is applied to an SPL. In this multi-variability setting, where both the
input model and the specification of a transformation contain variability, the
existing approaches fall short to deal with the resulting complexity: One can
either consider all rules, so they can be “lifted” to the product line, or consider
all products, so they become amenable to VB model transformation. Both ap-
proaches are undesirable, as they require enumerating an exponentially growing
number of artifacts and, therefore, threaten the feasibility of the transformation.

In this paper, we introduce a methodology for SPL transformations inspired
by the uniformity principle [14], a tenet that suggests to handle variability con-
sistently throughout all software artifacts. We propose to capture variability of
SPLs and transformations using variability-annotated domain models and rules.
Model and rule elements are annotated with presence conditions, specifying the
conditions under which the annotated elements are present. The presence condi-
tions of model and rule elements are specified over two separate sets of features,
representing SPL and rule variability. Annotated domain models and rules can
be created manually using available editor support [15, 16], or automatically from
existing products and rules by using merge-refactoring techniques [17, 18].

Given an SPL and a VB rule, as shown in Fig. 1, we provide a staged rule
application technique (black arrow) for applying a VB rule to a SPL. In contrast
to the state of the art (shown in gray), enumerating products or rules upfront is
not required. By adopting this technique, existing tools that use transformation
technology, such as refactoring engines, may benefit from improved performance.
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Specifically, we make the following contributions:

– We introduce a staged technique for applying a VB rule to an SPL. Our
technique combines core principles of VB rule applications and lifting, while
avoiding their drawbacks w.r.t. enumerating all products or rules upfront.

– We formally prove correctness of this technique by showing its equivalence
to the application of each “flattened” product to each “flattened” rule.

– We present an algorithm for implementing the rule application technique.
– We evaluate the usefulness of our technique by studying its performance in

a substantial number of cases within a software engineering scenario.

Our work builds on the underlying framework of algebraic graph transfor-
mation (AGT) [19]. AGT is one of the standard model transformation language
paradigms [20]; in addition, it has recently gained momentum as an analysis
paradigm for other widespread paradigms and languages such as ATL [21]. We
focus on the annotative paradigm to variability. Suitable converters to and from
alternative paradigms, such as the composition-based one [22], may allow our
technique to be used in other cases as well.

The rest of this paper is structured as follows: We motivate and explain our
contribution using a running example in Sect. 2. Sect. 3 revisits the necessary
background. Sect. 4 introduces the formalization of our new rule application
technique. The algorithm and its evaluation are presented in Sects. 5 and 6,
respectively. In Sect. 7 we discuss related work, before we conclude in Sect. 8.

2 Running example

In this section, we introduce SPLs and variability-based model transformation by
example, and motivate and explain our contribution in the light of this example.

Software product lines. An SPL represents a collection of models that are
similar, but different to each other. Fig. 2 shows a washing machine controller
SPL in an annotative representation, comprising an annotated domain model
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Fig. 3. Two rules and their encoding into a variability-based rule (adapted from [24]).

and a feature model. The feature model [23] specifies a root feature Wash with
three optional children Heat, Delay, and Dry, where Heat and Delay are mutually
exclusive. The domain model is a statechart diagram specifying the behavior
of the controller SPL based on states Locking, Waiting, Washing, Drying, and
UnLocking with transitions between them. Presence conditions, shown in gray
labels, denote the condition under which an annotated element is present. These
conditions are used to specify variations in the execution behavior.

Concrete products can be obtained from configurations, in which each op-
tional feature is set to either true or false. A product arises by removing those
elements whose presence condition evaluates to false in the given configuration.
For instance, selecting Delay and deselecting Heat and Dry yields the product
shown in the right of Fig. 2. The SPL has six configurations and products in
total, since Wash is non-optional and Delay excludes Heat.

Variability-based (VB) model transformation. In complex model trans-
formation scenarios, developers often create rules that are similar, but different to
each other. As an example, consider two rules foldEntryActions and foldExitAc-
tions (Fig. 3), called A and B in short. These rules express a “fold” refactoring
for statechart diagrams: if a state has two incoming or outgoing transitions with
the same action, these actions are to be replaced by an entry or exit action of
the state. The rules have a left- and a right-hand side (LHS, RHS). The LHS
specifies a pattern to be matched to an input graph, and the difference between
the LHS and the RHS specifies a change to be performed for each match, like
the removing of transition actions, and the adding of exit and entry actions.

