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Abstract—Modeling seeks to tame complexity during software
development, by supporting design, analysis, and stakeholder
communication. Paradoxically, experiences made by educators in-
dicate that students often perceive modeling as adding complexity,
instead of reducing it. In this position paper, I analyse modeling
education from the lens of complexity science, a theoretical
framework for the study of complex systems. I revisit pedagogical
literature where complexity science has been used as a framework
for general education and subject-specific education in disciplines
such as medicine, project management, and sustainability. I
revisit complexity-related challenges from modeling education
literature, discuss them in the light of complexity and present
recommendations for taming complexity when teaching modeling.

I. INTRODUCTION

Modern software is inherently complex: it typically needs
to address a huge variety of interactions with users, hardware
devices, physical application contexts, and other software sys-
tems, typically in highly dynamic and continuously changing
real-world environments. As a tool to deal with complexity
during software development, companies rely on modeling.
Brook’s famous essay on essential and accidental complexity
[1]] offers a framework for motivating the use of models, as
a tool that abstracts from the accidental complexity involved
in low-level programming, and allows developers to focus on
the unavoidable, essential complexity of the problem at hand.

Paradoxically, experiences in software engineering educa-
tion indicate that students often perceive modeling as adding,
instead of removing, complexity during software development,
and struggle with the associated challenges [2]]. Modeling is
usually taught in undergraduate courses, either in dedicated
courses on software design, or as a section in broader in-
troductory courses on software engineering. In these courses,
students typically engage with small modeling tasks. In such
contexts, explicitly designing software systems in a new
language presents a radical departure from the programming
activities that students are familiar with, and students often
struggle with using dedicated tools that they perceive as
complex and not particularly user-friendly.

In this position paper, I analyse modeling education from the
lens of the theoretical framework of complexity science [3|],
[4]. Complexity science is involved with the study of systems
that are highly dynamic, uncertain and non-linear in nature. It
has previously been used as a framework to problematize and
suggest improvements to educational practice, both in general
[3]], [4] and subject-specific education [5]-[7]]. As such, com-
plexity science provides a vocabulary that allows exploring

connections between challenges in modeling education and the
previous pedagogical literature, and drawing inspiration from
other disciplines’ ways of dealing with complexity. I provide
an overview of background in this direction in Sect.

To analyse complexity-related challenges in modeling edu-
cation, I apply a lens of interpretation based on the distinction
of two mindsets—an analytical one and a complexivist one—,
lifted from educational literature. I motivate and explain this
approach in Sect. Through this lens of interpretation, in
Sect. [[V] I revisit recurring challenges reported in modeling
education literature and discuss them in the light of complexity
science, with a focus on misalignments between analytical-
mindset teaching practices and the complex situations that
students will encounter in practice, which require a complexi-
tivist mindset. To address the identified challenges, in Sect. E
I present recommendations for addressing complexity.

II. BACKGROUND

I now revisit complexity science and its use as a framework
for discussing education. In particular, I describe how com-
plexity science has previously been employed as a framework
for problematizing aspects of higher education.

Complexity science [8]-[10] deals with systems that are
dynamic, uncertain and non-linear, the so-called complex
systems. Complex systems have several qualities that make
them particularly complicated. They are usually made up by
independent actors who show some sense of self-organization.
The behavior of the constituent actors leads to phenomena of
emergence: observations that cannot be explained only by the
behavior of individual constituent elements. The actors in such
systems are defined by their relationships, where short-range
relationships are vital for determining the system’s overall
behavior. The structure of a complex system continuously
evolves, which allows it learn over time, especially to respond
to pertubations (e.g., disruptions, stress).

