
Under consideration for publication in Formal Aspects of Computing

Variability-based model transformation:
formal foundation and application
D. Strüber1,2, J. Rubin3,4, T. Arendt2,5, M. Chechik6, G. Taentzer2, J. Plöger2
1 University of Koblenz and Landau, Koblenz, Germany,
2 University of Marburg, Marburg, Germany,
3 Massachusetts Institute of Technology, Cambridge, USA,
4 University of British Columbia, Vancouver, Canada,
5 GFFT Innovationsförderung GmbH, Bad Vilbel, Germany,
6 University of Toronto, Toronto, Canada

Abstract. Model transformation systems often contain transformation rules that are substantially similar to each
other, causing maintenance issues and performance bottlenecks. To address these issues, we introduce variability-
based model transformation. The key idea is to encode a set of similar rules into a compact representation, called
variability-based rule. We provide an algorithm for applying such rules in an efficient manner. In addition, we intro-
duce rule merging, a three-component mechanism for enabling the automatic creation of variability-based rules. Our
rule application and merging mechanisms are supported by a novel formal framework, using category theory to pro-
vide precise definitions and to prove correctness. In two realistic application scenarios, the created variability-based
rules enabled considerable speedups, while also allowing the overall specifications to become more compact.

1. Introduction

Model transformation is a key enabling technology for Model-Driven Engineering, pervasive in all of its activities,
including the translation, optimization, and synchronization of models [57]. Algebraic graph transformation (AGT) is
one of the main paradigms in model transformation. It allows the specification of rules in a high-level, declarative man-
ner [17]. Recently, AGT has been used to describe and implement complex transformations in various domains, such
as aerospace engineering, [28], chemistry [39], and automotive software product lines [23]. AGT is gaining further
importance due to its use as an analysis back-end for imperative model transformation languages [50].

Transformation systems often contain rules that are substantially similar to each other. Yet, various model trans-
formation languages lack constructs suited to capture these similar rule variants in a compact manner [37, 61]. The
most frequently applied mechanism for creating variants remains cloning: developers produce rules by copying and
modifying existing ones. The drawbacks of cloning are well-known, e.g., the need to update all clones when a bug is
found in one of the variants. Furthermore, creating a large set of mutually similar rules also impairs the performance
of transformation systems: rule sets are often applied in batch mode – all rules are considered as long as one of them
is applicable. In this scenario, each additional rule increases the computational effort, possibly rendering the entire
transformation infeasible. Blouin et al. report that to be the case with as few as 250 rules [8]. Later in this paper, we
consider selected rule sets from real-life scenarios in the domains of model versioning and constraint translation, in
which these maintainability and performance drawbacks manifested themselves.

Correspondence and offprint requests to: Daniel Strüber, University of Koblenz-Landau, Institute for Computer Science, Universitätsstr. 1, 56070
Koblenz, Germany. e-mail: strueber@uni-koblenz.de

2 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

Rule set with similar rules

Input model

Rule merging

Rule set with
variability-based rules

+

Clone
Detection

+

Diam
Circ

Tri

+ +
++

VB rule application

Output model

Input model

Merge
constructionClustering

Classic model transformation

Variability-based model transformation

Automated
operation
(run time)

Automated
operation

(design time)

Artifact

Legend

VB
Matching

Change
execution

Rule application

Output model

Matching Change
execution

produces

producesinput to

input to

input to

produces

Fig. 1. Overview.

In this paper, we present variability-based model transformation, an approach inspired by product line engineering
(PLE) principles [12, 16]. As illustrated in Fig. 1, we introduce the concept of variability-based (VB) rules for encoding
a set of similar rules into a single-copy representation, explicating their common and variable portions. By introducing
VB rules into a rule set, the maintainability and performance drawbacks of cloning are addressed as follows:

• Representing a set of mutually similar rules in a single-copy representation can improve their maintainability: it is
much easier to maintain consistency between rules if the developer is not required to perform the same change in
each rule individually. This approach is also less prone to subtle errors introduced during rule creation by cloning,
where errors are copied and must be fixed in all subsequently created rules. Finally, the effort to maintain the overall
rule set can be smaller when the overall number of rules is also smaller, in particular, if the differences between
the input rules are subtle, so that the common representation does not grow too large.

• To improve the performance in scenarios where all represented rules are to be applied, we replace the classic rule
application mechanism with a variability-based one. VB rule application features a novel algorithm for matching,
i.e., finding application sites in the input model. Our key idea is to find matches for common parts of the represented
rules first and then to use them as starting points to match the variable parts. Afterwards, changes specified by the
rules, such as the creation of new elements, are executed in the classic way. With VB matching, we address the
computational bottleneck of rule application: matching entails the NP-hard sub-graph isomorphism problem [13].

To make these benefits available to existing rule sets, rules need to be unified to become VB rules. When performed
manually, this is a tedious and error-prone task relying on the precise identification of (i) sets of rules that should be
unified into a single VB rule; (ii) rule portions that should be merged versus portions that should remain separate. We
introduce rule merging as an approach to automate this task. Rule merging comprises three components: It applies
clone detection to identify overlapping fragments, clustering to group mutually similar rules, and merge construction
to create VB rules using this information. Rule merging can be performed at design time, before the rules are applied.

Contributions. This paper is an extended version of our earlier work [63, 64], improving it in two main respects. First,
it replaces the earlier operational description of our approach with a precise formal foundation in category theory. The
new foundation enables greater flexibility w.r.t. the supported transformation languages, since it allows arbitrary graph
categories to be used as base graphs; for instance, meta-model conformance and attributes can be represented using
typed attributed graphs [27]. In addition, it serves as a prerequisite for our second contribution: we extend our approach
to negative application conditions (NACs), a main feature of graph-based model transformations [26]. A NAC prevents
its host rule from being applied whenever a specified graph structure is present in the input model. NACs have not been
addressed in our earlier work since they are particularly challenging to handle during rule application and merging: a

Variability-based model transformation: formal foundation and application 3

«create»
:Method

name=m

«preserve»
:Class

name=src

25

«delete»
methods

«preserve»
:Field

28

«create»
methods

«preserve»
fields

30

«create»
methods

F: moveAndCreateDeprecatedDelegate(src, trg, m)

«preserve»
:Class

name=trg

27«preserve»
type

«create»
annotations

«forbid»
:Method

name=m

29

«forbid»
methods

«preserve»
:Method

name=m

26

«create»
:Method

name=m

«preserve»
:Class

name=src

19

«delete»
methods

«preserve»
:Field

22

«create»
methods

«preserve»
fields

24

E: moveAndCreateDelegate(src, trg, m)

«preserve»
:Class

name=trg

21«preserve»
type

«forbid»
:Method

name=m

23

«forbid»
methods

«preserve»
:Method

name=m

20

«preserve»
:Class

name=src

14

«delete»
methods

«preserve»
:Field

17

«create»
methods

«preserve»
fields

D: move(src, trg, m)

«preserve»
:Class

name=trg

16«preserve»
type

«forbid»
:Method

name=m

18

«forbid»
methods

«preserve»
:Method

name=m

15

«create»
:Method

abstract=true
name=m

13

«delete»
methods

«preserve»
:Class

name=trg

6«preserve»
extends

«forbid»
:Method

name=m

8

«forbid»
methods

«preserve»
:Method

name=m

7

«preserve»
:Class

name=src

5

B: pushDown(src, trg, m)

«delete»
methods

«preserve»
:Class

name=trg

2«preserve»
extends

«forbid»
:Method

name=m

4

«forbid»
methods

«preserve»
:Method

name=m

3

«preserve»
:Class

name=src

1

A: pullUp(src, trg, m)

«delete»
methods

«preserve»
:Class

name=trg

10«preserve»
extends

«forbid»
:Method

name=m

12

«forbid»
methods

«preserve»
:Method

name=m

11

«preserve»
:Class

name=src

9

C: pushDownWithAbstract(src, trg, m)

«create»
methods

«create»
methods

«create»
methods

«create»
methods

«create»
methods

«create»
:Annotation

value="Deprecated"

31

Fig. 2. Refactoring rules for class models.

particular NAC may be satisfied when considering it in the full context of its host rule, while not being satisfied when
considering only parts of the NAC or its host rule.

Specifically, we make the following contributions:

• We provide a formalization of variability-based rules, expressing their syntax and application semantics on the
basis of graph transformation. We prove equivalence to the application of the corresponding classic rules.

• We present a formal framework for the merging of rule sets with similar rules, comprising clone detection, rule
clustering, and merge construction steps. We formally show the equivalence of the produced VB rules to their
classical counterparts.

• We present algorithms for the automated computation of merging and rule application results. In combination,
both algorithms aim to achieve a performance gain compared to matching and applying the classical input rules
individually.

• We empirically show that the produced VB rules are superior to their classical counterparts in terms of several
performance- and maintainability-related characteristics.

The remainder of this paper is structured as follows: In Sec. 2, we demonstrate our approach in two motivating sce-
narios. In Sec. 3, we recall the necessary background required by the approach. In Sec. 4, we define the foundations of
variability-based model transformation. We provide results to facilitate correctness of our rule merging and application
mechanisms. Sec. 5 reports on the implementation of our approach for Henshin, a graph-based model transformation
language [4]. Sec. 6 presents our evaluation. In Sec. 7 and 8, we discuss related work and conclude, respectively.

4 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

2. Motivating examples

2.1. Variability-intensive refactoring rules

Consider a set of model transformation rules aiming to improve the structure of an existing code base using class
model refactorings. Fig. 2 shows six refactoring rules expressed in an abstract syntax notation [17]. The rules describe
several ways of relocating a method between two classes. Each rule comprises three parts called left-hand side (LHS),
negative application conditions (NACs), and right-hand side (RHS): if the LHS matches a place in the input model
and all NACs are fulfilled, i.e., cannot be matched, then the RHS is applied, thereby changing the model. We present
the rules in an integrated form, with the LHS, NACs, and RHS of a rule being represented in one graph. The LHS
comprises all delete and preserve objects. NACs correspond to forbid objects; if a rule has multiple NACs, they are
distinguished by index numbers. The RHS contains all preserve and create objects.

Rule A takes as input two classes, one of them sub-classing the other, and a method. Each of these input objects is
specified by its name. The rule moves the method from a sub-class to its super-class, by deleting it from the sub-class
and adding it to the super-class. This is possible only if the super-class does not already contain a method with the
specified name. Similarly, Rule B moves a method from the super-class to one of its sub-classes. Rule C also moves a
method from the super- to a sub-class, but, in addition, creates an abstract method with the same name in the super-
class. Rules D, E, and F move a method across an association. The latter two rules also create a “wrapper” method of
the same name in the source class. Rule F uses an annotation to mark this method as deprecated. Each rule has a NAC
preventing the method from being relocated if the target class already has a method of the same name. In absence of
a suitable concept to capture similar rule variants, there is no choice but to create such rule sets by cloning, that is,
copying a rule and modifying it to fit the new purpose.

We consider the merge-refactoring of a rule set created using cloning. The result is a rule set with variability-
based (VB) rules in which the common portions are unified and the differences are explicated, as shown in Fig. 3.
Specifically, Rules B and C are merged, producing a new VB Rule B+C. Rules D, E, and F are merged into D+E+F.
Rule A remains as is. Each VB rule has a set of variation points, corresponding to the names of the input rules: Rule
B+C has the variation points B and C. In addition, each rule has a variability model specifying relations between
variation points, such as mutual exclusion: Rule B+C has the variability model xor(B,C). VB rules are configured
by binding each variation point to either true or false. Portions of VB rules are annotated with presence conditions.
These portions are removed if the presence condition evaluates to false for the given configuration. Element #40 and
its incoming edge are removed in the configuration {C=false, B=true}. Elements without a visible presence condition,
such as nodes #32-#34, are actually annotated with true; we omit this presence condition from the figures for simplicity.
The NACs of Rules A–F are merged to just one per VB rule.

A variability-based rule is equivalent to a set of rules for all its valid configurations. Yet this example demonstrates
several benefits of VB rules related to maintainability: The amount of redundancy is reduced, ensuring consistency
between variants during changes; subtle errors produced during rule creation are fixed in one place. The total number
of rules is smaller, potentially allowing to navigate the transformation system with less effort and decreased compu-
tational cost for the rule editor. The latter may increase responsiveness of the editor and thereby help the developer
focus on the maintenance task at hand.

In this example, the VB rules are configured individually, either manually by the user or automatically by client
code, e.g., a model editor. The result of the configuration is a “flat“ rule again – a process similar to that in product-
line engineering approaches [16]. Alternatively, all rules of a rule set may be executed in batch mode, i.e., considered
simultaneously, as we demonstrate below.

2.2. Standardization enforcement in state machines

This example focuses on standardization enforcement in state machines. The overall purpose of this transformation
is to ensure conformance with the UML standard for state machines [43]. In UML, states can have entry and exit
actions that are executed whenever the state becomes active or inactive, respectively. We assume that the input state
machine comes from a different state machine notation where transitions between states can have actions as well. In
the example state machine of Fig. 4, this is the case for the transitions labelled with the actions wash.Start()
and QuickCool(). Therefore, the task is to “fold” these actions, so that common actions of incoming or outgoing
transitions of the same state are moved to the state. This transformation has been introduced as an example in [11].

Fig. 5 shows two model transformation rules for establishing this goal. Again, we present the rules in an integrated
form. Via its left-hand side, i.e. nodes and edges with preserve and delete annotations, Rule G searches for a pattern

Variability-based model transformation: formal foundation and application 5

 true

«create»
:Method

abstract=true
name=m

«preserve»
:Class

name=src

36

«delete»
methods

«create»
methods

40

«create»
methods

B+C: pushDown(src, trg, m)

«preserve»
:Class

name=trg

38«preserve»
extends

«forbid»
:Method

name=m

39

«forbid»
methods

«preserve»
:Method

name=m

37

«create»
:Method

name=m

«preserve»
:Class

name=src

41

«delete»
methods

«preserve»
:Field

44

«create»
methods

«preserve»
fields

46

«create»
methods

D+E+F: move(src, trg, m)

«preserve»
:Class

name=trg

43«preserve»
type

«create»
annotations

«forbid»
:Method

name=m

45

«forbid»
methods

«preserve»
:Method

name=m

42

«create»
:Annotation

value="Deprecated"

47

«preserve»
:Class

name=src

32

«delete»
methods

«create»
methods

A: pullUp(src, trg, m)

«preserve»
:Class

name=trg

34«preserve»
extends

«forbid»
:Method

name=m

35

«forbid»
methods

«preserve»
:Method

name=m

33

 xor(D,E,F)

 B xor C

Fig. 3. Variability-based class model refactoring rules.

where a state has two incoming transitions being labelled with the same action. If such a pattern is present, the action
is moved from the transitions to the target state to become its entryAction; this moving is expressed in terms of
a parallel deletion and creation of edges between the action and its host elements. As indicated by the annotations
forbid#1 and forbid#2, the rule comprises two NACs. These NACs prevent the rule from being applied when the target
state already has an entry action (forbid#1) or when it has more than two incoming transitions (forbid#2); both cases
are conflict situations that have to be resolved with developer input. Rule G is the dual counterpart of Rule H; its
purpose is to move a common action of two outgoing transitions of the same state to this state, thus making it the
exitAction of this state. Please note that the general case allows moving the action if it is present in all incoming
and outgoing transitions; we only consider two transitions for simplicity. To support the general case, Rules G and H
can be generalized to n incoming and outgoing transitions using multi-amalgamation [25], an advanced concept of
algebraic graph transformations.