Rules A and B are simple; however, in a realistic transformation system, the
number of required rules can grow exponentially with the number of variation
points in the rules. To avoid combinatorial explosion, a set of variability-intensive
rules can be encoded into a single representation using a VB rule [18, 12]. A VB



Table 1. Approaches for dealing with multi-variability.

Independent combinations

Approach Example General case

Naive 12 2#FP * 2#Fr

VB transformation [12] 6 2#FP

Lifting [6] 2 2#Fr

Staged application (new) 1 1

rule consist of a LHS, a RHS, a feature model specifying a set of interrelated
features, and presence conditions annotating LHS and RHS elements with a
condition under which they are present. Individual “flat” rules are obtained via
configuration, i.e., binding each feature to either true or false. In the VB rule
A+B, the feature model specifies a root feature refactor with alternative child
features foldEntry and foldExit. Since exactly one child feature has to be active
at one time, two possible configurations exist. The two rules arising from these
configurations are isomorphic to rules A and B.

Problem statement. Model transformations such as foldActions are usually
designed for applications to a concrete software product, represented by a single
model. However, in various situations, it is desirable to extend the usage context
to a set of models collected in an SPL. For example, during the batch refactoring
of an SPL, all products should be refactored in a uniform way.

Variability is challenging for model transformation technologies. As illus-
trated in Table 1, products and rules need to be considered in manifold combi-
nations. In our example, without dedicated variability support, the user needs to
specify 6 products and 2 rules individually and trigger a rule application for each
of the 12 combinations. A better strategy is enabled by VB model transforma-
tion: by applying the VB rule A+B, only 6 combinations need to be considered.
Another strategy is to apply rules A and B to the SPL by lifting [6] them, lead-
ing to 2 combinations and the biggest improvement so far. Still, in more complex
cases, all of these strategies are insufficient. Since none of them avoids an ex-
ponential growth along the number of optional SPL features (#FP ) or optional
rule features (#Fr), the feasibility of the transformation is threatened.

Solution overview. To address this situation, we propose a staged rule
application technique for applying a VB rule to an SPL. As shown in Fig. 4,
this technique proceeds in three steps: In step 1, we consider the base rule,
that is, the common portion of rules encoded in the VB rule, and match its
LHS to the full domain model, temporarily ignoring its presence conditions.
For example, considering rule A+B, the LHS of the base rule contains precisely
states x1, x2, and x. A match to the domain model is indicated by dashed arrows.
Using the presence conditions, we determine if the match can be mapped to any
specific product. In step 2, we extend the identified base matches to identify full
matches of the rules encoded in the VB rule. In the example, we would derive
rules A and B; in general, to avoid fully flattening all involved rules, one can
incrementally consider common subrules. An example match is denoted in terms



1: Match base rule 
LHS to domain model

2: Continue 
matching for 

relevant flat rules

x: State

/ a

/ a

x1: State

x: State

x2: State

Locking Waiting

Washing

entry/tempCheck

Unlocking

x1: State

x2: State

3: Lift rule 
application to P,

accounting for PCs

x: State

entry/a

x1: State

x2: State

Locking Waiting

Washing

entry/tempCheck
entry/startWash

DryingUnlocking

Rule application
not possible

Input product line P Transformed product line P‘

Drying

Heat

¬Heat

/ startWash
/ startWash

Heat ∨
Delay

Heat

¬Heat
/ startWash

/ startWash

Heat ∨
Delay

Delay

Heat

¬Heat ∨
¬ Delay



 

Fig. 4. Staged rule application of a VB rule to a product line.

of dashed lines for the mappings of transitions and actions. In step 3, to perform
rule applications based on identified matches, we use lifting to apply the rule
for which the match was found. Lifting transforms the domain model and its
presence condition in such way as if each product was considered individually.
In the example, only products for the configuration {Delay=true; Heat=false}
are amenable to the foldAction refactoring. Consequently, the new entry action
startWash has the presence condition Delay, and other presence conditions are
adjusted accordingly. Failure to find suitable matches and to fulfill a certain
condition during lifting (discussed later) allows early termination of the process.

Performance-wise, the main benefit of this technique is twofold: First, using
the termination criteria, we can exit the matching process early without con-
sidering specifics of products and rule variants. This is particularly beneficial in
situations where none or only few rules of a larger rule set are applicable most
of the time, which is typically the case, for example, in translators. Second, even
if we have to enumerate some rules in step 2, we do not have to start the match-
ing process from scratch, since we can save redundant effort by extending the
available base matches. Consequently, Table 1 gives the number of independent
combinations (in the sense that rule applications are started from scratch) as 1.