Complexity as a framework for explaining education.
Davis and Sumara have presented a positioning of complexity
science as a theory for education [3], [4]. Their positioning
challenges traditional views on education that emphasize di-
chotomies, e.g., viewing knowledge and knowers as entities
that exist independently from each other, which they contrast
with the notion of simultaneity, referring to phenomena that
exist or operate at the same time. In this context, they empha-
size the view of the classroom as a complex learning system
which brings forward knowledge as an emergent phenomenon,



arising from teachers and learners in their unique context,
including personal, societal, cultural, and ecological levels.
From their theoretical framework, Davis and Sumara derive
consequences for teaching methods. A key distinction is
between two mindsets, the analytical and the complexivist
one [11]. The analytical mindset, which is advocated by
traditional teaching methods, is focused on linear, analytical
knowledge, teaching students skills that are suited for systems
of limited complexity. A key tenet of the analytical mindset is
reductionism, which seeks to remove complications from the
analysis of situations to reduce them to the essential elements.
A criticism is that this mindset might not be adequate to
prepare students to real-world situations, in which they are
faced with the complications inherent to complex systems. To
foster the capacity for dealing with complexity, they propose to
engage with learning activities that are conducive to a mindset
that embraces complexity, a so-called complexivist mindset.

Using complexity science to guide the design of learning
activities. The abovementioned educational framework has
inspired contributions that apply complexity science to de-
velop learning activities in specific disciplines. I now discuss
selected examples from four disciplines.

In computing education, Fabricatore et al. [12]] adopted a
complexity-science-based teaching strategy in a game design
course. Towards the course goal of developing a game for a
museum, the course included three project milestones, project
workshops, lectures, and formative tasks. The course was
designed in an adaptive way, by considering the emerging ev-
idence as the course was given. Applied complexity principles
included decentralised control and self-organisation within
teams, frequent and unexpected perturbations (in the form of
consultant feedback) triggering adaptive dynamics, selection
of course contents based on external, contextual factors, and
iterative, incremental teaching applying concepts at increasing
levels of depth and complexity.

In medical education, educators need to prepare students for
multi-faceted clinical situations with complicating factors such
as time pressure, sensitive human aspects, and ethical dilem-
mas. Gormley and Fenwick present a ward-based simulation
exercise [5]], in which students interact with actors during a
realistic ward situation. The situation is made increasingly
more complex, to include aspects of inappropriate patient
and colleague behavior, and life-and-death-related decision
making. Data collected during a run of the simulation allowed
the uncovering of complexity-related patterns. They derive a
set of strategies for managing complexity, namely: taking time
to size up the system; attuning to what emerges; reducing
complexity; boundary practices; and working with uncertainty.

Project management education has traditionally been in-
formed by professional standards such as PMBOK and APM,
describing formalized, context-independent processes [[6]. To
better prepare project managers for complex projects with sud-
den changes, disruptions and interpersonal challenges, Thomas
and Mengel propose a re-shift of project manager education
towards the development of “emotionally and spiritually in-
telligent” project leaders, who comfortably navigate complex

systems in the transition between a stable and a perturbed
state [|6]]. They suggest project-based learning modes that take
complexity science seriously, fostering an ability to adapt to
change and to develop new approaches on the fly.

In sustainability education, it has been long recognized that
sustainability problems are wicked problems [/7] that cannot be
addressed in terms of isolated factors, as they typically involve
an interplay of complex societal and ecological circumstances.
Complexity science offers mathematical methods for describ-
ing complex phenomena that can be used to support an explicit
analysis of such factors in educational activities. Weber et al.
[7] report on a workshop in which participants from diverse
backgrounds were prompted to prepare graph-based system
representations of a selected sustainability problem, which
were then discussed in-plenum. Feedback indicates that the
activity furthered the participants’ interdisciplinary thinking.

III. LENS OF INTERPRETATION

In this paper, I apply a complexity-science-based lens of
interpretation to discuss and inform the design of learning
activities in modeling education. This lens comprises two basic
tenets that build on the conception of analytical and complex-
itivist mindsets [11], as introduced earlier: Methodologically,
this approach is inspired by model papers [13|], a type of
conceptual article that summarizes arguments about a focal
construct as a set of logical statements, in this case, the tenets.

1) Several of the major challenges in modeling education
arise from a misalignment of mindsets: At the time
that students first engage with modeling, their previous
education has guided them to develop an analytical
mindset. In contrast, problems of a type in which
modeling becomes beneficial require the adoption of
a complexivist mindset.

