
Supporting Meta-model-based Language Evolution and Rapid Prototyping with
Automated Grammar Transformation

Weixing Zhanga, Jörg Holtmannb, Daniel Strübera,c, Regina Hebigd, Jan-Philipp Steghöfere

aDepartment of Computer Science & Engineering, Chalmers | University of Gothenburg, Gothenburg, Sweden
bIndependent Researcher (main work conducted at a), Paderborn, Germany

cDepartment of Software Science, Radboud University, Nijmegen, Netherlands
dInstitute of Computer Science, University of Rostock, Rostock, Germany

eXITASO GmbH IT & Software Solutions, Augsburg, Germany

Abstract

In model-driven engineering, developing a textual domain-specific language (DSL) involves constructing a meta-model,

which defines an underlying abstract syntax, and a grammar, which defines the concrete syntax for the DSL. We consider

a scenario in which the meta-model is manually maintained, which is common in various contexts, such as blended

modeling, in which several concrete syntaxes co-exist in parallel. Language workbenches such as Xtext support such a

scenario, but require the grammar to be manually co-evolved, which is laborious and error-prone.

In this paper, we present GrammarTransformer, an approach for transforming generated grammars in the context

of meta-model-based language evolution. To reduce the effort for language engineers during rapid prototyping and

language evolution, it offers a catalog of configurable grammar transformation rules. Once configured, these rules can be

automatically applied and re-applied after future evolution steps, greatly reducing redundant manual effort. In addition,

some of the supported transformations can globally change the style of concrete syntax elements, further significantly

reducing the effort for manual transformations. The grammar transformation rules were extracted from a comparison

of generated and existing, expert-created grammars, based on seven available DSLs. An evaluation based on the seven

languages shows GrammarTransformer’s ability to modify Xtext-generated grammars in a way that agrees with

manual changes performed by an expert and to support language evolution in an efficient way, with only a minimal need

to change existing configurations over time.

Keywords: Domain-specific Languages, DSL, Grammar, Xtext, Language Evolution, Language Prototyping

1. Introduction1

Domain-Specific Languages (DSLs) are a common way2

to describe certain application domains and to specify the3

relevant concepts and their relationships (Van Deursen4

et al., 2000). They are, among many other things, used to5

describe model transformations (the Operational transfor-6

Email addresses: weixing.zhang@gu.se (Weixing Zhang),

joerg_holtmann@gmx.de (Jörg Holtmann), danstru@chalmers.se

(Daniel Strüber), regina.hebig@uni-rostock.de (Regina Hebig),

jan-philipp.steghoefer@xitaso.com (Jan-Philipp Steghöfer)