3 Background

We now introduce the necessary prerequisites of our methodology, starting with
the double-pushout approach to algebraic graph transformation [19]. As the
underlying structure, we assume the category of graphs with graph morphisms
(referred to as morphisms from here), although all considerations are likely com-
patible with additional graph features such as typing and attributes.

Definition 1 (Rules and applications). A rule r = (L le←− I ri−→ R) consists
of graphs L, I and R, called left-hand side, interface graph and right-hand side,
respectively, and two injective morphisms le and ri.



Given a rule r, a graph G, and a morphism
m : L → G, a rule application from G to a
graph H, written G⇒r,m H, arises from the
diagram to the right, where (1) and (2) are
pushouts. G, m and H are called start graph,
match, and result graph, respectively.
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��

I
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d

��

ri // R

m′

��

(1) (2)

G D
goo h // H

A rule application exists iff the match m fulfills the gluing condition, which,
in the category of graphs boils down to the dangling condition: all adjacent edges
of a deleted node in m’s image m[L] must have a preimage in L.

Product lines. Our formalization represents product lines on the semantic level
by considering interrelations between the included graphs. The domain model is
a “maximal” graph of which all products are sub-graphs. The presence-condition
function maps sub-graphs (rather than elements, as done on the syntactic level)
to terms in the boolean term algebra over features, written TBOOL(FP ). The set
of all sub-graphs of the domain model is written P(MP ).

Definition 2 (Product line, configuration, product).

– A product line P = (FP , ΦP ,MP , fP ) consists of three parts: a feature model
that consists of a set FP of features, and a set of feature constraints ΦP ⊆
TBOOL(FP ), a domain model MP given as a graph, and a set of presence
conditions expressed as a function fP : P(MP )→ TBOOL(FP ).

– Given a set of features F , a configuration is a total function c : F →
{true, false}. A configuration c satisfies a term t ∈ TBOOL(F ) if t evalu-
ates to true when each variable v in t is substituted by c(v). A configuration
c is valid w.r.t. a set of constraints Φ if c satisfies every constraint in Φ.

– Given a product line P = (FP , ΦP ,MP , fP ), a product Pc is derived from P
under the valid configuration c if Pc is the union of all those graphs M ′ ⊆MP

for which fP (M ′) is satisfied by c: Pc =
⋃
{M ′ ⊆ MP |c satisfies fP (M ′)

and c is valid w.r.t. ΦP }. The flattening of P is the set Flat(P ) of all prod-
ucts of P : Flat(P ) = {Pc|Pc is a product of P}.

Definition 3 (Lifted rule application). Given a product line P , a rule r, and
a match m : L→MP , a lifted rule application P ⇒↑r,m Q is a construction that
relates P to a product line Q s.t. FP = FQ, ΦP = ΦQ, and the set of products
Flat(Q) is the same as if r was applied to each product Pi ∈ Flat(P ) for which
an inclusion j : m[L]→ Pi from the image of m exists.

Salay et al. [6] provide an algorithm for which it is shown that the properties
required in Def. 3 apply. The algorithm extends a rule application to the domain
model by a check that the match can be mapped to at least one product, and by
dedicated presence condition handling during additions and deletions. A more
declarative treatment is offered by Taentzer et al. [25]’s product line pushout
construction, which is designed to support lifted rule application as a special case.

Variability-based transformation. VB rules are defined similarly to product
lines, with a “maximal” rule instead of a domain model, and a notion of subrules



instead of subgraphs. A subrule is a rule that can be embedded into a larger rule
injectively s.t. the actions of rule elements are preserved [12], e.g., deletions are
mapped to deletions. The set of all subrules of a rule r is written P(r).

Definition 4 (Variability-based (VB) rule). A VB rule ř = (Fř, Φř, rř, fř)
consists of three parts: a feature model that consists of a set Fř of features, and a
set of feature constraints Φř ⊆ TBOOL(Fř), a maximal rule rř being a rule, and
a set of presence conditions expressed as a function fP : P(rř)→ TBOOL(Fř).

To later consider the base rule, that is, a maximal subrule of multiple flat rules,
we define the flattening of VB rules in terms of consecutive intersection and
union constructions, expressed as multi-pullbacks and -pushouts [12]. The multi-
pullback r0 gives the base rule, over which the flat rule arises by multi-pushout.