2) Learning activities in modeling education should facil-
itate a shift between these mindsets. To that end, they
should be explicitly designed with complexity in mind.

Before taking a modeling course, students have typically
participated in first-year programming courses, potentially in
addition to high-school courses and hobby projects, where they
dealt with problems that were linear in nature, facilitating the
adoption of an analytical mindset. Such problems have several
key commonalities: First, they can be solved entirely by an
reductionist approach, in which the overall problem is reduced
to several smaller, sub-problems (the “divide and conquer”
paradigm; see the standard examples in programming courses,
such as searching and sorting). Second, these problems grow
linearly in size, in terms of the number of entities in the
system. For example, adding a filter in a “pipes and filter”
architecture requires adding code at one specific location in
the overall codebase, instead of modifications at many places.
Third, problems are specified in a clearly delineated “box”
(input and output specifications of an algorithm), abstracting
away from real-world intricacies, and their inherent uncer-
tainty. For such basic problems, students are well-prepared
with the contents of first-year programming courses.



In contrast, the nature of complex real-world problems that
software deals with, in which modeling unfolds its potential,
require a complexivist mindset [[11] to cope with complexity.
Complexity arises because software systems are deployed to
the real world, and as such, are prone to changes, require to
make decisions in a certain context, might be affected by un-
certainty, and involve people in various roles, who may or may
not have shared understandings, perspectives, and interests.
Drawing a parallel to recent developments in other disciplines
affected by such factors (discussed in Sect. , I make a
case that modeling education could greatly benefit from a
mindset shift: To support the development of a mindset that
prepares students for complexity, we need learning activities
that explicitly take aspects of complex systems into account.

IV. DISCUSSING CHALLENGES IN MODELING EDUCATION

I now revisit recurring reported challenges retrieved from
field-specific literature and discuss them from the chosen lens
of interpretation. The focus of this section is on a problem
analysis, before describing solutions in the next section.

Unclear added value. Modeling is a design activity [14]:
it produces an artifact that is not yet a fully worked-out
solution, but provides the design for one. Developing an
actual, full solution from a model involves writing a certain,
potentially large amount of software code. While advanced
tools (especially in MDE [15]]) allow automating some of the
programming via code generation, there typically remains a
large portion of code to be written by developers.

Students often question the added value of models [16]]
as an additional artifact that takes effort to be created and
maintained. We can apply our interpretative lens to analyse
this concern, which seems particularly justified in an analytical
mindset: There is no essential reason why models are required
for building a software system. The system itself consists of
code that provides the required functionality. A complexivist
mindset acknowledges the effort invested into modeling, but,
in turn, draws attention to the effort that is saved from
the use of models, in the context of realistic development
settings: Communication problems, misunderstandings and
design flaws can be discovered early, before the system is built,
which can help avoid significantly greater effort and time for
fixing problems after the system has been built. To support
development of this mindset, educational activities should be
designed in a way that makes it likely for students to encounter
situations that allow them to appreciate the advantages of
modeling, e.g., in terms of saved effort.

Understanding abstraction. Abstraction is an inherent prin-
ciple of modeling: To support analysis and design, models
are created on an higher abstraction level than code, focusing
on aspects of interest while intentionally removing details
currently deemed outside of interest. For example, a UML
sequence diagram focuses on the interaction of external actors
and system components in terms of message exchanges, while
abstracting away from all questions of how the components
come up with the messages they send to the outside world.

Students regularly struggle with abstraction, and, conse-
quently, deem modeling as too far away from programming
[2], [15]. These observations can be explained with the
analytical-mindset-oriented tasks and problems that students
consider in their pre-modeling education: small-scale program-
ming problems do not evoke a need for abstraction; it is
sufficient to have a fully-worked out solution with all details
in one place. In fairness, such problems and the associated
mindsets are adequate for their educational purpose: for the
“first steps” into computing, it is effective to deal with simple
problems, which encourage a mindset focused on solving such
problems. Yet, at some point, students need to deal with the
complexity of real-world software. In a complevixist mindset,
abstraction is a necessary means to that end: The behavior of
a system arises from the interaction of its components. In the
crucial notion of levels of emergence [3], phenomena need to
be understood at the level of their emergence, and cannot be
understood in terms of lower-level, more detailed activities.
For modeling education, this implies that, for students to
understand the need for abstraction, we need to expose them
to problems that cannot be solved without it.