mation language of the MOF Query, View, and Trans- 7

formation — QVTo (Object Management Group, 2016) 8

and the ATLAS Transformation Language — ATL (Eclipse 9

Foundation, 2018)), bibliographies (BibTeX (Paperpile, 10

2022)), graph models (DOT (Graphviz Authors, 2022)), 11

formal requirements (the Scenario Modeling Language — 12

SML (Greenyer, 2018) and Spectra (Spectra Authors, 13

2021)), meta-models (Xcore (Eclipse Foundation, 2018)), 14

or web-sites (Xenia (Xenia Authors, 2019)). 15

In many cases, the syntax of the language that engineers 16

Preprint submitted to Elsevier April 19, 2024

and developers work with is textual. For example, DOT is17

based on a clearly defined and well-documented grammar18

so that a parser can be constructed to translate the input in19

the respective language into an abstract syntax tree which20

can then be interpreted.21

A different way to go about constructing DSLs is22

proposed by model-driven engineering. There, the con-23

cepts that are relevant in the domain are captured in a24

meta-model which defines the abstract syntax (see, e.g.,25

(Roy Chaudhuri et al., 2019; Frank, 2013; Mernik et al.,26

2005)). Different concrete syntaxes, e.g., graphical, textual,27

or form-based, can be defined to describe actual models28

that adhere to the abstract syntax.29

In this paper, we consider the Eclipse ecosystem and30

Xtext (Bettini, 2016) as its de-facto standard framework for31

developing textual DSLs. Xtext relies on the Eclipse Mod-32

eling Framework (EMF) (Steinberg et al., 2008) and uses33

its Ecore (meta-)modeling facilities as basis. Developing a34

textual DSL in Xtext involves two main artifacts: a gram-35

mar, which defines the concrete syntax of the language, and36

a meta-model, which defines the abstract syntax. Xtext37

allows either the grammar or the meta-model to be created38

first, and then automatically generating the one from the39

other (or alternatively, writing both manually and aligning40

them).41

Software languages change over time. This is due to42

language evolution, which entails that languages change43

over time to address new and changed requirements, and44

due to rapid prototyping, which involves many quick itera-45

tions on an initial design. In the case of an Xtext-based46

language, grammar and meta-model need to be modified to47

stay consistent with each other. We consider two options48

for evolving a language in Xtext: First, the developers49

can change the grammar and then use Xtext to automati-50

cally create an updated version of the meta-model from it.51

Second, the developers can change the meta-model then52

use Xtext to update the grammar. We call the first ap-53

proach grammar-based evolution, and the second approach54

meta-model-based evolution. 55

In this paper, we focus on meta-model-based evolution, 56

for the following rationale: While grammar-based evolution 57

is a common way of developing languages in Xtext, it 58

is not geared for three scenarios that we encountered in 59

the real world, including collaborations with an industrial 60

partner. In particular: 1. Several concrete syntaxes (e.g., 61

visual, textual, tabular) for the same underlying metamodel 62

co-exist and evolve at the same time. This is particular 63

common in the context of blended modeling (Ciccozzi et al., 64

2019), a timely modeling paradigm. 2. The metamodel 65

comes from some external source (such as a third-party 66

supplier or a standardization committee), which prohibits 67

independent modification. 3. The metamodel is the central 68

artifact of a larger ecosystem of available tools, including. 69

e.g., automated analyses and transformations. As such, 70

the language engineers might prefer to evolve it directly, 71

instead of relying on the, potentially sub-optimal, output of 72

automatically co-evolving it after grammar changes. The 73

real-world case that inspired this paper has aspects of 74

the first two scenarios: we work on a language from an 75

industry partner for which there already exists an evolving 76

metamodel and graphical editor available. 77

Compared to grammar-based evolution, meta-model- 78

based evolution has one major disadvantage: Co-evolving 79

the grammar after meta-model changes is more complicated 80

than vice versa, as it involves dealing with both abstract 81

and concrete syntax aspects, whereas updating the meta- 82

model after grammar changes only involves abstract syntax 83

aspects. In the state of the art, the updating needs to be 84

done manually, which leads to effort after each evolution 85

step. According to the Xtext textbook (Bettini, 2016), 86

“the drawback [of manually maintaining the Ecore model] is 87

that you need to keep the Ecore model consistent with your 88

DSL grammar.” The goal of this paper is to substantially 89

mitigate this disadvantage, as we will now explain. 90

In this paper, we propose a different approach to support- 91

ing meta-model-based evolution: Automated synchroniza- 92

2

tion of the grammar based on simple rules, which we call93

grammar transformation rules. Such rules encode typical94

improvements that are made to a grammar, e.g., changing95

parentheses layouts, keywords, and orders of rule fragments.96

Configurations can either be automatically extracted from97

previous manual edits of the grammar (Zhang et al., 2023),98

or explicitly created by the language engineer, as an alter-99

native to manually performing redundant changes affecting100

many places in the grammar. Whenever the meta-model101

evolves, the same or a slightly modified set of transforma-102

tion rules can be applied to a fresh grammar that Xtext can103

automatically generate from the meta-model. The resulting104

grammar is inherently synchronized with the meta-model,105

but restores the syntax decisions made in the previous106

grammar versions, thus avoiding effort for manual synchro-107

nization.108

Our approach can considerably reduce the manual ef-109

fort for transformations compared to editing and replay-110

ing grammar changes manually and, consequently, enable111

faster turnaround times. This is due to two factors that112

we demonstrate in our evaluation: First, the potential to113

reuse existing configurations across successive evolution114

steps. For example, we considered four evolution steps115

from the history of QVTo. Initially, we created a config-116

uration that fully transformed the generated grammar to117

be consistent with the expert-created grammar for that118

evolution step. For the following three iterations, we only119

needed to modify 2, 0, and 1 configuration lines, respec-120

tively, to automatically transform the generated grammar.121

Without our approach, language engineers would need to122

manually modify 228 lines of 66 grammar rules in each123

evolution step. Second, the availability of powerful rules124