Definition 5 (Flat rule). Given a VB
rule ř, for a valid configuration c w.r.t. Φř,
there exists a unique set of n subrules Sc ⊆
P(rř) s.t. ∀s ∈ P(rř) : s ∈ Sc iff c satis-
fies fř(s). Merging these subrules via multi-
pullback and multi-pushout over rř and r0,
respectively, yields a rule rc, called flat
rule induced by c. The flattening of ř is the
set Flat(ř) of all flat rules of ř:
Flat(ř) = {rc|rc is a flat rule of ř}.
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In the example, rř is the rule A+B, ignoring presence conditions. Given the
configuration c = {foldEntry=true, foldExit=false}, the multi-pullback over each
subrule whose presence condition satisfies c yields as the base rule r0 precisely
the part of rule A + B without presence conditions (i.e., only the states). The
resulting flat rule rc is isomorphic to rule A.

As a prerequisite for achieving efficiency during staged application, we revisit
VB rule application. The key idea is that matches of a flat rule are composed
from matches of all of its subrules. By considering the subrules during matching,
we can reuse matches over several rules and identify early-exit opportunities.

Definition 6 (VB match family, VB match, VB rule application).

– Given a variability-based rule ř, a graph G, and a valid configuration c,
there exists a unique set of subrules Sc ⊆ rř s.t. ∀s ∈ P(rř) : s ∈ Sc iff c
satisfies fř(s). A variability-based match family is a family of morphisms
(ms : Ls → G)1≤s≤|Sc| s.t. ∀mi,mj with 1 ≤ i, j ≤ |Sc| the following com-
patability condition holds: ∀x ∈ dom(mi) ∩ dom(mj) : mi(x) = mj(x).

– Given a variability-based match family (ms) for ř,
G, and c, a variability-based match m̌ is a pair
(mc, c) where the morphism mc : Lc → G is obtained
by the colimit property of Lc. If mc is a match, m̌ is
called a variability-based match.

Li
mi

�� ##

Lj
mj

�� ��
G Lcmc

oo

– Given a variability-based match m̌ = (mc, c) for ř and G, the application of
ř at m̌ is the rule application G⇒rc,mc

H of the flat rule rc to mc.



In the example, a VB match family is obtained: Step 1 collects matches of
the LHS L0. Step 2 reuses these matches to match the flat rules: according to
the compatibility condition, we may extend the matches rather than start from
scratch. The set of VB rule applications for a rule ř to a model G is equivalent
to the set of rule applications of all flat rules in Flat(ř) to G ([12], Th. 2).

4 Multi-Variability of Product Line Transformations

A variability-based rule represents a set of similar transformation rules, while a
product line represents a set of similar models. We consider the application of a
variability-based rule to a product line from a formal perspective. Our idea is to
combine two principles of maximality, which, up to now, were considered in iso-
lation: First, by applying a rule to a “maximum” of all products, the rule can be
lifted efficiently to a product line (Def. 3). Second, by reusing matches of a max-
imal subrule, several rules can be applied efficiently to a single model (Def. 6).

We study three strategies for applying a variability-based rule ř to a product
line P ; the third one leads to the notion of staged rule application as introduced
in Sect. 2. First, we consider the naive case of flattening ř and P and applying
each rule to each product. Second, we take the two maximality principles into
account to avoid the flattening of ř. Third, we use additional aspects from the
first principle to avoid the flattening of P as well. We show that all strategies
are equivalent in the sense that they change all of P ’s products in the same way.

4.1 Fully flattened application

Definition 7 (Fully flattened application). Given the flattening of a prod-
uct line P and the flattening of a rule family ř, the set of fully-flattened rule
applications TransFF (P, ř) arises from applying each rule to each product:

TransFF (P, ř) = {Pi ⇒rc,mc Qi|Pi ∈ Flat(P ), rc ∈ Flat(ř),match mc : Lc → Pi}

In the example, there are two rules and six products; however, only for two
products—the ones arising from configurations with Delay=true and Heat=false—
a match, and, therefore, a rule application exists, as we saw in the earlier descrip-
tion of the example. TransFF (P, ř) comprises the resulting two rule applications.

4.2 Partially flattened application

We now consider a strategy that aims to avoid unflattening the variability-based
rule ř. We use the fact that the rules in ř generally share a maximal, possibly
empty sub-rule r0 that can be embedded into all rules in ř. Moreover, we exploit
the fact that each product has an inclusion into the domain model.