Unlike the example transformation in Sect. 2.1, this transformation is executed in batch mode, i.e., by applying
both rules to the state machine as long as one of them is applicable. When this rule set is applied to larger state
machines, an unnecessary performance overhead can arise: even though both rules share a considerable overlap part,
including all preserve and delete nodes, the classic transformation approach handles them separately. As a prerequisite
for enabling a faster execution, one can explicate this overlap part, resulting in the VB rule shown in Fig. 6. Similar
to the previous example, to fully represent the original rules, the individual parts of both rules are captured using
variation points, corresponding to the rule names. Rule elements are annotated with presence conditions over these
variation points. Again, for the simplicity of presentation, we hide the presence condition true, e.g., for nodes #65-#68.
The overall VB rule has four NACs, representing the two NACs of Rule G and the two NACs of Rule H.

6 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

agrams, the transformation would not be directly applicable,
and would have to be lifted instead.

While lifting a transformation is useful, doing so manu-
ally is hard and error prone because the lifted transforma-
tion must correctly address SPLE constructs and consider
all possible product variants derived from the product line
model. In this paper, we propose an approach for lifting
the transformations automatically, i.e., no manual changes
to the transformation are required to enable it to apply to
the entire product line.

Specifically, we make the following contributions: (1) We
define and prove correctness of a general lifting algorithm
for graph rewriting-based model transformations. The algo-
rithm is designed for the annotative product line approach
typically used in practice. (2) We provide a prototype im-
plementation of the algorithm integrated into an existing
transformation engine [3]. (3) We use this implementation
with a benchmark case study for modeling techniques [7].
(4) Finally, we empirically evaluate the scalability of the al-
gorithm and its implementation. The results suggest that
the approach has good scaling behaviour. Note that the
focus of our approach is not SPLE-specific transformations
(e.g., adding a feature or refactoring a feature model), but
rather transformations applicable to individual products.

The rest of the paper is structured as follows. In Sec. 2,
we motivate the problem and our solution using a simple
product line of washing machine controllers. Sec. 3 provides
the needed background on product lines and model trans-
formations. Our approach is presented in Sec. 4. In Sec. 5,
we describe the implementation of the lifting approach and
present its application to the benchmark case study. Sec. 6
describes a set of experiments aimed to study the scalabil-
ity of our approach. We compare our approach with related
work in Sec. 7 and conclude the paper in Sec. 8.

2. MOTIVATING EXAMPLE
Fig. 1 shows a simple product line W for washing ma-

chine controllers expressed using a UML state machine. The
feature model (the top part of the figure) allows for three
optional features to be added to a basic washing machine:
(Heat) adds the ability to have hot water washes, (Dry)
adds an automatic dry following the wash, and (Delay) adds
the ability to delay the start time of the wash. Note that the
heated wash and delayed wash features are mutually exclu-
sive while drying can be added independently. The Excludes
constraint between Heat and Delay in the feature model
indicates that at most one of these can be selected.

The domain model of W (the bottom of Fig. 1) is a state
machine which specifies that after initiating and locking the
washer, a basic wash begins or a waiting period is initiated,
either for heating the water or for a delayed wash. Then the
washing takes place, followed, optionally, by drying. Finally,
if drying or heating was used, the clothes are cooled and the
washer is unlocked, terminating the process.

Depending on which of the features have been selected,
only some parts of this process may be available. The propo-
sitional formulas in boxes throughout the controller indicate
the presence conditions [12] for different model elements,
i.e., the configurations of features under which the element
is present in a product. For example, the transition from
state Locking to state Waiting is only present if either fea-
ture Heat or feature Delay is selected; it is guarded by
heatingEnabled and has action HeaterOn() only when fea-

Locking Waiting

Washing

entry / TempCheck()

Drying

UnLocking

/wash.Start()

/QuickCool()

/QuickCool()

Feature Model
Heat

Delay

Dry

heated wash

wash and dry

delayed wash

Washing Machine

Controller Product

Line

Wash
Excludes

Figure 1: Example washing machine controller prod-
uct line W .

NAC1

LHS RHS
x

entry / a1

x1

x2

x3

x

NAC2 x

x1

x2

/ a

/ a x2

x1
x

entry / a

Figure 2: The “fold incoming actions” rule RF for
refactoring a state machine.

ture Heat is selected, while it is guarded by delayEnabled

only if feature Delay is selected.
Consider a simple state machine transformation. Fig. 2

shows a transformation rule RF that implements the “fold
incoming actions”1 refactoring transformation that moves
common actions on incoming transitions to a state into the
entry action for the state. Specifically, the rule is applied to
a state machine by attempting to match it to the location
where some state, x, has two incoming transitions with a
common action, a, as depicted in the LHS of the rule in the
middle of Fig. 2. Then the matched portion is replaced with
the RHS of the rule (on the right of the figure) which deletes
action a from the transitions and makes it the entry action
of state x. The negative application conditions (NACs, on
the left of Fig. 2) prevent the rule from being applied when
state x already has an entry action (NAC1) or when there
are more than two incoming transitions to it (NAC2)2. The
transformation is executed by applying the rule RF to the
state machine until it can no longer be applied.

1Based on a refactoring by the same name presented in [42].
2The general case allows moving the action if it is present
in all incoming transitions but we limit it to two transitions
for simplicity.

118

/wash.Start()

48 49

50
51

52

Fig. 4. Example state machine.

«delete»
action

«preserve»
:State

«create»
entryAction«preserve»

:Transition

«forbid#1»
:Transition

57

«preserve»
:Transition

«preserve»
:Action

«delete»
action

«preserve»
next

«preserve»
next

«forbid#2»
entryAction

55

53 56

54

«delete»
action

«preserve»
:State

«create»
exitAction«preserve»

:Transition

«forbid#3»
:Transition

63

«preserve»
:Transition

«preserve»
:Action

«delete»
action

«preserve»
out

«preserve»
out

«forbid#4»
exitAction

61

59 62

60

«forbid#1» next «forbid#3» out

«forbid#2»
:Action

58 «forbid#4»
:Action

64

H: foldExitG: foldEntry

Fig. 5. Standardization enforcement rules for state machines.

In such batch transformation scenarios, the match-finding algorithm in VB rule application performs matching of
all valid configurations at once, aiming to positively affect the performance of the transformation system. To detect
configurations leading to applicable rules, a two-step process is applied. First, the base rule is matched – the portion
of the rule representing common parts of all individual rules, i.e., those elements annotated with true. For the state
machine example, the base rule comprises elements #65–68 and the delete edges. This matching process produces a
number of pre-matches, i.e., mappings between the rule and the input model. In our example, one of these pre-matches,
called pbase, assigns the base rule to element #51 with its incoming transitions and their common action. NACs are not
checked during this first step. Second, if the set of pre-matches is non-empty, we enumerate the valid configurations
and search matches for the resulting rules by extending the pre-matches. In the course of this matching step, we also
consider the NACs of the resulting rules. In the example, this yields exactly one match: mG, an extension of pbase that
incorporates the preserve edges specified by Rule G. Another potential match, mapping the base rule to #50 and its
incoming transitions, is ruled out because it does not satisfy NAC 2: the Washing state already has an entry action.
The matching result is mG paired with the configuration {G=true; H=false} allowing mG to exist.

3. Preliminaries

As preliminaries for our approach, we revisit the use of algebraic graph transformation as a formal foundation for
model transformations as presented in e.g. [20]. Crucial for us is the notion of graph, comprising a set of nodes and
a set of directed edges connecting these nodes. Structure-compatible mappings between graphs can be expressed in
terms of graph morphisms which are compatible with the source and target functions for the edges. Graphs and graph
morphisms can be used to represent the underlying structure of visual models: nodes, edges, and graph morphisms
represent model elements, references between model elements, and relationships between models, respectively.

In category theory, graphs together with graph morphisms form a category, since graph morphisms can be com-
posed associatively and for each graph an identity graph morphism exists. Graphs with additional “features”, such

Variability-based model transformation: formal foundation and application 7

O

A

A

A

AA

37

«delete»
action

G+H: foldAction

«create»
exit

 Action

«preserve»
:Transition

«forbid#1»
:Transition

69

«preserve»
:Transition

«preserve»
:Action

«delete»
action

«preserve»
next

«forbid#4»
exit

 Action

34

65

66

«forbid#3»
:Transition

71

«preserve»
out

«forbid#2»
entry

Action
«forbid#1» next

«forbid#3» out

«create»
entry

Action

«preserve»
:State

«preserve»
out

«preserve»
next

«preserve»
out

67

68

 G xor H

«forbid#2»
:Action

70 «forbid#4»
:Action

72

Fig. 6. Variability-based fold rule.

N

@q

L

m��

noo

G

Fig. 7. Negative application condition.

as typing and attributes, in many cases form categories as well as shown in e.g. [27, 20]. Our formal foundation for
variability-based transformation is flexible in the sense that it leaves the chosen category of graphs open, allowing
a suitable one to be inserted. For instance, the notion of meta-model conformance can be represented in terms of a
distinguished graph, called type graph, and suitable typing morphisms between graphs and the type graph. In our im-
plementation and evaluation, we use the full power of typed attributed graphs with inheritance [27], since these graph
features are orthogonal to variability.

Graphs and graph morphisms are the building blocks of algebraic graph transformations. Specifically, we consider
the rule-based transformation approach called double-pushout approach (DPO). In this approach, graph elements
occurring in the left and right-hand sides of a rule, i.e., in an interface graph, are used to glue new elements to
existing ones. Rules may have negative application conditions [26], making the rule inapplicable in case a certain
graph structure is present.

Definition 1 (Rule with negative application conditions). A rule r = (L le←− I ri−→ R,NAC) consists of graphs L, I
and R, called left-hand side, interface graph and right-hand side, respectively, two injective graph morphisms le and
ri, and NAC, a set of negative application conditions on L.
A negative application condition n ∈ NAC on a graph L is a graph morphism n : L → N . A graph morphism
m : L→ G satisfies n, written m |= n, if @q : N → G such that q is a graph morphism and m = q ◦ n (see Fig. 7).
A rule is connected iff, treating all edges as undirected, ∀G ∈ {L,R} there is a path between each pair of nodes in G.

In the refactoring example, the rules in Figs. 2 and 5 follow this definition. Elements of I are annotated with
preserve, elements of L \ le(I) with delete, and elements of R \ ri(I) with create. Each rule in Fig. 2 has one NAC,
with the graph N being made up by all elements marked forbid, preserve, or delete. The two rules in Fig. 5 have two
NACs each: the first one of Rule G comprises the forbid#1, preserve, and delete elements; the other one incorporates
the forbid#2 elements instead of the forbid#1 ones. In both figures, all rules are connected.

To apply a rule to a given graph G, its left-hand side L needs to be matched to G. Formally, this matching can be
expressed via a graph morphism m called match, which maps each element in L to a counterpart in G. The application
of a rule consists of two steps. First, all graph elements in m(L \ le(I)) are deleted. Nodes to be deleted may have
adjacent edges which have not been matched, so the rule application may produce dangling edges. Therefore, all
matches m have to satisfy the gluing condition: if a node n ∈ m(L) is to be deleted by the rule application, it has to
delete all adjacent edges as well. Afterwards, unique copies of R \ ri(I) are added. The DPO approach is based on the

8 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

L

m

��

I
leoo

d

��

ri // R

m′

��

(1) (2)

G D
goo h // H

Fig. 8. Rule application by a double pushout (DPO).

N0 L0
noo

m0

sL // L1

m1~~

Shift(sL,n) // N1

G

Fig. 9. Shifting negative application condition n over graph morphism sL.

observation that this behavior can be characterized by a double-pushout [19]. Given a rule and a match, the resulting
rule application is unique [19].

Definition 2 (Rule application). Let a graph G, a rule r = (L le←− I ri−→R,NAC), and a total graph morphism m : L→
G be given. A rule application from G to a graph H , written G⇒r,m H , is given by the diagram in Fig. 8, where (1)
and (2) are pushouts, and m satisfies each NAC in NAC, written m |= NAC. We refer to G, m and H as a start graph,
a match, and a result graph, respectively.

In the state machine example, Rule G can be matched to the input state machine via match mG, comprising
mappings of elements #65–68 to element #51, its incoming transitions, and their common action. Considering element
#50 instead would not yield a match, since NAC2 is not fulfilled: state Washing already has an entry action. By the
application of Rule G, the action is removed from the incoming transitions by deleting their connecting edges. As no
dangling edges are left behind, the gluing condition is satisfied. An edge between the #51 and the action is created,
yielding a state machine where UnLocking has the entry action QuickCool().

Next we consider an operation that allows shifting NACs between rules over a morphism [21, 22]. Per [21], this
construction exists for all NACs.

Definition 3 (Shift). Given a NAC n over L0 and a morphism sL : L0 → L1, Shift is an operation that transforms
n via sL into an application condition Shift(sL, n) over L1, such that for each graph morphism m1 : L1 → G, there
exists a graph morphism m0 = m1 ◦ sL s.t. m0 |= n⇔ m1 |= Shift(sL, n) (see Fig. 9).

In the refactoring example, left-hand sides of Rule D and E are isomorphic; therefore, graph morphisms in both
directions exist. Since their NACs are isomorphic as well, shifting the NAC of one rule over the graph morphism
produces the NAC of the other rule, because both NACs are satisfied for the same input graphs.