that enforce a large-scope change affecting many grammar125

rules at the same time. For example, for the EAST-ADL126

case, modifying the Xtext-generated towards the expert-127

created grammar required curly braces for all attributes128

to be removed, while keeping the outer surrounding curly129

braces for each rule. Performing this change manually en-130

tails manually revising 303 rules, whereas it took only one 131

line of configuration in GrammarTransformer. 132

While our approach clearly unfolds these benefits in the 133

case of evolving languages and complex changes, it does 134

not come for free. For locally-scoped changes, creating a 135

configuration generally leads to more effort than a manual 136

grammar edit and hence, presents an upfront investment 137

that pays off only when the language evolves over time. In a 138

different paper (Zhang et al., 2023), we present an approach 139

for automating the extraction of configurations from user- 140

provided manual edits, thus reducing the initial manual 141

effort to be the same as in the traditional process, while 142

keeping the long-term benefits. Together with the present 143

paper, for the supported kinds of changes, it supports a 144

fully automated process for aligning the grammar after 145

changes to the meta-model. 146

The contribution of this paper is GrammarTrans- 147

former, an approach that modifies a generated grammar 148

by applying a set of configurable, modular, simple transfor- 149

mation rules. It integrates into the workflow of language 150

engineers working with Eclipse, EMF, and Xtext technolo- 151

gies and is able to apply rules to reproduce the textual 152

syntaxes of common, textual DSLs. 153

We demonstrate its applicability on seven domain-specific 154

languages from different application areas. We also show 155

its support for language evolution in two cases: 1), we 156

recreate the textual model transformation language QVTo 157

in all four versions of the official standard (Object Man- 158

agement Group, 2016) with only small changes to the 159

configuration of transformation rule applications and with 160

high consistency of the syntax between versions; and 2), we 161

conceived for the automotive systems modeling language 162

EAST-ADL (EAST-ADL Association, 2021) together with 163

an industrial partner a textual concrete syntax (Holtmann 164

et al., 2023), where we initially started with a grammar 165

for a subset of the EAST-ADL meta-model (i.e., textual 166

language version 1) and subsequently evolved the grammar 167

to encompass the full meta-model (i.e., textual language 168

3

version 2).169

The remainder of this paper is structured as follows.170

First, in Section 2, we provide an overview of the back-171

ground of this paper, in particular, on metamodel-based172

textual DSL engineering. In Section 3, we review related173

research. In Section 4, we define the methodology of this174

paper. Subsequently, in Section 5, we describe the iden-175

tified transformation rules, which are the main technical176

contribution of this paper. Following that, in Section 6,177

we present our solution of the GrammarTransformer,178

which implements the identified transformation rules. In179

Section 7, we present our evaluation. Section 8 is devoted180

to our discussion, where we address threats to validity, the181

effort required to use GrammarTransformer, implica-182

tions for practitioners and researchers, and future work.183

Finally, in the last section, we conclude.184

2. Background: Textual DSL Engineering based on185

Meta-models186

The engineering of textual DSLs can be conducted187

through the traditional approach of specifying grammars,188

but also by means of meta-models. Both approaches have189

commonalities, but also differences (Paige et al., 2014). Like190

grammars specified by means of the Extended Backus Naur191

Form (EBNF) (International Organization for Standardiza-192

tion (ISO), 1996), meta-models enable formally specifying193

how the terms and structures of DSLs are composed. In194

contrast to grammar specifications, however, meta-models195

describe DSLs as graph structures and are often used as196

the basis for graphical or non-textual DSLs. Particularly,197

the focus in meta-model engineering is on specifying the198

abstract syntax. The definition of concrete syntaxes is199

often considered a subsequent DSL engineering step. How-200

ever, the focus in grammar engineering is directly on the201

concrete syntax (Kleppe, 2007) and leaves the definition of202

the abstract syntax to the compiler.203

Meta-model-based textual DSLs. There are also examples 204

of textual DSLs that are built with meta-model technology. 205

For example, the Object Management Group (OMG) de- 206

fines textual DSLs that hook into their meta-model-based 207

Meta Object Facility (MOF) and Unified Modeling Lan- 208

guage ecosystems, for example, the Object Constraint Lan- 209

guage (OCL) (Object Management Group (OMG), 2014) 210

and the Operational transformation language of the MOF 211

Query, View, and Transformation (QVTo) (Object Manage- 212

ment Group, 2016). However, this is done in a cumbersome 213

way: Both the specifications for OCL and QVTo define a 214

meta-model specifying the abstract syntax and a grammar 215

in EBNF specifying the concrete syntax of the DSL. This 216

grammar, in turn, defines a different set of concepts and, 217

therefore, a meta-model for the concrete syntax that is 218

different from the meta-model for the abstract syntax. As 219

Willink (Willink, 2020) points out, this leads to the awk- 220

ward fact that the corresponding tool implementations such 221

as Eclipse OCL (Eclipse Foundation, 2022a) and Eclipse 222

QVTo (Eclipse Foundation, 2022b) also apply this distinc- 223

tion. That is, both tool implementations require an abstract 224

syntax and a concrete syntax meta-model and, due to their 225

structural divergences, a dedicated transformation between 226

them. Additionally, both tool implementations provide a 227

hand-crafted concrete syntax parser, which implements the 228

actual EBNF grammar. Maintaining these different parts 229

and updating the manually created ones incurs significant 230

effort whenever the language should be evolved. 231

Xtext. Xtext provides a more streamlined approach to 232

language engineering that envisions the use of a single 233

metamodel for defining the abstract syntax, and an asso- 234

ciated grammar for defining the textual concrete syntax. 235

Grammars are defined in a custom, EBNF-based format. 236

Using an Xtext grammar, Xtext applies the ANTLR parser 237

generator framework (Parr, 2022) to derive a parser and 238

all its required inputs. It also generates editors along with 239

syntax highlighting, code validation, and other useful tools. 240

4

Figure 1: Instance of the generated grammar for EAST-ADL.