The key idea is as follows: each match of a flat rule to a product includes a
match of r0 into the domain model MP . Absence of such a match implies that
none of the rules in ř has a match, allowing us to stop without considering any
flat rule in its entirety. Such exit point is particularly beneficial if the VB rule
represents a subset of a larger rule set in which only a few rules can be matched



at one time. Conversely, if a match for r0 exists, a rule application arises if the
match can be “rerouted” onto one of the products Pi. In this case, we consider
the flat rules, saving redundant matching effort by reusing the matches of r0.
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Fig. 5. Partially flattened rule application.

To reuse matches to the domain model for the products, we introduce the
rerouting of a morphism from its codomain onto another graph G′. We omit
naming the codomain and G′ explicitly where they are clear from the context.

Definition 8 (Rerouted morphism). Let an in-
clusion i : G′ → G, a morphism m : L → G with
an epi-mono-factorization (e,m′), and a morphism
j : m[L]→ G′ be given, s.t. m′ = i ◦ j. The rerouted
morphism reroute(m,G′) : L→ G′ arises by compo-
sition: reroute(m,G′) = j ◦ e

G′
i
// G L

m
oo

e}}

reroute(m,G)

vv

m[L]

m′

OO

j

aa

Definition 9 (Rerouted variability-based match). Given a graph G, a
variability-based rule ř with a variability-based match m̌ = (mc, c) (Def. 6), and
an inclusion i : G′ → G. If the epi-mono-factorization of mc and a suitable
morphism j exists, a rerouted morphism onto G′ arises (Def. 8). Pairing this
morphism with the configuration c induces the rerouted variability-based match
of m̌c onto G′: reroute(m̌,G′) = (reroute(mc, G

′), c)

In Fig. 5, mc,h is the morphism obtained by rerouting a match mc,t from the
domain model Mp to product Ph. For example, if mc,t is the match indicated
in steps 1 and 2 of Fig. 4, the morphism j and, consequently, mc,h exists only
for products in which all images of the mappings exist as well, e.g., the product
shown in the right of Fig. 2. Note that mc,t is a variability-based match to MP :
In an earlier explanation, we saw that the family (mi,t) forms a variability-based
match family. Therefore, per Def. 9, pairing mc,h with the configuration c induces
a variability-based match to Ph, which can be used as follows.

Variability-based rule application (Def. 6) allows us to save matching effort
by considering shared parts of rules to a graph only once. The following definition
allows us to lift this insight from graphs onto product lines. We show that the
sets of partially and fully flattened rule applications are equivalent.



Definition 10 (Partially flattened application). Given a variability-based
rule ř and a product line P , the set of partially flattened rule applications
TransPF (P, ř) is obtained by rerouting all variability-based matches from the
domain model MP to products in P and collecting all resulting rule applications:

TransPF (P, ř) = {Pi ⇒ř,m̌′ Qi | m̌ = (mc, c) is a VB match of ř to MP ,

Pi ∈ Flat(P ), m̌′ = (reroute(mc, Pi), c) is a VB match}

Theorem 1 (Equivalence of fully and partially flattened rule applica-
tions). Given a product line P and a variability-based rule ř, TransFF (P, ř) =
TransPF (P, ř)

Proof idea.1 For every fully flattened (FF) rule application, we can find a
corresponding partially flattened (PF) one, and vice versa: Given a FF rule
application at a match m′, we compose m′ with the product inclusion into the
domain model MP to obtain a match mc into MP . Per Thm. 2 in [12], mc induces
a VB match and rule application. From a diagram chase, we see that m′ is the
morphism arising from rerouting mc onto the product Pi. Consequently, the rule
application is PF. Conversely, a PF variability-based rule application induces a
corresponding FF rule application by its definition.

4.3 Staged application

The final strategy we consider, staged application, aims to avoid unflattening
the products as well. This can be achieved by employing lifting (Def. 3): Lifting
takes a single rule and applies it to a domain model and its presence conditions
in such a way as if the rule had been applied to each product individually. The
considered rule in our case is a flat rule with a match to the domain model.

Note that we cannot compare the set of staged applications directly to the
set of flattened applications, since it does not live on the product level. We can,
however, compare the obtained sets of products from both sets of applications,
which happens to be the same, thus showing the correctness of our approach.

Definition 11 (Staged application). Given a variability-based rule ř and a
product line P , the set of staged applications TransSt(P, ř) is the set of lifted
rule applications obtained from VB matches to the domain model MP :

TransSt(P, ř) = {P ⇒↑rc,mc
Q | m̌ = (mc, c) is a VB match of ř to MP }

Corollary 1 (Equivalence of staged and partially flattened rule appli-
cations). Given a product line P and a variability-based rule ř, the sets of
products obtained from TransSt(P, ř) and TransPF (P, ř) are isomorphic.