Putting things in context. Since modeling involves the use of
modeling languages, learning to model also entails learning a
new language. As such, there is a tendency in courses to put an
emphasis on understanding particular languages and associated
tools. For example, the typical first modeling language that
students encounter is UML [17]]. Much effort in such courses is
invested into learning to use the language, typically by building
small examples illustrating the main concepts.

With the focus on modeling languages, there is a tendency in
courses to lack guidance regarding the context in which mod-
eling is performed, specifically: the problems that modeling
tries to solve, the scope within the real world in which these
problems occur, and the positioning of modeling in the devel-
opment process [16]. In an analytical mindset, it is tempting to
view this as a non-issue. Following the reductionist approach,
problems are given in the form of an exact specification
and problem solving entails splitting the problem in smaller
sub-problems, solving each sub-problem independently, by
using available problem-solving tools. A complexivist mindset
acknowledges the importance of learning in context. Software
addresses particular problems whose exact formulation my not
be clear to begin with, and different involved actors, including
the potential users, could have disagreeing views and interests
in the solution. Solving it might require deep understanding of
the application domain, which might not necessary be one in
which the developer has expertise in. A complexivist mindset
naturally encourages the use of project-based learning [18],
which provides opportunities to understand a phenomenon in
a rich, realistic context.

Tool-related challenges. Modeling education typically en-
courages the use of industry-grade modeling tools [16]. Ar-
guably, using the same tools as professionals contributes to
authenticity and allows students to benefit from useful features.
In addition, students can benefit from useful tool functionality,



either directly (e.g., support for layouting and automated
feedback through validity checks) or in the long run (e.g.,
collaboration and versioning support).

However, students struggle with available modeling tools
[15], [16], [19]. Their learning experience is affected by the
perceived complexity and lack of user-friendliness in these
tools, leading to decreased motivation. From an analytical
mindset, it is tempting to discourage the use of realistic tools in
the first place: as a problem-solving device, it would be equally
valid to create models using PowerPoint or on paper; factors
that add accidental complexity [1] could be seen as noise and
should be discouraged in education. From a complexitivist
mindset, using authentic tools seems generally welcome, as
it allows students to explore modeling in a realistic context,
with all of the associated benefits and drawbacks. However,
the degree of realism needs to be managed, mirroring some
concerns that the influence of allowing unrestricted complexity
in education might not necessarily be positive [20]. It is the
teacher’s responsibility to ensure that accidental tool issues
do not get in the way with learning and forming a deeper
understanding. This theme bears a connection to the issue of
facilitating independent problem solving when learning under
guidance, which is explored in Vygotsky’s idea of the Zone
of Proximal Development, and the notion of scaffolding [21]].

V. RECOMMENDATIONS

I now present recommendations to address complexity in
modeling education. As put forward in Section their under-
lying principle is to facilitate the adoption of a complexivist
mindset, preparing the students for complex problems they
will encounter in the real world, and explaining the role of
modeling as a tool in this context. Where I draw from cases
from other disciplines, I reference them accordingly.

Taking time to size up the system is a recommendation lifted
from Gormley and Fenwick [5], who observed that students
performed better and were less prone to distractions when
they took time to familiarize themselves with the environ-
ment before the exercise. In modeling education, sources of
complexity are tools, application domains, and the addressed
problems. Teachers can minimize the detrimental impact of
accidental complexity inherent to tools by providing high-
quality tutorials, which allows students to build a solid mental
model for the tools during their first steps of using them. In
addition, for the considered application domain, they should
provide students with domain expertise in a high-quality form,
through descriptive text and media, as well as access to domain
experts. Teachers can support students during this process by
dedicated tasks for exploring the tools and application domain,
and by starting with simple, tutorial-like problems before
moving to more ambitious ones (see the following item).