Xtext supports both grammar-based and meta-model-241

based-evolution in the sense introduced in Section 1. For242

our considered meta-model-based scenario, Xtext’s default243

workflow requires that after each meta-model change, the244

grammar has to be manually synchronized (Bettini, 2016),245

a disadvantage we aim to avoid with our approach. To this246

end, we rely on a built-in feature of Xtext for automati-247

cally deriving a grammar from a meta-model. (we call this248

grammar generated grammar in this paper). This creates a249

grammar that contains grammar rules for all meta-model250

elements that are contained in a common root node and251

resolves references, etc., to a degree (see Section 4.3 for de-252

tails). This grammar is typically quite verbose, structured253

extensively using braces, and uses a lot of keywords, as illus-254

trated with the example in Figure 1, depicting an instance255

of the generated grammar for EAST-ADL. Therefore, gen-256

erated grammars are intended to be improved before being257

used in practice (Bettini, 2016). In our approach, we use258

generated grammars as the starting point for recording259

and automatically replaying changes made to the grammar,260

thus avoiding manual synchronization effort.261

3. Related Work 262

In the following, we discuss approaches for grammar 263

transformation, approaches that are concerned with the 264

design and evolution of DSLs, and other approaches. 265

Grammar Transformation. There are a few works that aim 266

at transforming grammar rules with a focus on XML-based 267

languages. For example, Neubauer et al. (2015, 2017) also 268

mention transformation of grammar rules in Xtext. Their 269

approach XMLText and the scope of their transformation 270

focus only on XML-based languages. They convert an 271

XML schema definition to a meta-model using the built-in 272

capabilities of EMF. Based on that meta-model, they then 273

use an adapted Xtext grammar generator for XML-based 274

languages to provide more human-friendly notations for 275

editing XML files. XMLText thereby acts as a sort of 276

compiler add-on to enable editing in a different notation 277

and to automatically translate to XML and vice versa. 278

In contrast, we develop a post-processing approach that 279

enables the transformation of any Xtext grammar, not only 280

XML-based ones, cf. also our discussion in Section 8). 281

The approach of Chodarev (2016) shares the same goal 282

and a similar functional principle as XMLText, but uses 283

other technological frameworks. In contrast to XMLText, 284

Chodarev supports more straightforward customization of 285

the target XML language by directly annotating the meta- 286

model that is generated from the XML schema. The same 287

distinction applies here as well: GrammarTransformer 288

enables the transformation of any Xtext grammar and is 289

not restricted to XML-based languages. 290

Grammar transformation for DSLs in general is ad- 291

dressed by Jouault et al. (2006). They propose an ap- 292

proach to specify a syntax for textual, meta-model-based 293

DSLs with a dedicated DSL called Textual Concrete Syn- 294

tax, which is based on a meta-model. From such a syntax 295

specification, a concrete grammar and a parser are gen- 296

erated. The approach is similar to a template language 297

restricting the language engineer and thereby, as the au- 298

5

thors state, lacks the freedom of grammar specifications299

in terms of syntax customization options. In contrast, we300

argue that the GrammarTransformer provides more301

syntax customization options to achieve a well-accepted302

textual DSL.303

Finally, Novotný (2012) designed a model-driven Xtext304

pretty printer, which is used for improving the readability305

of the DSL by means of improved, language-specific, and306

configurable code formatting and syntax highlighting. In307

contrast, our GrammarTransformer is not about im-308

proving code readability but focused on how to design the309

DSL itself to be easy to use and user-friendly.310

Designing and Evolving Meta-model-based DSLs. Many311

papers about the design of DSLs focus solely on the con-312

struction of the abstract syntax and ignore the concrete313

syntaxes (e.g., (Roy Chaudhuri et al., 2019; Frank, 2011)),314

or focus exclusively on graphical notations (e.g.,(Frank,315

2013; Tolvanen and Kelly, 2018)). In contrast, the guide-316

lines proposed by Karsai et al. (2009) contain specific ideas317

about concrete syntax design, e.g., to “balance compact-318

ness and comprehensibility”. Arguably, the languages au-319

tomatically generated by Xtext are neither compact nor320

comprehensible and therefore require manual changes.321

Mernik et al. (2005) acknowledge that DSL design is322

not a sequential process. The paper also mentions the im-323

portance of textual concrete syntaxes to support common324

editing operations as well as the reuse of existing languages.325

Likewise, van Amstel et al. (2010) describe DSL devel-326

opment as an iterative process and use EMF and Xtext327

for the textual syntax of the DSL. They also discuss the328

evolution of the language, and that “it is hard to predict329

which language features will improve understandability and330

modifiability without actually using the language”. Again,331

this is an argument for the need to do prototyping when332

developing a language. Karaila (2009) broadens the scope333

and also argues for the need for evolving DSLs along with334

the “engineering environment” they are situated in, in-335

cluding editors and code generators. Pizka and Jürgens 336

(2007) also acknowledge the “constant need for evolution” 337

of DSLs. 338

There is a lot of research supporting different aspects of 339

language change and evolution. Existing approaches focus 340

on how diverse artifacts can be co-evolved with evolving 341

meta-models, namely the models that are instances of the 342

meta-models (Hebig et al., 2016), OCL constraints that are 343

used to specify static semantics of the language (Khelladi 344

et al., 2017, 2016), graphical editors of the language (Ruscio 345

et al., 2010; Di Ruscio et al., 2011), and model transfor- 346

mations that consume or produce programs of the lan- 347

guage (García et al., 2012). Specifically, the evolution of 348

language instances with evolving meta-models is well sup- 349

ported by research approaches. For example, Di Ruscio et 350

al. (Di Ruscio et al., 2011) support language evolution by 351

using model transformations to simultaneously migrate the 352

meta-model as well as model instances. 353

Thus, while these approaches cover a lot of requirements, 354

there is still a need to address the evolution of textual gram- 355

mars with the change of the meta-model as it happens dur- 356

ing rapid prototyping or normal language evolution. This 357

is a challenge, especially since fully generated grammars 358

are usually not suitable for use in practice. This implies 359

that upon changing a meta-model, it is necessary to co- 360

evolve a manually created grammar or a grammar that has 361

been generated and then manually changed. Grammar- 362

Transformer has been created to support prototyping 363

and evolution of DSLs and is, therefore, able to support 364

and largely automate these activities. 365

Other Approaches. As we mentioned above, besides Xtext, 366

there are two more approaches that support the generation 367

of EBNF-based grammars and from these the generation of 368

the actual parsers. These are EMFText (Heidenreich et al., 369

2009) and the Grasland toolkit (Kleppe, 2007), which are 370

both not maintained anymore. 371

Whereas our work focuses on the Eclipse technology stack 372

6

based on EMF and Xtext, there are a number of other lan-373

guage workbenches and supporting tools that support the374

design of DS(M)Ls and their evolution. However, none of375

these approaches are able to derive grammars directly from376

meta-models, a prerequisite for the approach to language377

engineering we propose and the basis of our contribution,378

GrammarTransformer. Instead, tools like textX (De-379

janović et al., 2017) go the other way around and derive the380

meta-model from a grammar. Langium (TypeFox GmbH,381

2022) is the self-proclaimed Xtext successor without the382

strong binding to Eclipse, but does not support this par-383

ticular use case just yet and instead focuses on language384

construction based on grammars. MetaEdit+ (Kelly and385

Tolvanen, 2018) does not offer a textual syntax for the386

languages, but instead a generator to create text out of387

diagrams that are modeled using either tables, matrices,388

or diagrams. JetBrains MPS (JetBrains, 2022) is based389

on projectional editing where concrete syntaxes are projec-390

tions of the abstract syntax. However, these projections391

are manually defined and not automatically derived from392

the meta-model as it is the case with Xtext. Finally, Pizka393

and Jürgens (2007) propose an approach to evolve DSLs394

including their concrete syntaxes and instances. For that,395

they present “evolution languages” that evolve the concrete396

syntax separately. However, they focus on DSLs that are397

built with classical compilers and not with meta-models.398

4. Methodology399

In this section, we describe our research methodology,400

shown in an overview in Figure 2. Our methodology con-401

sists of a number of sequential steps, in particular: selecting402

the case languages, preparing metamodels and grammars403

(including the exclusion of certain parts of the language),404

and two iterations of analysis, including extraction of gram-405

mar transformation rules and tool development. We now406

describe all of these steps in detail.407

4.1. Selection of Sample DSLs 408

We selected a number of DSLs for which both an expert- 409

created grammar and a meta-model were available. Our 410

key idea was that the expert-created grammar serves as a 411

ground truth, specifying what a desirable target of an trans- 412

formation process would look like. As the starting point 413

for this transformation process, we considered the Xtext- 414

generated grammars for the available meta-models. The 415

goal of our grammar transformation rules was to support 416

an automated transformation to turn the Xtext-generated 417

grammar into the expert-created grammar. By selecting a 418

number of DSLs with a grammar or precise syntax defini- 419

tion from which we could derive such a ground truth, we 420

aimed to generalize the grammar transformation rules so 421

that new languages can be transformed based on rules that 422

we include in GrammarTransformer. 423

Sources. To find language candidates, we collected well- 424

known languages, such as DOT, and used language collec- 425

tions, such as the Atlantic Zoo (AtlanMod Team, 2019), a 426

list of robotics DSLs (Nordmann et al., 2020), and similar 427

collections (Wikimedia Foundation, 2023; Barash, 2020; 428

Semantic Designs, 2021; Community, 2021; Van Deursen 429

et al., 2000). However, it turned out that the search for 430

suitable examples was not trivial despite these resources. 431

The quality of the meta-models in these collections was 432

often insufficient for our purposes. In many cases, the 433

meta-model structures were too different from the gram- 434

mars or there was no grammar in either Xtext or in EBNF 435

publicly available as well as no clear syntax definition by 436

other means. We therefore extended our search to also 437

use Github’s search feature to find projects in which meta- 438

models and Xtext grammars were present and manually 439

searched the Eclipse Foundation’s Git repositories for suit- 440

able candidates. Grammars were either taken from the 441

language specifications or from the repositories directly. 442

Concrete Grammar Reconstruction for BibTeX. In some 443

cases, the syntax of a language is described in detail online, 444

7

Figure 2: Overview of our methodology.