Proof. Since both sets are defined over the same set of matches of flat rules, the
proof follows straight from the definition of lifting.

1 A full proof is provided in the appendix.



5 Algorithm

We present an algorithm for
implementing the staged appli-
cation of a VB rule ř to a
product line P . Following the
overview in Sect. 2 and the
treatment in Sect. 4, the main
idea is to proceed in three steps:
First, we match the base rule of
ř to the domain model, ignoring
presence conditions. Second, we
consider individual rules as far
as necessary to obtain matches
to the domain model. Third,
based on the matches, we per-
form the actual rule application
by using the lifting algorithm
from [6] in a black-box manner.

Algorithm 1: Staged application.

Input : Product line P, VB rule ř
Output: Transformed product line P

1 BMatches := findMatches(ModelP , r0);
2 foreach m ∈ BMatches do
3 Φpc :=

∧
{ pc ∈ pcspre };

4 if ΦP ∧ Φpc is SAT then
5 foreach c ∈ configs(ř) do
6 flatRule := rř.removeAll(e |

c 2 pce );
7 Matches := findMatches(

ModelP , flatRule, m);
8 lift(P, flatRule, Matches);

9 end

10 end

11 end

Algorithm 1 shows the computation in more detail. In line 1, ř’s base rule r0

is matched to the domain model ModelP , leading to a set of base matches. If
this set is empty, we have reached the first exit criterion and can stop directly.
Otherwise, given a match m, in line 2, we check if at least one product Pi exists
that m can be rerouted onto (Def. 8). To this end, in lines 3–4, we use a SAT
solver to check if there is a valid configuration of P ’s feature model for which all
presence conditions of matched elements evaluate to true. In this case, we iterate
over the valid configurations of ř in line 5 (we may proceed more fine-grainedly by
using partial configurations; this optimization is omitted for simplicity). In line
6, a flat rule is obtained by removing all elements from the rule whose presence
condition evaluates to false. We match this rule to the domain model in line 7; to
save redundant effort, we restrict the search to matches that extend the current
base match. Absence of such a match is the second stopping criterion. Otherwise,
we feed the flat rule and the set of matches to lifting in line 8. Handling dangling
conditions is left to lifting; in the positive case, P is transformed afterwards.

For illustration, consider the base match m1 = {Looking, Waiting, Wash-
ing} from Fig. 4. First we calculate Φpc. As none of the states in the domain
model has a presence condition, Φpc is set to true and is identified as satisfiable.
Two valid configurations exist, c1 = {foldEntry=true,foldExit=false} and c2 =
{foldEntry=false,foldExit=true}. Considering c1, the presence condition foldExit
evaluates to false; removing the corresponding elements yield a rule isomorphic
to Rule A in Fig. 3. Match m1 is now extended using this rule, leading to a
match as shown in step 2 of Fig. 4. and then lifted, as discussed in the earlier
explanation of the example. Step 2 is repeated for configuration c2; yet, as no
suitable match in c2 exists, the shown transformation is the only possible one.

This algorithm benefits from the correctness results shown in Sect. 4. Specif-
ically, it computes staged rule applications as per Def. 11: A configuration c is



Table 2. Subject rule set.

Category #Rules #VBRules

Create/Set 274 171
Delete/Unset 164 121
Change/Move 966 212

Total 1404 504

Table 3. Subject product lines.

SPL #Elements #Products

1: InCar 116 54
2: E2E 130 94
3: JSSE 24,077 64
4: Notepad 252 512
5: Mobile 4,069 3,072
6: Lampiro 29,045 5,892

determined in line 5, and values for match mc are collected in the set Matches.
Via Corollary 1 and Theorem 1, the effect of the rule application to the products
is the same as if each product had been considered individually.

In terms of performance, two limiting factors are the use of a graph matcher
and a SAT solver; both of them perform an NP-complete task. Still, we expect
practical improvements from our strategy of reusing shared portions of the in-
volved rules and graphs, and from the availability of efficient SAT solvers that
scale up to millions of variables [26]. This hypothesis is studied in Sect. 6.

6 Evaluation

To evaluate our technique, we implemented it for Henshin [27, 28], a graph-based
model transformation language, and applied it to a transformation scenario with
product lines and transformation variability. The goal of our evaluation was to
study if our technique indeed produces the expected performance benefits.