To support the shifting of NACs across chains of morphisms, we require the Shift operation to be compositional.
The following lemma shows that Shift satisfies this requirement.

Lemma 1 (Compositionality of Shift). Given a NAC n over L0 and morphisms sL : L0 → L1, sL′ : L1 → L2, the
Shift operation is compositional: Shift(sL′ , Shift(sL, n)) = Shift(sL′ ◦ sL, n).

Proof. Given a graph morphism m : L2 → G, the following equivalences hold: m |= Shift(sL′ , Shift(sL, n)) ⇔
m ◦ sL′ |= Shift(sL, n)⇔ (m ◦ sL′) ◦ sL |= n⇔ m ◦ (sL′ ◦ sL) |= n⇔ m |= Shift(sL′ ◦ sL, n)

Finally, we assume the existence of multi-pullbacks and -pushouts [38], categorical constructions generalizing
the intersection and union of structures. For application of our approach to typed attribute graphs, we can use the
fact that multi-pullbacks in the category of graphs exist and are well-typed, i.e., they are objects in the category of
typed attribute graphs [60]. Conversely, due to co-completeness of this category [27], all colimits exist, including
multi-pushouts.

Definition 4 (Multi-pushout and multi-pullback). Let a family of graph morphisms (gi : Gi → Gt) with 1 ≤ i ≤ n
be given. The multi-pullback of gi is a family of graph morphisms (hi : G → Gi) satisfying the limit property in the
following sense (see Fig. 10): For any family (h′i : G′ → Gi) with gi ◦ h′i = gj ◦ h′j , 1 ≤ i 6= j ≤ n, there is a
unique morphism ht : G′ → G with hi ◦ ht = h′i for all 1 ≤ i ≤ n.
In a dual manner, the colimit of a family of graph morphisms (ki : G→ Gi) is called multi-pushout.

Variability-based model transformation: formal foundation and application 9

G1

g1}}
Gt Gigi
oo G

hn~~

h1

``

hi

oo G′
htoo

h′
n

oo

h′
1

oo

Gn

gn

aa

Fig. 10. Multi-pullback over a set of graph morphisms gi with 1 ≤ i ≤ n.

L0 I0 R0

L1 I1 R1

r0 =

r1 =

le0 ri0

le1 ri1

sL sI sRs (1) (2)

Fig. 11. A schematic depiction of subrule morphisms.

The following example illustrates the case where n=2; we focus on the interface graphs of rules, i.e., nodes and
edges marked preserve. The interface graphs of Rules G and H overlap in nodes #53–56 and #59–62; the preserve
edges are not part of the overlap since they differ. To build the multi-pushout of these interface graphs over their
overlap, the preserve nodes are glued together while the separate preserve edges are added in: the result graph is
isomorphic to the interface graph of Rule G+H. The multi-pullback over the embeddings between the interface graphs
of Rules G and H to Rule G+H yields exactly their overlap again.

4. Variability-Based Model Transformation

In this section, we introduce variability-based transformation rules and show how to apply them.

4.1. Variability-Based Rules

We denote variability using variability expressions, propositional expressions over a set of variation points. We con-
sider two kinds of variability expressions: the variability constraint and variability conditions. The variability constraint
is used to express relationships between variation points, such as mutual exclusion or implication. Variability condi-
tions are used to specify when specific variants expressed using variation points shall be active. The set of variation
points and the variability constraint are fixed for the set of rules and not changed by transformation steps.

A subrule encapsulates a subset of actions on a substructure of a set of rules. If we want to identify substructures
of the same rule, we talk about subrule embeddings. To identify common substructures of multiple rules, we talk about
subrule morphisms.

Definition 5 (Subrule morphism). Given a pair of rules r0 = (L0
le0←− I0

ri0−→ R0,NAC0) and r1 = (L1
le1←−I1

ri1−→
R1,NAC1) (Def. 1) with injective graph morphisms lei, rii for i ∈ {0, 1}, a subrule morphism s : r0 → r1, s =
(sL, sI , sR) consists of injective morphisms sL : L0 → L1, sI : I0 → I1, and sR : R0 → R1 s.t., in the diagram in
Fig. 11, (1) and (2) commute. In addition,

• the intersection of sL(L0) and le1(I1) in L1 is isomorphic to I0,
• the intersection of sR(R0) and ri1(I1) in R1 is isomorphic to I0,
• L1 \ (sL(L0) \ sL(le0(I0))) is a graph, and
• for each NAC n0 ∈ NAC0, there is a NAC Shift(sL, n0) ∈ NAC1.

The conditions prefaced by “in addition“ ensure that a subrule performs the same actions on related elements as
the original rule. The first two ensure that corresponding subrule elements have the same delete and create action in
the superrule. The third one prevents the superrule rule from being applicable when the subrule is not due to dangling

10 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

edges. The fourth one ensures that the superrule cannot perform any actions being forbidden by the smaller one due to
NAC violations.

Definition 6 (Subrule embedding). Given rules r0 and r1 as above. Subrule morphism s : r0 → r1 is called a
subrule embedding if all of its morphisms sL, sI , and sR are inclusions. Given two subrule embeddings s : r0 → r1

and s′ : r′0 → r′1, we have that s ⊆ s′ if there are subrule embeddings t0 : r0 → r′0 and t1 : r1 → r′1 with
s′ ◦ t0 = t1 ◦ s.

In the example rule shown in Fig. 6, the rule comprising all nodes and edges with no visible presence condition, i.e.,
nodes #65–68 and the delete edges, is a subrule of the entire rule. The two rules are related by a subrule embedding.

Definition 7 (Language of variability expressions). Given a set of variation points V , LV is the set of all proposi-
tional expressions over V , called language of variability expressions.

The variation points in the state machine example are called G and H. The language of variability expressions
includes the words G ∧ H, ¬ G, and true.

Definition 8 (Variability constraint). Given a language of variability expressions LV , a variability constraint v is an
element of LV . A total function cfg : V → {true, false} is a variability configuration. A variability configuration cfg
is valid w.r.t. to a given variability constraint v iff v evaluates to true when each variable vr in v is substituted by
cfg(vr).

In the state machine example, variation points G and H are mutually exclusive since they represent the input rules of
the same name. Consequently, the variability constraint is G xor H, rendering the configuration {G=true, H=true}
invalid.

Definition 9 (Variability condition). Given a language of variability expressions LV and a variability constraint vcs,
a variability condition is an element of LV , i.e., a propositional expression over V . A variability configuration cfg
satisfies a variability condition vc if vc evaluates to true when each variable vr in vc is substituted by cfg(vr). A
variability condition is satisfiable if there is a valid variability configuration satisfying it. A variability condition X is
stronger than Y iff X =⇒ Y .

In the example, V = {G,H}. Satisfiable variability conditions include true, ¬G, and G ∨ H; G ∧ H is not valid.

Definition 10 (Variability-based (VB) rule). Given LV , a VB rule ř = (r, S, v, vc) consists of a rule r, a set S of
subrule embeddings, a variability constraint v and a function vc : S ∪ {r} → LV . Function vc defines variability
conditions for subrule embeddings s.t. vc(idr) is true and ∀s ⊆ s′ : vc(s′) =⇒ vc(s).

For example, Figs 6 shows a VB rule in a compact representation: instead of subrule embeddings, elements are
annotated. Rule r is the entire rule, ignoring annotations; the variability constraint is G xor H. Set S and function
vc are derived easily by creating a subrule rconj for each conjunction conj =

∧
i∈V li of literals over V , and setting

vc(idrconj) = conj. Each subrule rconj includes the elements whose presence condition is implied by conj. For instance,
subrule r¬G∧H comprises elements annotated with ¬G, H, and true, i.e., it is isomorphic to Rule H. We may further
include arbitrary subrules into this rule set. Doing so allows us to improve the performance of the application of VB
rules. In the example, we add one additional rule: the base rule rtrue comprising all elements annotated true. We then
have S = {strue : rtrue → r, s¬G∧H : r¬G∧H → r, sG∧¬H : rG∧¬H → r}. Per Def. 5, NACr is a superset of all
shifted NACs of all subrules, as is the case in this example.

4.2. Rule merging

Given a rule set with similar rules, rule merging aims to find an efficient representation of these rules using a set
of variability-based (VB) rules. To this end, we define a formal framework of three components as shown in Fig. 12:
clone detection identifies clones, i.e., overlapping parts between rules, clustering assigns rules to clusters based on their
clones, and merge construction unifies rules to create VB rules. We specify the input and output of each component
and show correctness of rule merging based on these specifications. Each component may be instantiated in various
ways, as long as its specification is implemented.

Variability-based model transformation: formal foundation and application 11

Merge ConstructionClustering

Group rules based on

their largest clones.

Merge commonalities,

annotate variabilities.

Diam
Circ

Tri

Rule set with variability-based rules

Clone Detection

Detect clones in all rules.

Diam
Circ

Tri

Rule
Merger

Rule set with similar rules

Fig. 12. Overview of rule merging.

4.2.1. Clone Detection

Clone detection allows identifying overlapping portions between the input rules. We use clone detection as a prerequi-
site for both clustering and merge construction: To cluster rules based on their similarity, we consider rules as similar
if they share a large overlap. Merging overlapping portions rather than individual elements allows us to preserve the
essential structural information expressed in the rules. Moreover, the performance of merged rules in terms of their
execution time can be considerably improved by restricting clone detection to connected portions: matching connected
patterns is a problem that can be handled much more efficiently than that of multiple independent patterns [70].

Formally, given a set of rules, a clone is a largest subrule that can be embedded into a subset of this rule set; the
clone together with the embedding morphisms forms a clone group. To support different clone detection techniques,
including heuristic ones, we do not require the set of clone groups of rule set to be complete or uniquely defined.
However, the set of clone groups is always non-empty, since the empty rule can be embedded into each rule and,
therefore, can potentially be a clone. To support clone detection techniques that are restricted to connected portions,
we define connected clones based on largest connected subrules. To later establish a well-defined merge construction,
we define a compatibility relation. Compatibility ensures that two clones never assign the same object contained in
one rule to diverging objects contained in another.

Definition 11 (Clone group). Given a non-empty set R = {ri|i ∈ I} of rules, a clone group CGR = (rc, C) over
R consists of a rule rc, called clone, and a set C = {ci|i ∈ I} of subrule morphisms ci : rc → ri iff there is no set
C′ = {c′i|i ∈ I} of subrule morphisms c′i : r′c → ri with a subrule morphism s : rc → r′c where r′c is a rule, ci = c′i ◦ s
for all i ∈ I , and s is not an isomorphism. If rc is connected, CGR is called connected as well.
Two clone groups CGR = (rc, {ci|i ∈ I}) and CGR′ = (r′c, {cj |j ∈ J}) with R′ ⊆ R and J ⊆ I are compatible if
there is a subrule morphism s : rc → r′c with cj = c′j ◦ s for all j ∈ J .

Table 1 shows the result of applying a clone detection technique to the classic rules in the example shown in Fig. 2.
Each row denotes a clone group, comprising a set of rules and a clone present in each of these rules. We show the
involved nodes for each clone; in addition, the clones incorporate edges that in each rule connect a pair of nodes
involved in the clone. The rows are ordered by the size of the clone, calculated as the number of involved nodes and
edges. In particular, considering rules E and F, CG2 represents objects #19-23, #25-29 and their connecting edges.
CG1 incorporates nodes #24 and #30 as well as their incoming edges. Clone groups CG1 and CG2 are compatible:

12 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

Name Rules Involved nodes Size (incl. edges)

CG1 {E, F} {#19–24}, {#25–30} 12
CG2 {D, E, F} {#14–18}, {#19–23}, {#25–29} 10
CG3 {C, E, F} {#9–13}, {#19–21,#23–24}, {#25–27,#29–30} 9
CG4 {B, C} {#5–8}, {#9–12} 8
CG5 {A, B, C, D, E, F} {#1–4}, {#5–8}, {#9–12}, {#14–16,#18}, {#19–21,#23}, {#25–27,#29} 7

Table 1. Clone groups, as reported by clone detection.

N0 L0n
oo

sLi~~ �� !!

I0

sIi�� ��

let

oo
rit

// R0

sRi}} �� !!
N1 L1

Shift(n,sL1
)

oo
sLui

!!

Li

��

Ln

}}

I1 sIui

��

Ii

��

In

~~

R1 sRui

!!

Ri

��

Rn

}}
Nu Lu

Shift(Shift(n,sL1
),sLu1

)
oo Iu

leu

oo
riu

// Ru

Fig. 13. Rule multi-pushout of subrule morphisms si = (sLi
, sIi , sRi

) with 1 ≤ i ≤ n.

the clone of CG1 extends the one of CG2. CG2 can be reduced to the rule set of {E,F} by discarding the subrule
embedding into rule D. CG2 and CG3 are not compatible: their rule sets are not in subset relation. All clone groups
in this example are connected.

The output of clone detection is a set of clone groups – in the example, all rows of Table 1. These clone groups
may be pair-wise incompatible.

4.2.2. Clustering

As a prerequisite for merge construction, we introduce clustering, an operation that splits a rule set into a cluster
partition based on the similarity between rules. Its input are a set of rules and a set of clone groups over these rules.

Definition 12 (Cluster). A cluster ClR over a set R of rules is a set of clone groups CGR′ over each non-empty
subset R′ ⊆ R. Given a partition P of a set R of rules, a cluster partition is a set ClParP of clusters where for each
rule set P ∈ P there is a cluster ClP ∈ ClParP over P . Each cluster ClP ∈ ClParP is called a sub-cluster of ClParP .

In the example, we first consider a cluster over the set of rules R = {D, E, F}. For each subset R′ of R with two
or more elements, the set of clone groups is obtained by taking those clone groups from Table 1 that refer to each rule
in R′, and restricting the contained embeddings to R′. For example, for subset {D,E}, the cluster comprises restricted
versions of CG2 and CG5, in which all mappings not referring to either D or E are discarded. For each singleton subset,
there is exactly one clone group, pairing the contained rule as clone with its identity morphism as the embedding.

Given the set of rulesR = {A, B, C, D, E, F}, a cluster partition arises over the partition {{A}, {B, C}, {D, E, F}}.
The sub-cluster over {A} is a singleton set, in which the clone group specifies the entire rule A as clone. The sub-cluster
over {D, E, F} is identical to the one described above, and the one over {B, C} is constructed analogously.

The output of clustering is a cluster partition over the original set of rules.