but no EBNF or Xtext grammar can be found. In our case,445

this is the language BibTeX. It is a well-known language446

to describe bibliographic data mostly used in the context447

of typesetting with LaTeX that is notable for its distinct448

syntax. In this case, we utilized the available detailed449

descriptions (Paperpile, 2022) to reconstruct the grammar.450

To validate the grammar we created, we used a number of451

examples of bibliographies from (Paperpile, 2022) and from452

our own collection to check that we covered all relevant453

cases.454

Meta-model Reconstruction for DOT. DOT is a well-known455

language for the specification of graph models that are input456

to the graph visualization and layouting tool Graphviz.457

Since it is an often used language with a relatively simple,458

but powerful syntax, we decided to include it, even if459

we could not find a complete meta-model that contains460

both the graph structures and formatting primitives. The461

repository that also contains the grammar we ended up462

using (itemis AG, 2020), e.g., only contains meta-models463

for font and graph model styles.464

Therefore, we used the Xtext grammar that parses the465

same language as DOT’s expert-created grammar to derive466

a meta-model (itemis AG, 2020). Xtext grammars include467

more information than an EBNF grammar, such as infor-468

mation about references between concepts of the language.469

Thus, the fact that the DOT grammar was already formu-470

lated in Xtext allowed us to directly generate DOT’s Ecore471

meta-model from this Xtext grammar. This meta-model 472

acquisition method is an exception in this paper. Since 473

this paper focuses on how to transform the generated gram- 474

mar, we consider this way of obtaining the meta-model 475

acceptable for this one case. 476

Selected Cases. As a result, we identified a sample of seven 477

DSLs (cf. Table 1), which has a mix of different sources for 478

meta-models and grammars. This convenience sampling 479

consists of a mix of well-known DSLs with lesser-known, 480

but well-developed ones. We believe this breadth of do- 481

mains and language styles is broad enough to extract a 482

generically applicable set of candidate transformation rules 483

for GrammarTransformer. We analyzed these selected 484

languages in two iterations, the 1st analyzing four of them 485

and the 2nd analyzing the remaining three. In Table 1, 486

we list all seven languages, including information about 487

the meta-model (source and the number of classes in the 488

meta-model) and the expert-created grammar (source and 489

the number of grammar rules). 490

4.2. Exclusion of Language Parts for Low-level Expressions 491

Two of the analyzed languages encompass language parts 492

for expressions, which describe low-level concepts like bi- 493

nary expressions (e.g., addition). We excluded such lan- 494

guage parts in ATL and in SML due to several aspects. 495

Both languages distinguish the actual language part and 496

the expression language part already on the meta-model 497

8

Table 1: DSLs used in this paper, the sources of the meta-model and the grammar used, as well as the size of the meta-model and grammar.

The first set of DSLs was analyzed to derive necessary transformation rules, and the second set to validate the candidate transformation rules

and extend them if necessary.

Meta-model Expert-created Grammar Generated Grammar

Iteration DSL Source Classes1 Source Rules lines rules calls

ATL2 Atlantic Zoo 30 ATL Syntax 28 275 30 232
(AtlanMod Team, 2019) (Eclipse Foundation, 2018)

BibTex Grammarware 48 Self-built 46 293 48 188
1st (Zaytsev, 2013) Based on (Paperpile, 2022)

DOT Generated 19 Dot 32 125 23 51
(Graphviz Authors, 2022)

SML3 SML repository 48 SML repository 45 658 96 377
(Greenyer, 2018) (Greenyer, 2018)

Spectra GitHub Repository 54 GitHub Repository 58 442 62 243
(Spectra Authors, 2021) (Spectra Authors, 2021)

2nd Xcore Eclipse 22 Eclipse 26 243 33 149
(Eclipse Foundation, 2012) (Eclipse Foundation, 2018)

Xenia Github Repository 13 Github Repository 13 84 15 36
(Xenia Authors, 2019) (Xenia Authors, 2019)

1 After adaptations, containing both classes and enumerations.
2 Excluding embedded OCL rules.
3 Excluding embedded SML expressions rules.

level and thereby treat the expression language part differ-498

ently. The respective expression parts are similarly large499

than the actual languages (i.e., 56 classes for the embedded500

OCL part of ATL and 36 classes for the SML scenario501

expressions meta-model), which implies a high analysis502

effort. Finally, although having a significantly large meta-503

model, the embedded OCL part of ATL does not specify504

the expressions to a sufficient level of detail (e.g., it does505

not allow to specify binary expressions). Therefore, we506

excluded such language parts by introducing a fake class507

OCLDummy. The details for the exclusion is described in the508

supplemental material (Zhang et al., 2024)1.509

Exclusion from the Grammar. In addition, we need to510

ensure that we can compare the language without the511

excluded parts to the expert-created grammar. To do512

so, we derive versions of the expert-created grammars in513

which these respective language parts are substituted by a514

dummy grammar rule, e.g., OCLDummy in the case of ATL.515

1See folder “Section_4_Methodology”

This dummy grammar rule is then called everywhere where 516

a rule of the excluded language part would have been called. 517

4.3. Meta-model Preparations and Generating an Xtext 518

Grammar 519

The first step of the analysis of any of the languages is to 520

generate an Xtext grammar based on the language’s meta- 521

model. This is done by using the Xtext project wizard 522

within Eclipse. 523

Note that it is sometimes necessary to slightly change 524

the meta-model to enable the generation of the Xtext 525

grammar or to ensure that the compatibility with the 526

expert-created grammar can be reached. These changes 527

are necessary in case the meta-model is already ill-formed 528

for EMF itself (e.g., purely descriptive Ecore files that are 529

not intended for instantiating runtime models) or if it does 530

not adhere to certain assumptions that Xtext makes (e.g., 531

no bidirectional references). The method of metamodel 532

modification is described in detail in our supplementary 533

9

material (Zhang et al., 2024)2.534

In Table 1, we list how many lines, rules, and calls535

between rules the generated grammars included for the536

seven languages.537

4.4. Comparing EBNF and Xtext grammars538

As a prerequisite for our analysis of grammars, we539

present a strategy for dealing with a noteworthy aspect540

of our methodology: in several cases, we dealt with lan-541

guages where the expert-created grammar was available542

in EBNF, whereas our contribution targets Xtext, which543

augments EBNF with additional technicalities, such as544

cross-references and datatypes. Hence, to validate whether545

our approach indeed produces grammars that are equiv-546

alent to expert-created ones, we needed a concept that547

allows comparing EBNF to Xtext grammars.548

To this end, we introduce the concept of imitation. Imi-549

tation is a form of semantic equivalence of grammars that550

abstracts from Xtext-specific technicalities. Specifically,551

we consider a set of EBNF rules {rrx|1 ≤ x ≤ n} to be552

imitated by a set of Xtext rules {roy|1 ≤ y ≤ m} if both553

produce the exact same language, modulo Xtext-specific554

details. Note that the cardinalities n and m may differ due555

to situations in which one expert-created rule is replaced556

by several transformed rules in concert, explained below.557

Like semantic equivalence of context-free grammars, in558

general, (Hopcroft, 1969), imitation is undecidable if two559

arbitrary grammars are considered. However, in the scope560

of our analysis, we deal with specific cases that come from561

our evaluation subjects. These are generally of the following562

form: 1. Two syntactically identical—and thus, inherently563

semantically equivalent—grammar rules 2. Situations in564

which a larger rule from the first grammar is, in a controlled565

way, split up into several rules in the second grammar. For566

these, we consider them as equivalent based on a careful567

manual analysis, explained later.568

2See directory “Section_4_Methodology’.