Setup. The transformation is concerned with the detection of applied editing
operations during model differencing [29]. This setting is particularly interesting
for a performance evaluation: Since differencing is a routine software develop-
ment task, low latency of the used tools is a prerequisite for developer effective-
ness. The rule set, called UmlRecog, is tailored to the detection of UML edit
operations. Each rule detects a specific edit operation, such as ”move method to
superclass”, based on a pair of model versions and a low-level difference trace.
UmlRecog comprises 1404 rules, which, as shown in Table 6, fall in three main
categories: Create/Set, Change/Move, and Delete/Unset. To study the effect of
our technique on performance, an encoding of the rules into VB rules was re-
quired. We obtained this encoding using RuleMerger [18], a tool for generating
VB rules from classic ones based on clustering and clone detection [30]. We ob-
tained 504 VB rules; each of them representing between 1 and 71 classic rules.
UmlRecog is publicly available as part of a benchmark transformation set [31].

We applied this transformation to the 6 UML-based product lines specified
in Table 6. The product lines came from diverse sources and include manually
designed ones (1–2), and reverse-engineered ones from open-source projects (3–
6). Each product line was available as an UML model annotated with presence
conditions over a feature model. To produce the model version pairs used by
UmlRecog, we automatically simulated development steps by nondeterministi-
cally applying rules from a set of edit rules to the product lines, using the lifting
algorithm to account for presence conditions during the simulated editing step.



Create/Set Delete/Unset Change/Move TOTAL

lift stage factor lift stage factor lift stage factor lift stage factor

InCar 2.13 0.52 4.1 0.23 0.12 1.9 7.28 0.86 8.5 9.66 1.49 6.5
E2E 1.99 0.82 2.4 0.35 0.32 1.1 7.28 0.95 7.7 9.62 2.12 4.5
JSSE 2.00 0.51 3.9 0.24 0.16 1.5 8.40 3.08 2.7 10.61 3.79 2.8
Notepad 2.05 0.66 3.1 0.26 0.14 1.9 7.01 1.64 4.3 9.38 2.47 3.8
Mobile 2.00 0.55 3.7 0.24 0.13 1.9 8.28 1.62 5.1 10.55 2.26 4.7
Lampiro 2.05 0.64 3.2 0.26 0.15 1.7 8.25 2.58 3.2 10.55 3.29 3.2

Table 4. Execution times (in seconds) of the lifting and the staged approach.

As baseline for comparison, we considered the lifted application of each rule
in UmlRecog. An alternative baseline of applying VB rules to the flattened set of
products was not considered: The SPL variability in our setting is much greater
than the rule variability, which implies a high performance penalty when enu-
merating products. Since we currently do not support advanced transformation
features, e.g., negative application conditions and amalgamation, we used vari-
ants of the flat and the VB rules without these concepts. We used a Ubuntu 17.04
system (Oracle JDK 1.8, Intel Core i5-6200U, 8GB RAM) for all experiments.

Results. Tables 4 gives an overview of the results of our experiments. The
total execution times for our technique were between 1.5 and 3.3 seconds, com-
pared to 9.4 and 10.6 seconds for lifting, yielding a speedup by factors between
2.8 and 6.5. For both techniques, all execution times are in the same order of
magnitude across product lines. A possible explanation is that the amount of
applicable rules was small: if the vast majority of rules can be discarded early in
the matching process, the execution time is constant with the number of rules.

The greatest speedups were observed for the Change/Move category, in which
rule variability was the greatest as well, indicated by the ratio between rules and
VB rules in Table 6. This observation is in line with our rationale of reusing
shared matches between rules. Regarding the number of products, a trend re-
garding better scalability is not apparent, thus demonstrating that lifting is
sufficient for controlling product-line variability. Still, based on the overall re-
sults, the hypothesis that our technique improves performance in situations with
significant product-line and transformation variability can be confirmed.

Threats to Validity. Regarding external validity, we only considered a lim-
ited set of scenarios, based on six product lines and one large-scale transforma-
tion. We aim to apply our technique to a broader class of cases in the future. The
version pairs were obtained in a synthetic process, arguably one that produces
pessimistic cases. Our treatment so far is also limited to a particular transfor-
mation paradigm, AGT, and one variability paradigm, the annotative one. Still,
AGT and annotative variability are the underlying paradigms of many state-
of-the-art tools. Finally, we did not consider the advanced AGT concepts of
negative application conditions and amalgamation in our evaluation; extending
our technique accordingly is left as future work.