4.2.3. Merge Construction

Merge construction takes a cluster partition over the entire rule set as input. Each sub-cluster becomes a VB rule in
the output. The available information on overlapping, given by clone groups, is considered to merge the corresponding
elements. To unify the rules that a specific clone is embedded into, we define an operation called rule multi-pushout.

Definition 13 (Rule multi-pushout). Let a family of subrule morphisms (si : r0 → ri)1≤i≤n for subrule r0 =
(L0

li0←−− I0
ri0−−→ R0, NAC0) be given. The multi-pushout ru = (Lu

leu←−− Iu
riu−−→ Ru,NACu) over si, illustrated in Fig. 13,

comprises graphs Lu, Iu, Ru constructed as multi-pushouts over the families (sLui), (sIui), (sRui), and graph mor-
phisms leu, riu obtained via the pushout property. NACu is the union of all NACs of each Li, shifting each of these
NACs over sLui to attach them to Lu.

We use this operation to merge the rules contained in a cluster, based on the available information on clones. In
case of several isomorphic NACs in NACu, it is enough to keep one representative and to erase all the others.

Variability-based model transformation: formal foundation and application 13

rCG2

cD

~~

cF

��

cE

��

s

%%
rCG1

c′E

zz

c′F

##
rD

suD

rE

su′
E %%

rF

su′
F{{

rEF

suEFyy
r

Fig. 14. Cluster merge by successive (multi-)pushouts.

To maintain traceability between original and new rules, we define a variation point for each original rule. The
variability constraint is set over the variation points, specifying that exactly one of them is active at a time.

Merging requires that the clone groups over each sub-cluster are compatible. Incompatible clone groups have to
be discarded before merging, a non-trivial task requiring a strategy to determine what to discard. One such strategy is
elaborated in Sec. 5.1.

Definition 14 (Cluster merge). Given a cluster partition ClParP over a cluster Cl over R, each sub-cluster ClP ∈
ClParP is merged to a variability-based rule r̂ = (r, S, v, vc) by successive multi-pullback construction over compati-
ble clone groups in Cl. The result is a rule r. S = {si : ri → r} consists of all resulting subrule embeddings. Variation
points V are determined by the rules in P : V = {vj |j ∈ J}. Moreover, v = Xorj∈J(vj) and vc(sj) = vj . We use the
notation Merge(ClP) to indicate r̂ and Merge(Cl) = {Merge(ClP)|ClP ∈ ClParP}.

In the example, considering all clone groups identified for the sub-cluster over {D, E, F}, CG1–2 are compatible;
since we consider the reduction to {D, E, F}, they are incompatible to CG3 and CG5. The successive construction of r
is illustrated in Fig. 14: first, rules E and F are merged based on CG1 to a rule rEF . This rule is merged with D, based
on the information in CG2, yielding rule r. The resulting VB rule is isomorphic to D+E+F in Fig. 3. In the compact
representation, the presence condition of an element is the disjunction of all variation points whose corresponding
subrules contain the element. The variability constraint v is set to xor(cfg(vD), cfg(vE), cfg(vF)).

In this case, the resulting VB rule has only one NAC, since the NACs of all input rules are isomorphic after shifting.
The example in Fig. 6 presents an alternative case where the NACs of the original rules were not identical: in this case,
the result rule contains the NACs of all input rules, being annotated with presence conditions to indicate the subrule
each NAC belongs to.

As a prerequisite for showing the correctness of rule merging, we introduce an operation for flattening a variability-
based rule, i.e., representing it by a set of classic rules. To this end, in addition to multi-pushouts (Def. 13), we need a
multi-pullback construction for rules.

Definition 15 (Rule multi-pullback). Let a family of subrule morphisms (sri : ri → r)1≤i≤n for a rule r =
(L li←− I ri−→ R, NACr) be given. The multi-pullback rt = (Lt

let←−− It
rit−−→ Rt,NACt) of (si) comprises graphs Lt, It, Rt

constructed as multi-pullbacks over the families (sLri
), (sIri), (sRri

) as given in Fig. 15, and graph morphisms let, rit
obtained via the pullback property.
The set of negative application conditions NACt is obtained as follows:
∀n ∈ NACr: if ∃(ni)1≤i≤n with ni ∈ NACi, s.t. n is isomorphic to Shift(sLri

, ni), and ni ◦ sLri
= nj ◦ sLrj for all

1 ≤ i 6= j ≤ n, there is a NAC nt ∈ NACt s.t. nt is isomorphic to Shift(sLi
, ni) for all 1 ≤ i ≤ n.

In a VB rule, the multi-pullback rt of the set of subrule embeddings S is called base rule, i.e., it is the rule
comprising the elements contained in all subrules.

The construction of NACs entails that a NAC is created whenever the input rules all share a completely overlapping
NAC, which is the case for rules A–F. In the multi-pullback over rules G and H, the set of NACs is empty: some pairs
of individual elements are shared between NACs, e.g. #57 and #63, but there are no completely overlapping NACs.

The following lemma shows that the multi-pullback construction is compatible to matching.

14 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

Nt Lt
ntoo

sLi~~ ��

It

sIi�� �� ��

letoo rit // Rt

sRi}} �� !!
N1 L1

n1oo
sLci

sLr1 ��

Li

��

Ln

~~

sLrn��

I1 sIci

��

sIr1 ��

Ii

��

In

��

sIrn��

R1 sRci

!!

sRr1 ��

Ri

��

Rn

}}

sRrn��

Nc Lc
ncoo

sL

��

Ic
lercoo rirc //

sI

��

Rc
sR

��
N L

noo I
leoo ri // R

Fig. 15. Rule multi-pushout (sci) = (sLci
, sIci , sRci

) of rule multi-pullback (si) = (sLi
, sIi , sRi

) over morphism family (sri) =
((sLri

, sIri , sRri
)), 1 ≤ i ≤ n.

Lemma 2. Let a family of subrule morphisms (sri : ri → r)1≤i≤n for a rule r be given together with its rule multi-
pullback rc, with r = (L li←− I ri−→ R, NACr), ri = (Li

lii←− Ii
rii−−→ Ri, NACi), and rc = (Lc ← Ic → Rc,NACc).

Furthermore, let a match family (mi : Li → G)1≤i≤n be given where each mi satisfies NACi. Then, the induced
morphism mc : Lc → G satisfies NACc.

Proof. By construction, NACc comprises the union of the shifted NACs Shift(sLci , ni) of all NACs ni ∈ NACi of all
subrules ri with (si : ri → r)1≤i≤|Sc| ∈ Sc. Since mc is constructed over a match family where each contained match
mi satisfies NACi for its rule ri, the union of these NACs is satisfied by m̌ as well.

Definition 16 (Configuration-induced rule). Let a VB rule ř = (r, S, v, vc) over LV and a valid variability con-
figuration c be given. There exists a unique family of subrule embeddings (sri : ri → r)1≤i≤|Sc| with sri ∈ S s.t.
∀s′ ∈ S : s′ ∈ (sri)1≤i≤|Sc| iff c satisfies vc(s′). The configuration-induced rule rc is the multi-pushout of the
multi-pullback of this family (see Fig. 15).

For example, for Rule B+C, configuration {B=true, C=false} yields a configuration-induced rule isomorphic to
Rule B.

Definition 17 (Flattening of a VB rule). The flattening of ř is the set of all configuration-induced rules over all valid
configurations: Flat(ř) = {rc | c : V → {true, false} ∧ c is valid}.

In the example, flattening Rule D+E+F yields a set of three rules being isomorphic to Rules D, E, and F.
As a proof of well-definedness, we show that merging a rule set and then flattening it produces the original set.

Theorem 1 (Correctness of rule merging). For any cluster Cl over a setR of flat rules, we have Flat(Merge(Cl)) =
R.

Proof. Given a cluster Cl over R, for any partition of Cl we have Merge(Cl) = {Merge(ClP)|ClP ∈ ClParP}.
We show that for any sub-cluster ClP ∈ ClParP , we have Flat(Merge(ClP)) = P and assume P = {rj |j ∈ J}.
Merge(ClP) yields r̂ = (r, S, v, vc) as defined in Def. 14. Next, we consider Flat(r̂). Since v = Xorj∈J(vj), all valid
configurations bind exactly one vj to true. We consider a fixed j ∈ J , yielding configuration cj with cj(vj) = true
and cj(vi) = false for all vi ∈ J \ {vj}. sj ∈ SP is in S since c satisfies vc(sj) = vj . Since there is exactly one
subrule embedding sj for each cj , no further merging of subrules is needed. The resulting subrules are the flat rules
forming P .

Note that the opposite operation, first flattening a VB rule set and then merging the resulting flat rules, may not yield
the same VB rule set: in general, there are several VB rules with the same flattening. In fact, Thm. 1 ensures that all VB
rule sets created by implementations of rule merging have the same flattening, i.e., they are semantically equivalent.
Conversely, due to their syntactic variations, these rule sets may largely differ from the user perspective: if the overall
representation is more compact, it might be easier to read and faster to execute. Addressing such quality goals during
merging is up to concrete instantiations such as the one shown in Sec. 5.1.

Variability-based model transformation: formal foundation and application 15

L1

m1

Li
mi

��

Ln

mn}}
G

Fig. 16. Variability-based match family, 1 ≤ i ≤ n with n = |Sc|.

L1

m1

��

sLc1

&&

Li
mi

~~
sLci
��

Ln
mn

ww
sLcnxx

G Lcmc

oo

Fig. 17. Variability-based match, 1 ≤ i ≤ n with n = |Sc|.

4.3. Application of Variability-Based Rules

We now show how to apply variability-based rules: (1) either by flattening them to a set of classic rules and matching
and then applying these rules in the classic way, or (2) directly, using a suitable variability configuration to identify a
corresponding match. We then prove the equivalence of these two approaches.

4.3.1. Variability-based transformation through flattening

Definition 18 (Application of a rule set). Given a rule set R and a graph G, the application of R to G is the set of
rule applications: Trans(R, G) = {G⇒r,m H} with r ∈ R and a match m : L→ G (Def. 2).

For example, the flattening of Rule G+H can be applied to the example state machine, yielding a set of rule applications
containing exactly one element: the application of the rule isomorphic to Rule G using the match mG.

4.3.2. Direct application of variability-based rules

In the following, we consider the direct application of variability-based rules by finding a suitable variability-based
match on-the-fly. The central task is to find variability configurations that induce a match for the left-hand side of one
variant contained in the variability-based rule. If the resulting morphism of the left-hand side to graph G satisfies the
gluing condition for the corresponding flat rule, the rule application can take place.

Definition 19 (Variability-based match family). Given a variability-based rule ř over LV , a graph G, and a valid
variability configuration c, there is a set of subrule embeddings Sc ⊆ S s.t. ∀r ∈ S : r ∈ Sc iff c satisfies vc(r). A
variability-based match family is a family of matches (ms : Ls → G)1≤s≤|Sc| s.t. ∀mi,mj with 1 ≤ i, j ≤ |Sc| the
following holds: ∀x ∈ dom(mi) ∩ dom(mj) : mi(x) = mj(x) (Fig. 16).

The condition ensures that matches within a family are compatible: an element contained in multiple subrules is
always mapped to the same element in graph G. This definition entails that the identification of matches can terminate
as soon as one of the subrules cannot be matched, enabling a performance benefit when only a few rules of a larger
rule set are applicable: we can match the base rule rtrue first and only need to go on if this subrule can be matched.

In the state machine example, matching the base rule rtrue leads to a number of matches, including the match mbase
that maps nodes #65–68 plus the delete edges to node #51 with its incoming transitions and their common action.
Therefore, we need to enumerate valid variability configurations to find a full VB match family. The configuration
{G=true; H=false} induces subrules rtrue and rG. A VB match family for these rules comprises mbase and mG,
appending additional mappings for the preserve edges of rule G. Since no other set of matches can be found that also
satisfies the NACs (Def. 1), (mbase,mG) is the only variability-based match family in this example.

Definition 20 (Variability-based match). Given a variability-based match family (ms)1≤s≤|Sc| for a variability-
based rule ř, a configuration c and a graph G, a variability-based match m̌ is a pair (mc, c) where the graph morphism
mc : Lc → G is obtained by the colimit property of Lc (see Fig. 17).

In the example, again considering the configuration {G=true; H=false}, a VB match is obtained from considering
the VB match family described below Def. 19 and gluing their mappings together. This VB match has the same
mappings as mG.

16 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

Definition 21 (Application of a variability-based rule). Given a match m̌ = (mc, c) for a variability-based rule ř
and a graph G, the application of ř at m̌ is the classic rule application G⇒rc,mc H of the configuration-induced rule rc
to mc. To obtain all applications of ř, we consider all variability-based matches: DirectTrans(ř, G) = {G⇒rc,m̌ H | c
is a valid configuration, m̌ = (mc, c) is a variability-based match}.

For example, applying of Rule G+H to the example state machine at the VB match with the same mappings as
mG yields the same state machine described after Def. 2.

Now, we show that the set of all applications of a variability-based rule ř to a graph G is equal to the set of classic
rule applications obtained from flattening ř and applying these rules to G.

Theorem 2 (Equivalence of rule applications). Given a variability-based rule ř and a graph G, the following holds:
DirectTrans(ř, G) = Trans(Flat(ř), G).

Proof. Since DirectTrans(p̌, G) and Trans(Flat(ř), G) are both constructed over all valid configurations, we can con-
sider a particular valid configuration c : V → {true, false} without loss of generality.

From Trans(Flat(ř), G), we consider the rule application G ⇒rc,m H of a configuration-induced rule rc ∈
Flat(ř) to a match mc : Lc → G. To obtain a family of matches (ms : Ls → G) with 1 ≤ s ≤ |Sc|, we compose
m with each of the embedding morphisms (sLri

: Li → r) from the construction of rc. The colimit property of Lc

ensures that (ms) is a variability-based match family, i.e., the property required by Def. 19 holds. Per Lemma 2, mc

satisfies NACc, as required for a match. Thus, match mc paired with configuration c is a variability-based match m̌,
applied with rule rc to graph G.

From DirectTrans(ř, G), we consider rule application G ⇒rc,m̌ H of a configuration-induced rule rc to a
variability-based match m̌. rc is an element of Flat(ř). m̌ provides a match mc : Lc → G, applied with rule rc
to graph G.