Listing 1: EBNF rule edge_stmt from the expert-created grammar

for DOT

1 edge_stmt : (node_id | subgraph) edgeRHS [

a t t r _ l i s t]

Listing 2: Xtext rules EdgeStmtNode and EdgeStmtSubgraph from the

transformed generated grammar

1 EdgeStmtNode r e t u r n s EdgeStmtNode:

2 {EdgeStmtNode}

3 node=NodeId

4 (edgeRHS+=EdgeRhs)+

5 (a t t r L i s t s+=A t t r L i s t) ∗

6 ;

7

8 EdgeStmtSubgraph r e t u r n s EdgeStmtSubgraph:

9 {EdgeStmtSubgraph}

10 subgraph=Subgraph

11 (edgeRHS+=EdgeRhs)+

12 (a t t r L i s t s+=A t t r L i s t) ∗

13 ;

For example, the rule edge_stmt shown in Listing 1 is 569

imitated by the combination of the rules EdgeStmtNode and 570

EdgeStmtSubgraph shown in Listing 2. Merging the Xtext 571

rules to form one rule, like the EBNF counterpart, was 572

not possible in this case, due to the necessity of specifying 573

a distinct return type in Xtext, which is not required in 574

EBNF. In addition, the Xtext rules contain Xtext-specific 575

information for dealing with references and attribute types, 576

which is not present in the EBNF rule. 577

4.5. Analysis of Grammars 578

We performed the analysis of existing languages in two 579

iterations. The first iteration was purely exploratory. Here 580

we analyzed four of the languages with the aim of finding 581

as many candidate grammar transformation rules as possi- 582

ble. In the second iteration, we selected three additional 583

languages to validate the candidate rules collected from the 584

first iteration, add new rules if necessary, and generalise 585

the existing rules when applicable. 586

Our general approach was similar in both iterations. 587

10

Once we had generated a grammar for a meta-model, we588

created a mapping between that generated grammar and589

the expert-created grammar of the language. The goal of590

this mapping was to identify which grammar rules in the591

generated grammar correspond to which grammar rules in592

the expert-created grammar. Note that a grammar rule in593

the generated grammar may be mapped to multiple gram-594

mar rules in the expert-created grammar and vice versa.595

From there, we inspected the generated and expert-created596

grammars to identify how they differed and which changes597

would be required to adjust the generated grammar so that598

it produces the same language as the expert-created gram-599

mar, i.e., imitates the expert-created grammar rules. We600

documented these changes per language and summarized601

them as transformation rule candidates in a spreadsheet.602

For example, the expert-created grammar rule603

node_stmt in DOT (see Listing 3) maps to the generated604

grammar rule NodeStmt in Listing 4. Multiple changes are605

necessary to adjust the generated Xtext grammar rule:606

• Remove all the braces in the grammar rule NodeStmt.607

• Remove all the keywords in the grammar rule608

NodeStmt.609

• Remove the optionality from all the attributes in the610

grammar rule NodeStmt.611

• Change the multiplicity of the attribute attrLists612

from 1..* to 0..*.613

Note that in most cases the expert-created grammar614

was written in EBNF instead of Xtext. For example, the615

returns statement in line 1 of Listing 4 is required for pars-616

ing in Xtext. We took that into account when comparing617

both grammars.618

4.5.1. First Iteration: Identify Transformation Rules619

The analysis of the grammars of the four selected DSLs620

in the first iteration had two concrete purposes:621

1. identify the differences between the expert-created622

grammar and generated grammar of the language;623

Listing 3: Non-terminal node_stmt in the expert-created grammar of

DOT, in EBNF

1 node_stmt : node_id [a t t r _ l i s t]

Listing 4: Grammar rule NodeStmt in the generated grammar of DOT,

in Xtext

1 NodeStmt r e t u r n s NodeStmt:

2 {NodeStmt}

3 ’ NodeStmt ’

4 ’ { ’

5 (’ node ’ node=NodeId) ?

6 (’ a t t r L i s t s ’ ’ { ’ a t t r L i s t s+=

A t t r L i s t (" , " a t t r L i s t s+=

A t t r L i s t) ∗ ’ } ’) ?

7 ’ } ’ ;