Iterative and incremental teaching is based on a practice
by Fabricatore and Lépez [12], who apply a spiral process
for studying concepts and frameworks at increasing level of
depth, allowing understanding to increasingly deepen. This
advice transfers to modeling education in a direct way, given

the complex nature of modeling languages of tools. Educators
should be mindful about the use of industry-grade languages
and tools in beginner-level education. When expected to work
with them, students should be provided with clear usage
explanations, possibly by pointing them to the particular parts
of the tools to be used in assignments (usually a small sub-
set). Considering learnability- and usability-oriented languages
[22], [23], or tools with a beginner mode (e.g., MagicDraw)
is a viable alternative. Tasks should be chosen in such a way
that they naturally increase over time in difficulty and required
expertise level.

Offering a rich, realistic learning scenario to enhance
authenticity is a common theme in the considered studies, e.g.,
dealing with patient behavior [5]], having a real stakeholder
[12], or emulating realistic projects [6]. In modeling education,
the associated advice is to move from toy examples to realistic
scenarios in meaningful application domains. To be able to
give meaningful task descriptions and feedback, the lecturer
should either be an expert (e.g., from developing relevant
applications [24]]) or have access to experts in the application
domain, possibly in the form of an actual stakeholder. Of
interest are scenarios that span multiple disciplines, mirroring
Fabricatore and Lopez’ advice to foster the emergence of
specialisation [[12]. An example domain is robotics [25],
which combines expertise from hardware, physics, navigation,
and planning. Choosing the right scenario requires deliberate
navigation to reach an appropriate amount of complexity.
Replicating the full complexity of modern software systems
in a typical university setting is, arguably infeasible, due to
resource constraints and limited knowledge of educators and
students [26]]. Still, the cases from other disciplines discussed
before suggest that a “sweet spot” between toy problems and
full-fledged real-world complexity is attainable.

Perturbations triggering adaptive dynamics is based on a
recommendation from Fabricatore and Lépez [|12]], who used
consultant feedback and evaluations as a means to expose
game design students to frequent and often unexpected per-
tubations, which required the groups to adapt. In the case
of modeling education, this strategy seems useful as well for
exposing students to the intricateness of real-world software
projects, where requirements can be vague and, especially
in the case of agile development [27], subject to frequent
changes. Pertubations could come from simulated stakehold-
ers, who repeatedly change their needs, or changes between
successive assignments. Descriptions can contain deliberately
vagueness and contradictions that become apparent during
modeling. Planned pertubations require a certain degree of
moderation, as students may feel cheated when they are faced
with changing assignments in an educational context. At the
same time, there is a risk of overexplaining. I recommend to
have several general disclaimers in course materials and early
course meetings that the coursework might involve changing
and unclear requirements, explaining the educational purpose.

Planned non-linearity, a new recommendation informed by
the very definition of complex systems, acknowledges that



complex software is non-linear. Non-linearity arises when
new features are developed that can potentially interact with
all other existing features, leading to the so-called feature
interactions [28]. Another source of non-linearity are feedback
loops in software with machine learning components [29],
in which decisions made by a machine learning model can
influence the system’s outcomes and leak into newly included
training data, eventually leading to unintentional amplification
of signals from the initial training data. Including sources
of non-linearity in problem descriptions leads to complex
programming problems, where models can help students to
gain awareness and a better understanding of interactions and
feedback loops, for example, by visualizing dependencies in
component diagrams.

VI. CONCLUSION

Studying the educational practice from other disciplines can
be insightful to inform the teaching of modeling. The most
important direction for future work is to study the impact of
complexity in modeling education empirically.

I revisited recurring challenges in modeling education from
the lens of complexity science, and offered recommendations
for improved teaching practices. Drawing from complexity-
science-inspired strategies in the educational practice of four
other disciplines, I presented five recommendations with the
common goal of supporting the adoption of a complexivist
mindsets by students.

A future work, first, I envision an a empirical study of the
usefulness of the proposed recommendations, studying short-
term implications on course outcomes, and long-term effects
based on feedback from students who moved on to developer
roles. Second, a more comprehensive study of complexity-
science-based teaching practices in various disciplines and
their potential impact to modeling education.
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