5. Computation of Merge Results and Variability-Based Matches

The formal foundation introduced in Sec. 4 provides a framework that guarantees correctness of our rule merging and
application mechanisms. However, it does not determine a particular computation strategy to make these mechanisms
available to developers. Valid instantiations of the framework may vary heavily in the conciseness and efficiency of
the produced VB rules; in particular, the trivial case of leaving all input rules as is and matching them using the classic
mechanism is a valid instantiation of the framework.

In this section, we elaborate on our strategies to facilitate the computation of concise VB rules that can be matched
efficiently. To this end, we provide two novel algorithms for merge construction and matching of VB rules. In addition,
we elaborate on our use of existing clone detection and clustering techniques to enable merge construction.

5.1. Rule merging

We implemented rule merging based on state-of-the-art clone detection and clustering tools and a novel merge con-
struction mechanisms. Our implementation features two input parameters that enable customizations with respect to
specific quality goals, as we explain below.

Clone Detection

We considered the applicability of three techniques for clone detection, each of them allowing to identify connected
clones as per Def. 11. First, we applied gSpan, a general-purpose graph pattern mining tool [77]. Using this tool, we
experienced heap overflows even on small rule sets. Second, we re-implemented eScan [44], which terminated with
insufficient memory errors for larger rule sets. While our implementation could be flawed, [18] reports on a similar
experience with their re-implementation of eScan. Finally, we applied ConQAT [18], a heuristic technique which
delivers fast performance at the expense of precision. It was able to analyze rule sets of 5000 elements in less than 10
seconds while reporting a large portion of relevant clones. We used ConQAT in our experiments on realistic rule sets.
Note that the loss of precision impacts the compactness of the produced rules, since ConQAT might fail to detect all
overlaps of rules, and the undetected overlaps will remain separate during merging. The loss of precision does not,
however, impair the correctness of the produced rules, since Def. 11 allows the clone detection results to be incomplete,
and Theorem 2 ensures that applying the created VB rules to an input model always gives the same output models as
applying each rule individually.

Variability-based model transformation: formal foundation and application 17

Rule A

Rule B

Rule C

Rule D

Rule E

Rule F

Fig. 18. Cluster dendrogram, as reported by clustering.

Each of these tools assumes a custom representation of its input in terms of labeled directed graphs. To make the
tools applicable to model transformation rules, we developed an encoding from rules to such graphs. Our main idea
was to convert each rule to one graph in the integrated representation shown in Figs. 2 and 3. Each graph element
received one of the labels create, delete, preserve, and forbid. This representation ensures that cloned elements always
have the same action in each rule, as required by Def. 5. NACs may overlap partially in the clones reported by clone
detection; to ensure the correct handling of NACs as per Def. 5, we establish during merge condition that only full
overlaps are considered. A detailed account of our encoding is provided in another paper [62].

We provide a customization to increase the speed-up produced by the constructed rules: the performance-critical
task in rule application, matching, considers just the rule left-hand sides and NACs, rather than PACs. Consequently,
performance is optimized when rules are merged based on their overlap in left-hand sides and NACs. To this end, a
Boolean parameter ignoreRhs allows restricting the rule portions considered by clone detection. When set to true, it
only finds and reports clones for left-hand sides and NACs.

Clustering

From a large variety of approaches to cluster a set of objects based on their similarity [76], we chose AverageLinkage,
a hierarchical agglomerative method, due to its convenient application to our approach. It assumes a distance function
– a measure of similarity between the clustered elements. We consider the similarity of rule pairs, defining it as the
size of the rules’ largest common clone divided by their average size. In the example, similarity of rules E and F is
calculated based on CG1, evaluating to 12

13 = 0.92. It further assumes a customizable cutting-level threshold parameter
that we describe below.

The method builds a cluster hierarchy that can be visualized using a dendrogram, a tree diagram arranging the
input elements, as shown in Fig. 18. Tree nodes describe proximity between rule sets. The “lower” two nodes in the
tree are connected, the more similar their corresponding rules are. For example, rule D is similar to E and F, but
the similarity is not as strong as that between just E and F. The clustering result is obtained by “cutting” using the
cutting-level threshold, marked by a vertical bar in Fig. 18, and collecting the obtained subtrees. We experimented
with different values for this threshold in our evaluation.

Merge Construction

We propose a custom algorithm for merge construction. It proceeds in two steps: determining what is to be merged
and how to do the merging. The first step, called merge computation, takes as input the cluster partition created
by clustering (Def. 12). To ensure a well-defined merge, merge computation refines the given cluster partition by
discarding incompatible clone groups (Def. 11), retaining sub-clusters for which a set of compatible clone groups
is available. To this end, we apply a greedy strategy that aims to capture a high degree of overlap. Each sub-cluster
becomes a MergeRule in the output of merge computation, a MergeSpecification. The second step, merge
refactoring, creates VB rules according to this MergeSpecification as per Def. 14.

Fig. 19 specifies a metamodel serving as an interface between merge computation and refactoring. The class
MergeSpecification corresponds to the overall rule set, acting as a container for a set of MergeRules. One
MergeRule identifies a sub-cluster that is to be merged into a VB rule. In order to preserve the graphical layout
of the contained rules, one rule is stated as the masterRule; this rule is used as a starting point in creating the VB
rule. To retain as much layout information as possible, it is best to select the largest input rule as the masterRule.
A MergeRule specifies all elements to be unified in the created VB rule. For each element in the resulting rule, a
MergeRuleElement is defined, referring to the elements to be represented by it. In addition, for each NAC in the

18 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

MergeRule

MergeRuleElement

MergeSpecification

MergeNAC

Rule

variabilityModel : EString

Graph

isLhs() : EBoolean
isRhs() : EBoolean
isNAC() : EBoolean

GraphElement

presenceCondition : EString

[0..*] elements

[0..*] mergeRules

[0..1] masterRule

[0..*] rules

[0..*] referenceNACs

[1..1] lhs [1..1] rhs [0..*] nacs

[0..*] referenceElements

[0..*] elements

[0..*] mergenac

presenceCondition : EString

Fig. 19. Merge specification metamodel.

resulting rule, a MergeNAC is defined, referring to the NACs to be represented by it. A MergeNAC is only created for
multiple NACs if these NACs are completely isomorphic, rendering their unification possible. Otherwise, a separate
MergeNAC is create for each NAC. In a consistent specification, each rule element and NAC of the original rule set
is referred to by exactly one MergeRuleElement.

Algorithm 1 sketches merge computation. The output Merge Specification is created in line 2 and incremen-
tally filled by considering each cluster. In each iteration of the loop starting in line 5, a new sub-cluster is constructed.
We apply a greedy strategy to integrate as many compatible clone groups as possible, starting with the top clone group
– the largest available – in lines 6-8 and incrementally adding the next largest compatible ones in lines 9-13. For each
clone group, we temporarily create a new MergeRule, integrating its contents with the result MergeRule in line

Algorithm 1 Pseudocode for merge computation.
1: function COMPUTEMERGE(cl : Cluster[])
2: var mergeSpecification = ∅
3: for each c← cl do
4: var cg = c.cloneGroups
5: while cg 6= ∅ do . Create a new sub-cluster
6: var top = FINDTOPCLONEGROUP(cg)
7: var mergeRule = CREATEMERGERULE(top)
8: var considered = {top}
9: while HASCOMPATIBLE(considered, cg) do

10: var comp = FINDTOPCOMPATIBLE(cg)
11: var temp = CREATEMERGERULE(comp)
12: INTEGRATE(mergeRule, temp)
13: considered.ADD(comp)
14: mergeSpecification.rules.ADD(mergeRule)
15: cg.REMOVEMAPPINGS(mergeRule.rules)
16: cg.REMOVEALLEMPTY
17: cg.REMOVEALL(considered) . Done with current sub-cluster
18: return mergeSpecification

Variability-based model transformation: formal foundation and application 19

12. When no more compatible clone groups are found, we add the MergeRule to the result and discard mappings
that concern its rules from the remaining clone groups. From these clone groups, we remove all empty and already
considered clone groups, in lines 14-17. We repeat this process until no clone groups are left to consider.

We consider the cluster {D, E, F} in the example. This cluster contains the clone groups CG1, CG2, CG3, and
CG5; the largest one CG1 is chosen as top clone group group in line 6. In line 7, a MergeRule is created based
on CG1, specifying the merge of rules E and F. One MergeRuleElement is created for each pair of clone ele-
ments and for each non-clone element, e.g., one for {#19, #25} and one for {#31}. In addition, one MergeNAC is
created, specifying the unification of the identical NACs of E and F. In lines 9-13, CG2 is identified as the next largest
compatible clone. Its temporary merge rule, specifying the merge of rules D, E and F, is created. The two merge
rules are integrated by establishing that each rule element and NAC belongs to exactly one MergeRuleElement or
MergeNAC. This process involves deleting redundant MergeRuleElements and MergeNACs. Then, as no com-
patible clone groups can be found, the MergeRule comprising the information of CG1 and CG2 is added to the
resulting MergeSpecification. In lines 15–16, the mappings of CG3 and CG5 for D, E and F are removed,
leaving them empty and leading to their discarding.

Based on a given MergeSpecification, the merge refactoring procedure is a straightforward implementation
of Def. 14. The merge refactoring procedure is shown in Algorithm 2. The following steps are performed: all rule
elements not already contained in the specified master rule are moved to this rule in line 3. in line 4, the NACs of all
rules are unified, again by moving them to the master rule if they are not already contained there. In line 5, each graph
element and NAC not common to all rules gets a presence condition. In lines 6 and 7, the variability model of the
master rule is set and the non-master rules are removed from the overall rule set.

Algorithm 2 Merge refactoring.
1: procedure MERGEREF(ms:MergeSpecification)
2: for each merge rule mr in ms do
3: MERGELHSRHSGRAPHS(masterRule,rules)
4: MERGENACS(masterRule,rules)
5: SETPRESENCECONDITIONS(elements)
6: SETVARIABILITYMODEL(masterRule)
7: REMOVENONMASTERRULES(rules)

In the example, Rule F has been determined as the master-rule for the cluster of {D, E, F}, since it is the largest
one. As this rule already contains all elements and the NAC required for implementing the MergeSpecification,
lines 3 and 5 have no effect. Presence conditions are created in line 5. As specified by MergeRuleElements, most
rule elements in D, E and F have corresponding elements in all other rules, rendering their presence condition to be
true. Exceptions are objects #46, #47, and their connecting edges that now receive a non-true presence condition.
Otherwise, elements from other rules might have been added in the specified places in the rule. Lines 6 and 7 set the
variability model to mutual exclusion between variation points D, E and F and remove rules D and E.

5.2. Variability-Based Matching

We use our formal investigation of direct rule applications to provide an efficient algorithm for variability-based rule
applications. The key idea is to implement the notion of variability-based matches (see Def. 20): we first match the
common parts of the represented rules and then their variable parts. To ensure soundness of our NAC checking, all
NACs are evaluated in a step that considers full rules rather than common portions.

Given a variability-base rule and an input model, we first match the common parts. Intuitively, the common parts of
all represented rules together form the base rule. Formally, this notion corresponds to the multi-pullback construction
in Def. 15. The base rule might have a non-empty set of NACs. Checking them now might lead to some matches of one
of the represented rules not being detected later: these matches may occur when a rule binds additional elements that
then cannot be bound by the base rule NAC anymore. The same applies to the gluing condition, an additional condition
that needs to be fulfilled by a match (see the description after Def. 1). Therefore, at this point, we compute pre-matches
rather than matches. A pre-match is a full mapping between the left-hand side of a rule and the input model that not
necessarily fulfills the NACs and gluing condition. If the set of pre-matches is empty, then there also exists no match for
the base rule and, therefore, no variability-based match as per Def. 20. In function FINDBASEPREMATCHES (Alg. 3),
we obtain the base rule by removing all elements with non-true annotations, remove its NACs (lines 2–3), and turn the

20 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

Algorithm 3 Pseudocode for function FINDBASEPREMATCHES.
Input: model: Input model
Input: rule: Variability-based rule
Output: basePreMatches: Base pre-matches

1: function FINDBASEPREMATCHES(model, rule)
2: baseRule = rule.removeAll(elem | elem.pc 6= true)
3: baseRule.removeNACs()
4: Matcher.disableCheckOfGluingCondition()
5: return Matcher.find(model, baseRule)

Algorithm 4 Pseudocode for recursive function FINDMATCHES.
Input: model: Input model
Input: rule: Variability-annotated rule
Input: basePreMatches: Pre-matches of the base rule
Input: bindings: {Variability expressions used in rule}→ {true, false, unbound}
Input: matches: Accumulated variability-based matches
Output: matches: Accumulated variability-based matches

1: function FINDMATCHES(model, rule, basePreMatches, bindings, matches)
2: pc0 = bindings.select(unbound).get(0)
3: bindings.set(pc0, true)
4: FINDMATCHESINNER(model, rule, basePreMatches, bindings, matches)
5: bindings.set(pc0, false)
6: FINDMATCHESINNER(model, rule, basePreMatches, bindings, matches)
7: bindings.set(pc0, unbound)
8: return matches
9: function FINDMATCHESINNER(model, rule, basePreMatches, bindings, matches)

10: bindings = bindings.select(unbound).select(p | bindings.contradicts(p))
11: bindings→ = bindings.select(unbound).select(p | bindings.implies(p))
12: bindings.setAll(bindings → false, bindings→→ true)
13: if bindings.select(unbound).isEmpty() then
14: classicRule = rule.removeAll(elem | elem.pc ∈ bindings.select(false))
15: classicRule = rule.removeAll(nac | nac.pc ∈ bindings.select(false))
16: classicMatches = Matcher.find(model, classicRule, basePreMatches)
17: matches.addAll(createVariabilityBasedMatches(classicMatches))
18: else
19: FINDMATCHES(model, rule, basePreMatches, bindings, matches)
20: bindings.setAll(bindings → unbound, bindings→→ unbound)
21: return

gluing condition check off (line 4). We use the classic matching engine to match the produced base rule to the input
model (line 5). The result is a set of mappings called basePreMatches.

Function FINDMATCHES, shown in Alg. 4, extends basePreMatches to find matches for the variable parts. It
enumerates all valid variability configurations, derives the corresponding rules and matches them classically. FIND-
MATCHES receives an input model, a variability-based rule, the basePreMatches set, and two intermediate parameters:
a data structure bindings that assigns each of the variability expressions used in the rule (i.e., the variability model and
all used presence conditions) to one of the literals true, false or unbound, and a set to accumulate variability-based
matches. The binding for the variability model is set to true, while all presence conditions are set to unbound. The
accumulative set is initially empty. The outputs of this function is a set of variability-based matches (Def. 20).