2. derive grammar transformation rules that can be ap- 624

plied to change the generated grammar so that the 625

transformed grammar parses the same language as the 626

expert-created grammar. 627

Please note that it is not our aim to ensure that the trans- 628

formed grammar itself is identical to the expert-created 629

grammar. Instead, our goal is that the transformed gram- 630

mar is an imitation of the expert-created grammar and 631

therefore is able to parse the same language as the original, 632

usually hand-crafted grammar of the DSL. Each language 633

was assigned to one author who performed the analysis. 634

As a result of the analysis, we obtained an initial set of 635

grammar transformation rules, which contained a total of 636

58 candidate transformation rules. Table 2 summarizes in 637

the second column the number of identified rule candidates 638

and in the second row the number for the first iteration. 639

Since the initial set of grammar transformation rules was a 640

result of an analysis done by multiple authors, it included 641

rules that were partially overlapping and rules that turned 642

out to only affect the grammar’s formatting, but not the 643

language specified by the grammar. Thus, we filtered rules 644

that belong to the latter case. For rule candidates that 645

overlapped with each other, we selected a subset of the 646

11

Table 2: Summary of identified rules their rule variants and their

sources
Iteration Rule

Candidates
Selected Rules Rule

Variants

Iteration 1 58 46 57
Iteration 2 10 10 10

Intermediate sum 68 56 67

Evaluation 4 4 4

Overall sum 72 60 71

rules as a basis for the next step. This filtering led to a647

selection of 46 transformation rules (cf. third column in648

Table 2).649

We processed these 46 selected transformation rules to650

identify required rule variants that could be implemented651

directly by means of one Java class each, which we describe652

more technically as part of our design and implementation653

elaboration in Section 6.3. For identifying the rule variants,654

we focused on the following aspects:655

Specification of scope Small changes in the meta-model656

might lead to a different order of the lines in the gen-657

erated grammar rules or even a different order of the658

grammar rules. Therefore, the first step was to define a659

suitable concept to identify the parts of the generated660

grammar that can function as the scope of an trans-661

formation rule, i.e., where it applies. We identified662

different suitable scopes, e.g., single lines only, specific663

attributes, specific grammar rules, or even the whole664

grammar. Initially, we identified separate rule vari-665

ants for each scope. Note that this also increased the666

number of rule variants, as for some rule candidates667

multiple scopes are possible.668

Allowing multiple scopes In many cases, selecting only669

one specific scope for a rule is too limiting. In the670

example above (Listing 4), pairs of braces in different671

scopes are removed: in the scope of the attribute672

attrLists in line 6 and in the scope of the containing673

grammar rule in lines 4 and 7. This illustrates that674

changes might be applied at multiple places in the675

grammar at once. When formulating rule variants, 676

we analyzed the rule candidates for their potential 677

to be applied in different scopes. When suitable, we 678

made the scope configurable. This means that only 679

one transformation rule variant is necessary for both 680

cases in the example. Depending on the provided 681

parameters, it will either replace the braces for the 682

rule or for specific attributes. 683

Composite transformation rules We decided to avoid 684

transformation rule variants that can be replaced or 685

composed out of other rule variants, especially when 686

such compositions were only motivated by very few 687

cases. However, such rules might be added again later 688

if it turns out they are needed more often. 689

While we identified exactly one rule variant for 690

most of the selected transformation rules, we added 691

more than one rule variant for several of the rules. 692

We did this when slight variations of the results 693

were required. For example, we split up the trans- 694

formation rule SubstituteBrace into the variants 695

ChangeBracesToParentheses, ChangeBracesToSquare, 696

and ChangeBracesToAngle. Note that this split-up into 697

variants is a design choice and not an inherent property of 698

the transformation rule, as, e.g., the type of target bracket 699

could be seen as nothing more than a parameter of the 700

rule. As a result, we settled on 57 rule variants for the 46 701

identified rules (cf. fourth column of second row in Table 2). 702

4.5.2. Second iteration: Validate Transformation Rules 703

The last step left us with 46 selected transformation 704

rules from the first iteration (cf. second row in Table 2). 705

We developed a preliminary implementation of Gram- 706

marTransformer by implementing the 57 rules variants 707

belonging to these 46 transformation rules (we will de- 708

scribe the implementation in the Solution section). To 709

validate this set of transformation rules, we performed a 710

second iteration. In the second iteration, we selected the 711

three DSLs Spectra, Xenia, and Xcore. As in the first 712

12

Listing 5: Two attributes in the grammar rule XOperation in the

generated grammar of Xcore

1 . . .

2 (unordered?= ’ unordered ’) ?

3 (unique?= ’ unique ’) ?

4 . . .

iteration, we generated a grammar from the meta-model,713

analyzed the differences between the generated grammar714

and the expert-created grammar, and identified transfor-715

mation rules that need to be applied to the generated716

grammar to accommodate these differences. In contrast to717

the first iteration, we aimed at utilizing as many existing718

transformation rules as possible and only added new rule719

candidates when necessary.720

We configured the preliminary GrammarTrans-721

former for the new languages by specifying which trans-722

formation rules to apply on the generated grammar. The723

execution results showed that the existing transformation724

rules were sufficient to change the generated grammar of725

Xenia to imitate the expert-created grammar used as the726

ground truth. However, we could not fully transform the727

generated grammar of Xcore and Spectra with the prelimi-728

nary set of 46 transformation rules from the first iteration.729

For example, Listing 5 shows two attributes unordered and730

unique in the grammar rule XOperation in the generated731

grammar for Xcore. However, in the expert-created gram-732

mar, the rule portions for the two attributes each refer to733

the other attribute in a way that allows using the keywords734

in several possible orders, as shown in Listing 6. This trans-735

formation could not be performed with the transformation736

rules from the first iteration.737

Based on the non-transformed parts of the grammars738

of Xcore and Spectra, we identified another ten transfor-739

mation rules for the GrammarTransformer. These740

ten newly identified transformation rules transform all the741

non-transformed parts of the grammar of Xcore, including,742

e.g., transforming the grammar in Listing 5 to Listing 6.743

Listing 6: Two attributes in the grammar rule XOperation in the

expert-created grammar of Xcore

1 . . .

2 unordered?= ’ unordered ’ unique?= ’

unique ’ ? |

3 unique?= ’ unique ’ unordered?= ’

unordered ’ ?

4 . . .

These new transformation rules also transform part of the 744

non-transformed parts of the grammar of Spectra. We 745

will interpret the remaining non-transformed parts in the 746

Evaluation section. In the end, after two iterations, we 747

identified a total of 56 transformation rules (which will be 748

implemented by a total of 67 rule variants) (cf. fourth row 749

in Table 2). 750

5. Identified Transformation Rules 751

In total, we identified 56 distinct transformation rules 752

for the grammar transformation after the 2nd iteration, 753

which we further refined into 67 rule variants (cf. fourth 754

row in Table 2). Note that 4 additional rules were identified 755

during the evaluation (this will be interpreted in the Eval- 756

uation section), increasing the final number of identified 757

transformation rules to 60 (cf. bottom row in Table 2) and 758

the final number of rule variants to 71. 759

Table 3 shows some examples of the transformation rules. 760

The rules we implemented can be categorized by the primi- 761

tives they manipulate: grammar rules, attributes keywords, 762

braces, multiplicities, optionality (a special form of multi- 763

plicities), grammar rule calls, import statements, symbols, 764

primitive types, and lines. They either ‘add’ things (e.g., 765

AddKeywordToRule), ‘remove’ things (e.g., RemoveOption- 766

ality), or ‘change’ things (e.g., ChangeCalledRule). All 767

transformation rules ensure that the resulting changed 768

grammar is still valid and syntactically correct Xtext. 769

Most transformation rules are ‘scoped’ which means that 770

they only apply to a specific grammar rule or attribute. 771

13

Listing 7: Grammar rule NodeStmt in the transformed grammar of

DOT, in Xtext

1 NodeStmt r e t u r n s NodeStmt:

2 {NodeStmt}

3

4

5 node=NodeId

6 (a t t r L i s t s+=A t t r L i s t) ∗

7 ;