7 Related Work

During an SPL’s lifecycle, not only the domain model, but also the feature
model evolves [32, 33]. To support the combined transformation of domain and
feature models, Taentzer et al. [25] propose a unifying formal framework which
generalizes Salay et al.’s notion of lifting [6], yet in a different direction than us:
focusing on combined changes, this approach is not geared for internal variability
of rules; similar rules are considered separately. Both works could be combined
using a rule concept with separate feature models for rule and SPL variability.

Beyond transformations of SPLs, transformations have been used to imple-
ment SPLs. Feature-oriented development [34] supports the implementation of
features as additive changes to a base product. Delta-oriented programming [35]
adds flexibility to this approach: changes are specified using deltas that sup-
port deletions and modifications as well. Impact analysis in an evolving SPL can
be performed by transforming deltas using higher-order deltas that encapsulate
certain evolution operators [5]. For increased flexibility regarding inter-product
reuse, deltas can be combined with traits [36]. Sijtema [8] introduced the con-
cept of variability rules to develop SPLs using ATL. Conversely, SPL techniques
have been applied to certain problems in transformation development. Xiao et
al. [37] et al. propose to capture variability in the backwards propagation of
bidirectional transformations by turning the left-hand-side model into a SPL.
Hussein et al. [10] present a notion of rule templates for generating groups of
similar rules based on a data provenance model. These works address only one
dimension of variability, either of a SPL or a transformation system.

In the domain of graph transformation reuse, rule refinement [9] and amalga-
mation [38] focus on reuse at the rule level; graph variability is not in their scope.
Rensink and Ghamarian propose a solution for rule and graph decomposition
based a certain accommodation condition, under which the effect of the original
rule application is preserved [39, 40]. In our approach, by matching against the
full domain model rather than decomposing it, we trade off compositionality for
the benefit of imposing fewer restrictions on graphs and rules.

8 Conclusion and Future Work

We propose a methodology for software product line transformations in which
not only the input product line, but also the transformation system contains
variability. At the heart of our methodology a staged rule application technique
exploits reuse potential with regard to shared portions of the involved products
and rules. We showed the correctness of our technique and demonstrated its
benefit by applying it to a practical software engineering task.

In the future, we aim to explore further variability dimensions, e.g., meta-
model variability as considered in [41], and to extend our work to advanced
transformation features, such as application conditions. We aim to address ad-
ditional variability mechanisms and to perform a broader evaluation.
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Appendix

Theorem 1 (Equivalence of fully and partially flattened rule applica-
tions). Given a product line P and a variability-based rule ř, TransFF (P, ř) =
TransPF (P, ř)

Proof. Without loss of generality, we may assume a fixed product Pi ∈ Flat(P )
with its inclusion ι : Pi →MP .

“⊆” Let the rule application (Pi ⇒rc,m′ Qi) ∈ TransFF (P, ř) be given. From
the match m′ : Lc → Pi and the inclusion ι, a morphism mc : Lc → MP arises
per composition: mc = ι ◦m′. This morphism induces a variability-based match
m̌ = (mc, c): Per Thm. 2 in [12], each match of a flat rule rc induces a variability-
based match. We thus can obtain m̌ in the same way as in [12]. Match mc needs
to fulfill the dangling condition, which is the case: All edges of Pi are contained
in MP . Since mc maps to the same nodes in MP as m′ does in Pi, all adjacent
edges of nodes deleted using mc are deleted as well.

Finally, m′ needs to be equivalent to the mor-
phism obtained from rerouting mc to Pi. To this
end, we consider the epi-mono factorizations of
mc and m′, as shown on the right. Since mc

was constructed over m′ and inclusion ι, mc[Lc]
and m′[Lc] are the same object, yielding the
identity morphism id in the diagram, as well as
ec = e′ and j = mo′. We have m′ = mo′ ◦ e′ =
mo′ ◦ id ◦ ec = j ◦ ec = reroute(mc, Pi).

Lc
ec

��

e′

��
mc

��

m′

��

mc[Lc]
id //

j
))

moc��

m′[Lc]
mo′

��
MP Piι
oo

“⊇” Per Def. 6, the rule application (Pi ⇒ř,m̌′ Qi) ∈ TransPF (P, ř) re-
solves to the rule application Pi ⇒rc,mc

Qi for a valid configuration c. Since rc ∈
Flat(ř) and Pi ∈ Flat(P ), this rule application is contained in TransFF (P, ř).