An execution of FINDMATCHES systematically binds all presence conditions, starting on line 2 with an arbitrary
one that we call pc0. To enumerate all valid configurations, we first set pc0 to true and then to false (lines 3-4 and 5-6).
In both calls to FINDMATCHESINNER, we first consider those presence conditions that were previously unbound and
now are either contradicting or implied by the current bindings. On lines 10 and 11, we compute them using a SAT
solver, calling the results bindings and bindings→ (for false elements and true elements, respectively). We update the

Variability-based model transformation: formal foundation and application 21

bindings accordingly on line 12. If all presence conditions are now bound, the problem becomes classic matching. We
determine the classic rule to be matched by removing rule elements and NACs with a false presence condition on line
14 and 15. The classic match-finder tries to bind the rule elements contained in the derived rule, but not in the base rule.
The result of this process is a set of matches, satisfying the NAC as well as the gluing condition of the considered rule.
The computed matches are translated into variability-based matches, being pairs of a classic match and the current
variability configuration, on lines 16–17. If some presence conditions have not been bound, we call FINDMATCHES
again on line 18. On lines 7 and 19, we reset temporary bindings of variables to clean up before backtracking.

To exemplify our algorithm, we continue with the state machine example. The task is to apply the VB rule G+H
from Fig. 6 to the Washing Machine state machine shown in Fig. 4. To this end, we derive and match the base
rule, comprising elements #65–68 and the connecting delete edges. This results in a number of basePreMatches; in
particular, mWashing binds element #50 and its incoming transitions and their common action while mUnlocking does the
same for element #51. We arbitrarily select a presence condition G and set it to true on line 3. Based on this choice,
we derive H to be false on lines 10-12, completing the binding of presence conditions. On lines 14 and 15, we remove
all rule elements and NACs labelled H to derive a rule isomorphic to Rule G. To find matches for this rule, we now
call the classic match finder several times, using each of the basePreMatches as a prematch once (line 16). In this
process, it shows that we cannot find a match based on the prematch mWashing: since element #50 already has an entry
action, NAC2 can never be satisfied. Instead, we find exactly one full match, extending mUnlocking to incorporate the two
preserve edges, thus satisfying both NAC1 and NAC2. We pair this classic match with the current bindings to create a
variability-based match. The remaining configuration {G=false, H=true} is determined analogously; however, it does
not yield any additional matches.

Note that on lines 10 and 11, our algorithm relies on a SAT solver in order to enumerate valid configurations. On
top of the SAT solver calls, our bookkeeping of bindings allows us to to cache evaluation results and reuse them over
multiple similar SAT problems – in particular, this concerns functions contradicts and implies on lines 10 and 11.
While some SAT solvers might have built-in caching features, the benefit of managing the cache ourselves is that we
are more flexible w.r.t. using different SAT solvers.

Complexity of our algorithm is determined by the number of configurations which grows exponentially with the
number of variation points. Of course, the configurations determine rules that in the classic approach would be matched
individually. Thus, complexity of our algorithm is the same as that in classic matching. Yet, since we save matching
effort by precomputing base pre-matches and then extending them, we predict that algorithm performs better than the
classical one. In the next section, we study if this prediction can be confirmed.

6. Evaluation

We evaluated our approach by comparing it to classic model transformation and by studying the impact of the auto-
mated design decision made during merging.

To this end, we applied it to rule sets from two real-life model transformation scenarios, called FMRECOG and
OCL2NGC, and one adapted from literature, called COMB. All rule sets are available as part of a publicly available
benchmark set [61]. The main quality goal addressed in our evaluation is performance, for the following reasons:
FMRECOG is an automatically derived rule set used in the context of model differencing [10], a task that necessitates
low latency. In our communication with the developer of the OCL2NGC [5], he pointed out that the bad performance
of the rule set was an obstacle to its usefulness. COMB was derived from an earlier benchmark [74]. Therefore, we
optimized the two input parameters cuttingThreshold and ignoreRhs, described in Sec. 5.1, for performance.

We assessed the quality of the produced rules with respect to performance and reduction in redundancy. To quan-
tify performance, we applied the rule sets ten times on all input models and measured cumulative execution time on
all input models. To quantify redundancy reduction, we measured the relative decrease in the number of rule ele-
ments, based on the rationale that we produce semantically equivalent, yet syntactically compacted rules (Thm. 1). As
discussed in Sec. 2, reducing redundancy in rules can benefit their maintainability.

Both real-life rule sets contained negative application conditions (NACs). Many of the rules in the FMRECOG
rule set had complicated NACs, in some cases more than one per rule. Therefore, in our earlier evaluation [63], we
just considered the rule set without its NACs. The NACs of OCL2NGC were relatively simple: each of the 36 rules
contained a small forbid portion corresponding to a create portion of the same rule, preventing the rule from being
applied twice at the same match. Our earlier implementation already contained an ad-hoc treatment for this kind of
NAC being compatible with the formal foundation presented in this work. We still repeated the main experiments with
our new implementation. The rules in COMB did not feature any NACs.

22 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

In what follows, we first describe each of these three scenarios in detail. Afterwards, we explain our research
methodology. Finally, we present and discuss our results and address potential threats to validity.

6.1. Scenarios

In the first scenario, we considered a rule set taken from a product-line evolution scenario [10]. The rule set, FM-
RECOG, contains 54 rules for detecting applications of certain edit operations on a feature model. The rules are
applied on pairs of revisions of the same feature model. To detect edit operations after they were applied – a crucial
task in revision management – we need to find all matches for all rules, which is a highly performance-intensive task.
To measure performance, we applied the rules in FMRECOG on nine feature models with 100 to 300 features each.
The feature models were automatically generated using BeTTY [55] with parameterization profiles rendered after
real-world feature models. For details, please see [10]. To create revisions, editing operations were applied randomly.
Moreover, we preprocessed the rules in FMRECOG to remove instances of rule amalgamation, an advanced transfor-
mation feature that is outside the scope of this work. Still, in contrast to our earlier evaluation [63], we did not remove
the 39 NACs from the rules in FMRECOG, allowing is to study the effect of the approach with its novel NAC treatment.

The second scenario, OCL2NGC, is a translator from Object Constraint Language (OCL) expressions to Nested
Graph Constraints [5]. In the rule set, comprising 54 rules in total, we focused on a subset of 36 rules that are applied
non-deterministically as long as one of them is applicable. This rule subset caused a significant performance bottleneck
during the translation of OCL constraints. For our experiments, we refactored BRS automatically, using the automated
approach, and manually, allowing to compare both approaches to merging. For the manual merging, we clustered the
input rules relying on naming similarities between the rules and merged them based on symmetries that we recognized
in their diagrammatic representations, a daunting and time-consuming task spanning over three days. To measure
performance, we applied all rules, including their NACs, on ten OCL invariants from [5] designed for high coverage
of the translation rules. The input model in each run included the actual invariant paired with the OCL standard library,
yielding 1850 graph elements on average.

The third scenario is based on Varró et al.’s widely-known graph transformation benchmark Comb Pattern [74]. In
the original benchmark, the task was to find occurrences of a small pattern – the comb pattern – in a large grid. The
benchmark has two parameters: the size of the grid and the size of the comb. We extended the task to contain variability
so the new task was to find combs of variable size k, where k can represent any integer in the range [m1,m2]. For our
measurements, we considered the range [3, 8], which was small enough to create the included rules manually, but
large enough to expect an observable difference. We created the 6 comb pattern rules required in the classic approach.
We measured performance on 10 different grids, spanning from 20x20 to 200x200 elements, which allowed us to
consider a variety of input models of different sizes. We considered both sub-tasks described in the original paper:
COMBNOMATCH and COMBSEVERALMATCHES. In the former, the grid is constructed to contain no occurrences of
the comb pattern. In the latter, the grid is constructed to contain many such occurrences. This rule set did not contain
any NACs.

6.2. Methods and Set-Up

In our evaluation, we investigated the following research questions:

• RQ1: How do VB rules created by rule merging compare to the equivalent classical rules?
• RQ2: How do VB rules created by rule merging compare to those created manually?
• RQ3: How do the VB rules created by rule merging scale to large input models?
• RQ4: What is the impact of clone detection?
• RQ5: What is the impact of clustering?

For RQ1, we considered all three rule sets. For RQ2, we considered the scenario where a manually created rule set
was available: OCL2NGC. For RQ3, we considered the COMB scenario, as it features a procedure to increase the input
model automatically (increasing the size of the input grid [74]). We measured the impact of model size on execution
time until we ran out of memory. For RQ4, we randomly discarded 25%–100% of the reported clone groups. For RQ5,
we replaced the default clustering strategy by one that assigns rules to clusters randomly. We measured the execution
time of the rules created using the modified input.

As clone detection techniques, we applied ConQat [18] on OCL2NGC and FMRECOG, as it was the only tool

Variability-based model transformation: formal foundation and application 23

Size Execution time (sec.)

Scenario Rule Set #Rules #Elements #NACs Total Sd Median Sd

FMRECOG Classic 54 4839 39 662.3 28.0 51.9 2.7
Automatic Merge 29 3375 36 117.4 6.4 8.0 0.4

OCL2NGC Classic 36 3541 36 398.5 23.6 55.0 4.4
Manual Merge 10 1018 10 87.0 4.7 26.5 1.7
Automatic Merge 18 2421 23 6.3 0.4 3.9 0.1

COMB Classic 6 252 0 1.39 0.09 0.12 0.01
NOMATCH Automatic Merge 1 62 0 0.24 0.09 0.02 0.01

COMB Classic 6 252 0 10.4 0.18 0.83 0.02
SEVERALMATCHES Automatic Merge 1 62 0 14.2 0.26 1.07 0.05

Table 2. Results for RQ1 and RQ2: Quality characteristics of the rule sets.

Fig. 20. Results for RQ3: Execution time in sec. (y) related to length of grid (x).

that scaled to these scenarios. Since ConQat only reports an approximation rather than the precise set of all clones,
we applied gSpan [77] on the COMB rule set to consider all clones. The input parameters ignoreRhs and cuttingTh-
reshold were tuned independently for each scenario by applying rule merging repeatedly until the execution time was
minimized. Using this tuning approach, we determined the following final configurations: The cuttingThreshold was
0.57 for OCL2NGC, 0.75 for FMRECOG, and 0.8 for COMB. In each case, we set the ignoreRhs parameter to true.
Moreover, the Henshin transformation engine features an optimization concerning the order of nodes considered dur-
ing matching. To study the effect of our technique the FMRECOG rule set in isolation without that optimization, we
deactivated it. We ran all experiments on a Windows 7 workstation (3.40 GHz processor; 8 GB of RAM).

6.3. Results and Discussion

Table 2 shows the size and performance characteristics for all involved rule sets. Execution time is provided in terms
of the total and median amount of time required to apply the whole rule set on each test model, each of them paired
with the standard deviation (SD). The number of elements is denoted in terms of the total number of nodes and edges,
including both left-hand and right-hand side of the involved rules.

RQ1: How do VB rules created by rule merging compare to the equivalent classical rules?
The execution time observed for OCL2NGC after the automated rule merging showed a decrease by the factor of 63.
This substantial speed-up can be partly explained by the merging component of rule merging that eliminates the anti-
pattern Left-hand side not connected (LhsNC) [70]: In the automatically constructed VB rules, connected rules are
used as base rules, while in the classic rules, we found multiple instances of LhsNC. In the FMRECOG and COMB rule
sets, the speed-up was less drastic, amounting to the factors of 5.6 and 5.8, respectively. When applying the COMB rule

24 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

Discarded portion (d)

Scenario 0.0 0.25 0.5 0.75 1.0

OCL2NGC 5.8 5.6 251 981 917
FMRECOG 211 252 604 690 800

Table 3. Results for RQ4: Impact of considered overlap on execution time (sec.).

Clustering strategy

Scenario AvLinkage Random

OCL2NGC 5.8 80
FMRECOG 211 788

Table 4. Results for RQ5: Impact of clustering strategy on execution time (sec.).

set on the SEVERALMATCHES scenario, which involves an artificial input model with many possible matches [74],
execution time increased by the factor 1.36, showing a limitation of VB rules: if the number of base matches is very
high, the initialization overhead for extending the base matches outweighs the initial savings. This overhead may be
reduced by extending the transformation engine implementation so that it reuses results of earlier initializations. The
amount of redundancy was reduced by 30% in OCL2NGC, 31% in FMRECOG, and 75% in COMB.

Considering our earlier measurements [63], the NAC treatment did not impair the performance of the OCL2NGC
and FMRECOG rule sets to a notable extent. In fact, in the case of FMRECOG we observe a performance improvement
by the factor 2 – an interesting and perhaps counter-intuitive observation that also applies for the classic OCL2NGC
and FMRECOG rule sets. As we used the same machine and Eclipse configuration in both experiments, the most likely
explanation for the speed-up is an update to a more recent Java version. Still, the overall performance gain between
classic and variability-based rules is stable over both measurements.

RQ2 How do VB rules created by rule merging compare to those created manually?
In OCL2NGC, we found a speed-up by the factor of 14. To study this observation further, we inspected the manually
created rules, again finding several instances of the LhsNC antipattern. This observation gives rise to an interesting
interpretation of the manual merging process: while the designer’s explicit goal was to optimize the rule set for perfor-
mance, they implicitly performed the more intuitive task of optimizing for compactness. Indeed, the amount of reduced
redundancy in the manually created rules (71%) was significantly greater than in those created by rule merging (30%).
This finding highlights an inherent trade-off between performance- and compactness-oriented merging: Not including
overlap elements into the base rule leads to duplications in the variable portions.

RQ3: How do the VB rules created by rule merging scale to large input models?
As shown in Fig. 20, the last input model before execution terminated with memory overflows was a 480x480 grid
for both rule sets. We observed that the ratio between the execution time of applying the classic (left-hand bars) and
the VB rules (right-hand bars) stayed the same in each iteration, independenty of the size of the input grid: the VB
rules were always faster by the factor of 6. In terms of the total execution time, the speed-up provided by the VB rules
became more important as the size of input models increased.

RQ4 What is the impact of clone detection?
As presented in Table 3, the execution time for the FMRECOG rule set increased monotonically when we increased the
amount of discarded overlap, denoted as d. OCL2NGC behaved almost monotonically as well. The slightly decreased
execution time reported for d=0.25 can be explained by the heuristic merge construction strategy. While the merge
of rules based on their largest clones might be adequate in general, in some cases it may be preferable to discard a
large clone in favor of a more homogeneous distribution of rules. The reported execution time for d=0.75 was higher
than that for the set of classic rules. In this particular case, small clones were used during merging, leading to small
base rules, which resulted in many detectable matches and thus in a high initialization overhead for extending these
matches. To mitigate this issue, one could define a lower threshold for clone size.

RQ5 What is the impact of clustering?

Variability-based model transformation: formal foundation and application 25

As indicated in Table 4, the employed clustering strategy had a significant impact on performance, amounting to
factors of 13.7 for the OCL2NGC and 3.7 for the FMREGOC rule set. Interestingly, in OCL2NGC, random clustering
still yielded better execution times than manual clustering did (see Table 2). This observation is related to the fact that
rule merging removed the LhsNC antipattern. In FMRECOG, randomly clustered rules were comparable to the classic
ones in terms of execution time.

6.4. Threats to validity and limitations

Factors affecting external validity include our choice of rule sets, test models and matching strategy, and the tuning of
the two input parameters. While the considered rule sets represent three heterogeneous use cases, more examples are
required to confirm that our approach works sufficiently well in diverse, potentially larger scenarios. To ensure that our
test models were realistic, we employed the models used by their developers or described in the original benchmark.
The performance of rule application depends on the chosen matching strategy, in our case, mapping this task to a
constraint satisfaction problem [53]. We aim to consider the effect of alternative strategies in the future.

Tuning the two input parameters adds an initial performance overhead to applications of our rule merging mecha-
nism. However, it is fair to assume that once the rule set has been produced, it will be applied frequently and to many
different models. Since we used a variety of test models for tuning in each case, we are confident that our created VB
rules will behave efficiently for other models of the same type, so that the initial performance overhead is eventually
amortized. In contrast, while tempting at the first glance, we recommend to not use the same parameter values over
different rules sets without an additional tuning: in our experience, the optimal values differed significantly from case
to case. Moreover, the tuning of the input parameter requires the existence of test models in order to measure and
compare the performance of the created rules. In a realistic application scenario, such test models are likely to be
available; alternatively, one could generate them using a model generator.

With regard to construct validity, we focus on one aspect of maintainability, the amount of reduced redundancy.
Giving a definitive answer on how to unify rules for optimal maintainability is outside the scope of this work. Specif-
ically, several unrelated rules may be unified, impairing understandability. To mitigate this issue, we recommend to
inspect the clustering result before merging.

A possible limitation of our rule application algorithm is that we resort to SAT solving in order to enumerate valid
configurations during the matching process. In our evaluation rule sets, the complexity of the resulting SAT problems
was so small that the used SAT solver only required a few milliseconds for solving them. Unfortunately, we can foresee
that our approach does not scale up to arbitrarily large rule sets: The main issue is that the performance overhead for
enumerating valid configurations grows exponentially with the number of variation points. Still, apart from the fact
that such critically large rule sets have yet to appear in practice, this limitation is not specific to our approach, as the
classic approach to model transformation is unable to deal with exponentially growing number of rule variants as well.

From the user perspective, another possible limitation is that our approach increases the size of individual rules,
a potential impediment to readability [59]. We believe that this limitation can be mitigated by tool support. In our
recent work, we proposed a tool environment that provides editable views on variability-based rules to developers,
representing portions of a VB rule that correspond to configurations as selected by the user [65]. However, studying
the usefulness of our approach and tool via a user study is left for future work.

7. Related Work

Merge-refactoring in product line engineering. Rule merging is related to a number of approaches in software
product line engineering, specifically approaches that create feature-annotated representations from individual prod-
ucts. Nejati et al. [41] introduced the matching of Statechart models based on commonalities in their structure and
behavior and applied it to merge models of telecommunication features. Ryssel et al. [54] proposed an approach for
re-organizing product variants given in Matlab into annotative representations while identifying variation points. Ru-
bin et al. [51, 52] defined a formal merge framework and instantiated it to class models and state machines, defining a
number of desired qualities of the resulting model and studying how these can be best obtained. Wille et al. [75, 29] in-
troduce a technique for the reverse engineering of variability from block diagrams based on their data-flow structures.
Ziadi et al. [79] have proposed a language-independent approach for the reverse-engineering of product lines. These
approaches operate on the basis of an element-wise comparison using names and as well as structural and behavioral
similarities. In model transformation rules, the essential information lies in structural patterns. To our knowledge, our
approach is the first that utilizes structural clone detection to identify such patterns.

26 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

Optimization of model transformation rule application. Our work can be considered a performance optimization
for the NP-complete problem of transformation rule matching [6]. Earlier approaches in this area are mostly comple-
mentary to ours as they focus on the matching of single rules [73, 30, 36, 1].

Mészáros et al. [40] first explored the idea of considering overlapping portions in multiple rules. Their custom
technique for detecting these sub-patterns, however, did not scale up to complete rule sets. Instead, they considered
just two rules at a time, which enabled a moderate performance improvement of 11%. In our approach, applying
clone detection and clustering techniques gives rise to an increased speed-up. The incremental graph pattern matching
approach in [72] succeeds in mitigating the memory concern of Rete networks by considering shared sub-patterns.
Yet, the authors report on deteriorated execution times: The index tables that map sub-patterns to partial matches grow
so large that performance is impaired. Multi-query optimization has also been investigated for relational databases
[56]. In the more closely related domain of graph databases, all optimization approaches we are aware of focus on
single-query optimization [78].

Clone refactoring. Circumstances under which clones can and should be eliminated are the subject of an ongoing
discussion [51]. Based on empirical observations, Kim et al. [35] identified three types of clones: short-lived clones
vanishing over the course of few revisions, “unfactorable“ clones related to language limitations, and repeatedly
changing clones where a refactoring is recommended. We second the idea that an aggressive refactoring style di-
rected at short-lived clones should be avoided. Instead, targeting clones of the two latter categories, we propose to
apply our approach on stable revisions of the rule set. Specifically, clones of the second category that were previ-
ously “unfactorable“ due to the lack of suitable reuse concepts may benefit from the introduction of VB rules. An
approach complementary to clone refactoring is clone management, based on a tool that detects and updates clones
automatically [42]. This approach has a low initial cost, but requires constant monitoring.

Refactoring of model transformation rules. Multiple techniques for refactoring transformation rules have been
proposed. Alkhazi et all. propose a search-based approach that produces refactoring recommendations for ATL trans-
formation programs using a multi-objective optimization algorithm [2]. Duplications in a rule set can be addressed via
application of the extract rule refactoring, yielding an abstract rule containing the common elements. The main focus
on this approach is to produce optimal results w.r.t quality metrics such as minimal fan-in and fan-out and minimal
number of rules, whereas we have focused on the correctness of the result and the speed-up during rule application.
Taentzer et al. present an approach to specify refactorings for graph transformation systems based on pre-defined pat-
terns [68]. Syriani et al. devise a plan to create a design patterns catalog for model transformations [66]. Rentschler
proposes a modularization technique tailored at textual model transformation languages such as ATL [48]. In [49],
Rentschler et al. employ a clustering-based strategy to identify interface elements during the introduction of interfaces
into legacy transformation rules. Cuadrado et al. present a reuse concept based on abstract transformation rules that
can be instantiated for variants of similar meta-models [14]. The abstract transformation rules are reverse engineered
from existing transformation rules. From all these complementary approaches, the one by Alkhazi et al. is the only
one addressing duplications in rules.

Variability in model transformations. In the broader context of variability management mechanisms, variability-
based rules are inspired by annotative representations of software product lines [16, 33, 51], in which optional parts
are annotated in order to be removed on demand. Annotational mechanisms stand in contrast to compositional ones,
in which modular building blocks are assembled to produce larger artifacts. To the best of our knowledge, all previ-
ous examples for variability management mechanisms in rules, e.g., [34, 58, 71], were based on the compositional
paradigm. While these earlier approaches allowed specifying a product line of transformation rules, they did not pro-
vide an automated refactoring technique to create such representations. Furthermore, they did not provide any benefits
for their performance. Finally, the achieved level of expressiveness was either lower than that of the proposed ap-
proach or so high that an efficient handling is prohibited. As for performance, [58, 34] report on a trade-off between
better variability management and a performance overhead, the latter caused by the derivation of rules. In contrast,
variability-based rules and matching improve both the compactness and the performance of a transformation system.
As for expressiveness, [58] and [71] are based on creating refinement rules for the variable parts and assigning them
to one feature (or variation point). In turn, we support propositional presence conditions over variation points. In this
respect, [34] goes even further by allowing users to annotate a rule element with embedded C++ code, which, however,
would produce an extremely large search space for variability-based matching.

Rule composition. Interestingly, despite being an annotative mechanism, variability-based model transformation bears
similarities to a number of compositional mechanisms for the specification and application of rules, as is reflected in the
decision to use sub-rules as a fundamental concept of our formalization. In this context, a closely related mechanism is

Variability-based model transformation: formal foundation and application 27

rule amalgamation [67, 7, 46], in which an interaction scheme based on a kernel rule and a set of multi-rules is defined
to enable a composition of matches during the application. Similar to such an interaction scheme, a variability-based
rule contains a base rule and a number of superrules. However, in contrast to interaction schemes, variability-based
rules allow to restrict the applicability of superrules by variability conditions. On the other hand, amalgamation allows
to apply multi-rules arbitrarily often, while super-rules of base rules are applied at most once.

Rule composition has also been considered in the work of Ghamarian and Rensink [45, 24] on integrating graph
transformation with process-algebra-style compositionality. To enable reactivity, in the sense that the system at hand
is modelled in relation to an environment with which it interacts continually, these works allow to decompose the
involved graphs and rules into smaller units. Graphs and rules are extended with interfaces in order to compose them
and support the coordination of the overall system behavior. This line of work is orthogonal to ours, as it focuses on
compositionality of graphs as well as rules, whereas we assume a situation where the transformation is applied to a
complete input model, i.e., graphs are not decomposed.

Another important rule composition mechanism supported by several model transformation languages is rule re-
finement [37]. In such languages, a base rule is refined by a set of sub-rules modifying it. Then, some approaches [3, 32]
flatten the rules for application, i.e., compile them into simpler rules. The translational semantics in the approach pro-
posed in RubyTL [15] is closest to ours – it applies the base rules first and then applies the refinement rules on the
target model of the transformation. In contrast, our approach aims to efficiently find matches in the source model.

8. Conclusion and Future Work

In this paper, we proposed variability-based (VB) model transformation, a novel approach to improve maintainabil-
ity and performance in model transformation systems. Our approach supports the unification of rules in similarity-
intensive rule sets into VB rules. To improve execution performance, we harness variability explicitly during the
application of the rules. We introduced rule merging as an approach for constructing VB rules automatically. Our
experiments showed that the approach is effective: the created rules always had preferable quality characteristics when
compared to classical rules, unless the number of expected matches was very high. Notably, the created rules were
more effective when applied to transforming large input models. In contrast to our earlier works [63, 64], the approach
now comprises a powerful and flexible formal framework based on category theory; in addition, it includes a treatment
of negative application conditions, one of the defining features of graph-based model transformations. Using the ap-
proach, the performance of model transformation systems as well as redundancy-related maintainability concerns can
be considerably improved, making the benefits of VB rules available while imposing little manual effort.

In the future, we aim to focus on the practical usefulness of our approach. In our recent work, we have introduced
a tool environment [65] aiming to support users during the management of variability-based rules. Based on a view
concept, users can configure and explore variability-based rules interactively. This way, users can inspect an individual
rule relevant to their task at hand, or even compare multiple ones. To evaluate the usefulness of our tool, as well as
variability-based rules as a reuse concept, a user study is the next sensible step in this direction. To make our approach
more applicable to a broad variety of model transformation use-cases, another crucial feature that needs to be supported
is rule amalgamation, providing a for-each operator on the rule level. Finally, beyond the application of rules, there
is a variety of usage scenarios that may benefit from our compacted representations of similar rules. In the taxonomy
of Thüm et al. [69], this particularly concerns the class of family-based analyses, in which redundant computation
effort is reduced by considering the variability inside similar variants explicitly. As instances of graph transformation
analysis techniques that may benefit from a family-based execution mode, we foresee model checking [47], conflict
and dependency analysis [9], as well as performance prediction [31].

References
[1] Vlad Acretoaie and Harald Störrle. Efficient Model Querying with VMQL. In Proc. of Workshop on Combining Modelling with

Search- and Example-Based Approaches, pages 7–16. CEUR-WS.org, 2015.
[2] Bader Alkhazi, Terry Ruas, Marouane Kessentini, Manuel Wimmer, and William I Grosky. Automated refactoring of ATL model

transformations: a search-based approach. In Proceedings of the International Conference on Model Driven Engineering Languages
and Systems, pages 295–304. ACM, 2016.

[3] Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schürr. Modularizing Triple Graph Grammars Using Rule Refinement.
In Proc. of International Conference on Fundamental Approaches to Software Engineering, pages 340–355, 2014.

[4] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer. Henshin: Advanced Concepts and
Tools for In-Place EMF Model Transformation. In Proc. of International Conference on Model-Driven Engineering Languages and
Systems, pages 121–135. Springer, 2010.

28 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

[5] Thorsten Arendt, Annegret Habel, Hendrik Radke, and Gabriele Taentzer. From Core OCL Invariants to Nested Graph Constraints.
In Proc. of International Conference on Graph Transformation, pages 97–112, 2014.

[6] Mikhail J. Atallah. Algorithms and Theory of Computation Handbook. CRC press, 2002.
[7] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foundation of consistent EMF model transformations by algebraic

graph transformation. Software and System Modeling, 11(2):227–250, 2012.
[8] Dominique Blouin, Alain Plantec, Pierre Dissaux, Frank Singhoff, and Jean-Philippe Diguet. Synchronization of Models of Rich

Languages with Triple Graph Grammars: an Experience Report. In Proc. of International Conference on Theory and Practice of
Model Transformations, 2014.

[9] Kristopher Born, Leen Lambers, Daniel Strüber, and Gabriele Taentzer. Granularity of conflicts and dependencies in graph transfor-
mation systems. In Proc. of the International Conference on Graph Transformation, pages 125–141. Springer, 2017.

[10] Johannes Bürdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter, and Andy Schürr. Reasoning about Product-Line
Evolution using Complex Differences on Feature Models. Journal of Automated Software Engineering, pages 1–47, 2015.

[11] Marsha Chechik, Michalis Famelis, Rick Salay, and Daniel Strüber. Perspectives of Model Transformation Reuse. In Proceedings of
International Conference on Integrated Formal Methods, pages 28–44. Springer, 2016.

[12] Paul C. Clements and Linda Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley, 2001.
[13] Stephen A Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the third annual ACM symposium on Theory

of computing, pages 151–158. ACM, 1971.
[14] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. Reverse Engineering of Model Transformations for Reusability. In Proc.

of International Conference on Theory and Practice of Model Transformations, pages 186–201. Springer, 2014.
[15] Jesús Sánchez Cuadrado and Jesus Garcia Molina. A Model-Based Approach to Families of Embedded Domain-Specific Languages.

IEEE Transactions on Software Engineering, 35(6):825–840, 2009.
[16] Krzysztof Czarnecki and Michał Antkiewicz. Mapping Features to Models: A Template Approach Based on Superimposed Variants.

In Proc. of International Conference on Generative Programming and Component Engineering, pages 422–437. ACM, 2005.
[17] Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of Model Transformation Approaches. IBM Systems Journal,

45(3):621–646, 2006.
[18] Florian Deissenboeck, Benjamin Hummel, Elmar Juergens, Michael Pfaehler, and Bernhard Schaetz. Model Clone Detection in

Practice. In Proc. of Workshop on Software Clones, pages 57–64. ACM, 2010.
[19] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental Theory for Typed Attributed Graphs and Graph

Transformation based on Adhesive HLR Categories. Fundamenta Informaticae, 74(1):31–61, 2006.
[20] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Algebraic Graph Transformation. Monographs

in Theoretical Computer Science. An EATCS Series. Springer, 2006.
[21] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fernando Orejas.M-adhesive transformation systems with nested

application conditions. part 2: Embedding, critical pairs and local confluence. Fundam. Inform., 118(1-2):35–63, 2012.
[22] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fernando Orejas. M-adhesive transformation systems with

nested application conditions. Part 1: parallelism, concurrency and amalgamation. Mathematical Structures in Computer Science,
24(04):240406, 2014.

[23] Michalis Famelis, Levi Lucio, Gehan Selim, Rick Salay, Marsha Chechik, James R. Cordy, Juergen Dingel, Hans Vangheluwe, and
Ramesh S. Migrating Automotive Product Lines: A Case Study. In Proc. of International Conference on Theory and Practice of
Model Transformations. Springer, 2015.

[24] Amir Hossein Ghamarian and Arend Rensink. Generalised compositionality in graph transformation. In Proc. of the International
Conference on Graph Transformation, pages 234–248. Springer, 2012.

[25] Ulrike Golas, Annegret Habel, and Hartmut Ehrig. Multi-amalgamation of rules with application conditions in m-adhesive categories.
Mathematical Structures in Computer Science, 24(04):240405, 2014.

[26] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph Grammars with Negative Application Conditions. Fundamenta
Informaticae, 26(3/4):287–313, 1996.

[27] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of typed attributed graph transformation systems. In Proc.
of International Conference on Graph Transformation, pages 161–176. Springer, 2002.

[28] Frank Hermann, Susann Gottmann, Nico Nachtigall, Benjamin Braatz, Gianluigi Morelli, Alain Pierre, and Thomas Engel. On an
Automated Translation of Satellite Procedures using Triple Graph Grammars. In Proc. of International Conference on Theory and
Practice of Model Transformations, pages 50–51. Springer, 2013.

[29] Sönke Holthusen, David Wille, Christoph Legat, Simon Beddig, Ina Schaefer, and Birgit Vogel-Heuser. Family Model Mining for
Function Block Diagrams in Automation Software. In Proceedings of the International Software Product Line Conference, pages
36–43. ACM, 2014.

[30] Ákos Horváth, Gergely Varró, and Dániel Varró. Generic Search Plans for Matching Advanced Graph Patterns. Electronic Commu-
nications of the EASST, 6, 2007.

[31] Benedek Izsó, Zoltán Szatmári, Gábor Bergmann, Ákos Horváth, and István Ráth. Towards precise metrics for predicting graph
query performance. In Proc. of the International Conference on Automated Software Engineering, pages 421–431. IEEE, 2013.

[32] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick Valduriez. ATL: A QVT-like Transformation Language. In
Proc. on Symposium on Object-Oriented Programming Systems, Languages, and Applications, Companion, pages 719–720. ACM,
2006.

[33] Christian Kästner and Sven Apel. Integrating Compositional and Annotative Approaches for Product Line Engineering. In Proc. of
Workshop on Modularization, Composition and Generative Techniques for Product Line Engineering, pages 35–40, 2008.

[34] Amogh Kavimandan, Aniruddha Gokhale, Gabor Karsai, and Jeff Gray. Managing the Quality of Software Product Line Architec-
tures through Reusable Model Transformations. In Proc. of QoSA/ISARCS, pages 13–22. ACM, 2011.

[35] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An Empirical Study of Code Clone Genealogies. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 187–196. ACM, 2005.

Variability-based model transformation: formal foundation and application 29

[36] Christian Krause, Matthias Tichy, and Holger Giese. Implementing Graph Transformations in the Bulk Synchronous Parallel Model.
In Proc. of International Conference on Fundamental Approaches to Software Engineering, pages 325–339. Springer, 2014.

[37] Angelika Kusel, Johannes Schönböck, Manuel Wimmer, Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger. Reuse in
Model-to-Model Transformation Languages: Are We There Yet? Journal of Software and Systems Modeling, pages 1–36, 2013.

[38] Mihaly Makkai and Marek Zawadowski. Duality for Simple ω-Categories and Disks. Theory and Applications of Categories,
8(7):114–243, 2001.

[39] Martin Mann, Heinz Ekker, and Christoph Flamm. The Graph Grammar Library-a Generic Framework for Chemical Graph Rewrite
Systems. In Proc. of International Conference on Theory and Practice of Model Transformations, pages 52–53. Springer, 2013.

[40] Tamás Mészáros, Gergely Mezei, Tihamér Levendovszky, and Márk Asztalos. Manual and Automated Performance Optimization of
Model Transformation Systems. International Journal on Software Tools for Technology Transfer, 12(3-4):231–243, 2010.

[41] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and Pamela Zave. Matching and Merging of Variant Feature
Specifications. IEEE Transactions on Software Engineering, 38(6):1355–1375, 2012.

[42] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H Pham, Jafar Al-Kofahi, and Tien N Nguyen. Clone Management for Evolving
Software. IEEE Transactions on Software Engineering, 38(5):1008–1026, 2012.

[43] OMG. http://www.omg.org/spec/UML/2.5/. Last Accessed: January 2011.
[44] Nam H Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M Al-Kofahi, and Tien N Nguyen. Complete and Accurate Clone

Detection in Graph-Based Models. In Proc. of International Conference on Software Engineering, pages 276–286. IEEE, 2009.
[45] Arend Rensink. Compositionality in graph transformation. In Proc. of the International Colloquium on Automata, Languages and

Programming, pages 309–320. Springer, 2010.
[46] Arend Rensink and Jan-Hendrik Kuperus. Repotting the geraniums: On nested graph transformation rules. ECEASST, 18, 2009.
[47] Arend Rensink, Ákos Schmidt, and Dániel Varró. Model checking graph transformations: A comparison of two approaches. In Proc.

of the International Conference on Graph Transformation, pages 226–241. Springer, 2004.
[48] Andreas Rentschler. Model Transformation Languages with Modular Information Hiding. PhD thesis, Karlsruher Institut für Tech-

nologie, 2015.
[49] Andreas Rentschler, Dominik Werle, Qais Noorshams, Lucia Happe, and Ralf Reussner. Remodularizing Legacy Model Trans-

formations with Automatic Clustering Techniques. In Proc. of Workshop on the Analysis of Model Transformations, pages 4–13.
CEUR-WS.org, 2014.

[50] Elie Richa, Etienne Borde, and Laurent Pautet. Translating ATL Model Transformations to Algebraic Graph Transformations. In
Proc. of International Conference on Theory and Practice of Model Transformations, pages 183–198. Springer, 2015.

[51] Julia Rubin and Marsha Chechik. Combining Related Products into Product Lines. In Proc. of International Conference on Funda-
mental Approaches to Software Engineering, pages 285–300. Springer, 2012.

[52] Julia Rubin and Marsha Chechik. Quality of Merge-Refactorings for Product Lines. In Proc. of International Conference on
Fundamental Approaches to Software Engineering, pages 83–98. Springer, 2013.

[53] Michael Rudolf. Utilizing Constraint Satisfaction Techniques for Efficient Graph Pattern Matching. In Proc. of Workshop on Theory
and Application of Graph Transformations, page 238. Springer Science & Business Media, 1998.

[54] Uwe Ryssel, Joern Ploennigs, and Klaus Kabitzsch. Automatic Variation-Point Identification in Function-Block-Based Models. In
Proc. of International Conference on Generative Programming and Component Engineering, pages 23–32. ACM, 2010.

[55] Sergio Segura, José A Galindo, David Benavides, José A Parejo, and Antonio Ruiz-Cortés. BeTTy: Benchmarking and Testing on
the Automated Analysis of Feature Models. In Proc. of Workshop on Variability Modelling of Software-intensive Systems, pages
63–71, 2012.

[56] Timos K Sellis. Multiple-query optimization. ACM Transactions on Database Systems (TODS), 13(1):23–52, 1988.
[57] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The Heart and Soul of Model-Driven Software Development. IEEE

Software, 20(5):42–45, 2003.
[58] Marten Sijtema. Introducing Variability Rules in ATL for Managing Variability in MDE-based Product Lines. Proc. of Workshop on

Model Transformation with ATL, pages 39–49, 2010.
[59] Harald Störrle. On the Impact of Layout Quality to Understanding UML Diagrams: Size Matters. In Proc. of International Conference

on Model-Driven Engineering Languages and Systems, pages 518–534. Springer, 2014.
[60] Daniel Strüber. Model-Driven Engineering in the Large: Refactoring Techniques for Models and Model Transformation Systems.

PhD thesis, Philipps-Universität Marburg, 2016.
[61] Daniel Strüber, Timo Kehrer, Thorsten Arendt, Christopher Pietsch, and Dennis Reuling. Scalability of Model Transformations:

Position Paper and Benchmark Set. In Workshop on Scalable Model Driven Engineering, pages 21–30, 2016.
[62] Daniel Strüber, Jennifer Plöger, and Vlad Acretoaie. Clone Detection for Graph-Based Model Transformation Languages. In Pro-

ceedings of the International Conference on the Theory and Practice of Model Transformations (ICMT), pages 191–206. Springer,
2016.

[63] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele Taentzer, and Jennifer Plöger. RuleMerger: Automatic
Construction of Variability-Based Rules. In Proc. of International Conference on Fundamental Approaches to Software Engineering,
pages 122–140, 2016. Springer.

[64] Daniel Strüber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer. A Variability-Based Approach to Reusable and Efficient
Model Transformations. In Proc. of International Conference on Fundamental Approaches to Software Engineering, pages 283–298.
Springer, 2015.

[65] Daniel Strüber and Stefan Schulz. A Tool Environment for Managing Families of Model Transformation Rules. In Proceedings of
the International Conference on Graph Transformations (ICGT), in Memory of Hartmut Ehrig, pages 89–101. Springer, 2016.

[66] Eugene Syriani and Jeff Gray. Challenges for Addressing Quality Factors in Model Transformation. In Proc. of International
Conference on Software Testing, Verification and Validation, pages 929–937. IEEE, 2012.

[67] G. Taentzer. Parallel and Distributed Graph Transformation: Formal Description and Application to Communication Based Systems.
PhD thesis, Technical University of Berlin, 1996.

30 D. Strüber, J. Rubin, T. Arendt, M. Chechik, G. Taentzer, J. Plöger

[68] Gabriele Taentzer, Thorsten Arendt, Claudia Ermel, and Reiko Heckel. Towards Refactoring of Rule-Based, In-Place Model Trans-
formation Systems. In Proc. of Workshop on the Analysis of Model Transformations, pages 41–46. ACM, 2012.

[69] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A classification and survey of analysis strategies for
software product lines. ACM Comput. Surv., 47(1):6:1–6:45, June 2014.

[70] Matthias Tichy, Christian Krause, and Grischa Liebel. Detecting Performance Bad Smells for Henshin Model Transformations. In
Proc. of Workshop on the Analysis of Model Transformations, pages 82–86. CEUR-WS.org, 2013.

[71] Salvador Trujillo, Ander Zubizarreta, Josune De Sosa, and Xabier Mendialdua. On the Refinement of Model-to-Text Transformations.
In Proc. of Jornadas de Ingenieria del Software y Bases de Datos, pages 123–133, 2009.

[72] Gergely Varró and Frederik Deckwerth. A Rete Network Construction Algorithm for Incremental Pattern Matching. In Proc. of
International Conference on Theory and Practice of Model Transformations, pages 125–140. Springer, 2013.

[73] Gergely Varró, Katalin Friedl, and Dániel Varró. Adaptive Graph Pattern Matching for Model Transformations using Model-Sensitive
Search Plans. Electronic Notes in Theoretical Computer Science, 152:191–205, 2006.

[74] Gergely Varró, Andy Schürr, and Daniel Varró. Benchmarking for Graph Transformation. In Proc. of International Symposium on
Visual Languages and Human-Centric Computing, pages 79–88. IEEE, 2005.

[75] David Wille. Managing Lots of Models: the Famine Approach. In Proceedings of the International Symposium on Foundations of
Software Engineering, pages 817–819. ACM, 2014.

[76] Rui Xu, Donald Wunsch, et al. Survey of Clustering Algorithms. IEEE Transactions on Neural Networks, 16(3):645–678, 2005.
[77] Xifeng Yan and Jiawei Han. gspan: Graph-Based Substructure Pattern Mining. In Proc. of International Conference on Data Mining,

pages 721–724. IEEE, 2002.
[78] Peixiang Zhao and Jiawei Han. On Graph Query Optimization in Large Networks. Proc. of the VLDB Endowment, 3(1-2):340–351,

2010.
[79] Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal Ziane, and Yves Le Traon. Towards a Language-Independent Approach

for Reverse-Engineering of Software Product Lines. In Proc. of Symposium on Applied Computing, pages 1064–1071. ACM, 2014.