In other cases, the scope is configurable, depending on772

the parameters of the transformation rule. For instance,773

the RenameKeyword rule takes a grammar rule and an774

attribute as a parameter. If both are set, the scope is the775

given attribute in the given rule. If no attribute is set, the776

scope is the given grammar rule. If none of the parameters777

is set, the scope is the entire grammar (“Global”). All778

occurrences of the given keyword are then renamed inside779

the respective scope.780

Changes to optionality are used when the generated781

grammar defines an element as mandatory, but the ele-782

ment should be optional according to the expert-created783

grammar. This can apply to symbols (such as commas),784

attributes, or keywords. Additionally, when all attributes785

in a grammar rule are optional, we have an transformation786

rule that makes the container braces and all attributes787

between them optional. This transformation rule allows788

the user of the language to enter only the grammar rule789

name and nothing else, e.g., “EAPackage DataTypes;”.790

Likewise, GrammarTransformer contains rules to791

manipulate the multiplicities in the generated grammars.792

The meta-models and the expert-created grammars we793

used as inputs do not always agree about the multiplicity794

of elements. We provide transformation rules that can795

address this within the constraints allowed by EMF and796

Xtext.797

For the example in Listing 4, this means that the neces-798

sary changes to reach the same language defined in Listing 3799

can be implemented using the following GrammarTrans-800

Table 3: Excerpt of implemented grammar transformation rules. A

configurable scope (“Config.”) means that, depending on provided

parameters, the rule either applies globally to a specific grammar rule

or to a specific attribute.

Subject Op. Rule Scope

Keyword Add AddKeywordToAttr Attribute
AddKeywordToRule Rule
AddKeywordToLine Line

Change RenameKeyword Config.
AddAlternativeKeyword Rule

Rule Remove RemoveRule Global
Change RenameRule Rule

AddSymbolToRule Rule

Optionality Add AddOptionalityToAttr Attribute
AddOptionalityToKeyword Config.

Import Add AddImport Global
Remove RemoveImport Global

Brace Change ChangeBracesToSquare Attribute
Remove RemoveBraces Config.

former rules: 801

• RemoveBraces is applied to the grammar rule 802

NodeStmt and all of its attributes. This removes all 803

the curly braces (‘{’ and ‘}’ in lines 4, 6, and 7) within 804

the grammar rule. 805

• RemoveKeyword is applied to the grammar rule 806

NodeStmt and all of its attributes. This removes 807

the keywords ‘NodeStmt’, ‘node’ and ‘attrLists’ 808

(lines 3, 5, and 6) from this grammar rule. 809

• RemoveOptionality is applied to both attributes. This 810

removes the question marks (‘?’) in lines 5 and 6. 811

• convert1toStarToStar is applied to the attribute 812

attrLists. This rule changes line 6. Before 813

this change, this line is “attrLists+=AttrList (814

"," attrLists+=AttrList)*” (the braces, keyword 815

‘attrLists’ and the optionality ‘?’ have been re- 816

moved by previous transformation rules). After this 817

change, it becomes (attrLists+=AttrList)*. Note 818

that the DOT grammar is specified using a syntax 819

that is slightly different from standard EBNF. In 820

14

𝑚𝑚𝑚𝑚𝑣𝑣1

𝑔𝑔𝑉𝑉1 𝑔𝑔𝑣𝑣1′

𝑚𝑚𝑚𝑚𝑣𝑣2

𝑔𝑔𝑉𝑉2 𝑔𝑔𝑣𝑣2′

automated
inference

(GRAMMAR-
TRANSFORMER UI)

automated
inference

(Xtext project
creation wizard)

evolution step

adapt to adapt to

𝑐𝑐𝑣𝑣1

meta-model

grammar

transformation
rule configurations

𝑚𝑚𝑚𝑚𝑣𝑣𝑣
evolution step

…

meta-model
expert

grammar
expert 𝑐𝑐𝑣𝑣2

adapt to evolution (if required)

𝑔𝑔𝑣𝑣𝑣 𝑔𝑔𝑣𝑣𝑣′

automated
inference

(GRAMMAR-
TRANSFORMER UI)

adapt to

𝑐𝑐𝑣𝑣𝑣
adapt to evolution (if required)

…

Figure 3: Co-evolution workflow with GrammarTransformer. Dashed lines indicate grammar/meta-model conformance.

that syntax, square brackets ([and]) enclose optional821

items (Graphviz Authors, 2022).822

Note that line 2 in Listing 4 has no effect on the syntax823

of the grammar but is required by and specific to Xtext,824

so that we do not adapt such constructs. After the above825

steps, the grammar rule NodeStmt is adapted from Listing 4826

to Listing 7.827

6. Solution: Design and Implementation828

The core of GrammarTransformer is a Java library829

that offers a simple API to configure transformation rule830

applications and execute them on Xtext grammars. Lan-831

guage engineers can use that API to create a small program832

that executes GrammarTransformer, which in turn will833

produce the transformed grammar. Alternatively, the pro-834

grams can be generated automatically, using an automated835

tool (Zhang et al., 2023).836

In this section, we first present our envisioned workflow,837

before describing in detail the specific components of our838

solution: its grammar representation, the design of transfor-839

mation rules and configurations, and its execution engine.840

We wrap up with a comparison to an alternative approach841

and a discussion of limitations and caveats.842

6.1. Language Evolution Workflow843

Figure 3 depicts GrammarTransformer’s language844

evolution workflow from a conceptual as well as user point of845

view. We distinguish between the roles of meta-model expert846

and grammar expert, which can be held by the same person. 847

The former one takes care of the meta-model evolution, 848

and the latter one takes care of the grammar adaptions 849

and particularly the transformation rule configurations. 850

For the first meta-model version mmv1, the initial gram- 851

mar gv1 as well as the complete Xtext editor environment 852

are automatically inferred via the Xtext project creation 853

wizard. The initial grammar follows Xtext’s default layout- 854

ing and is not intended to be directly usable. Creating the 855

first usable version gv1’ of the grammar is the responsibility 856

of the grammar expert. In our approach, they do so in 857

a way that leads to the creation of a transformation rule 858

configuration cv1 that can automatically transform gv1 to 859

gv1’. They have two options for doing so: manually writ- 860

ing the configuration, or performing the intended changes 861

manually and then using ConfigGenerator (Zhang et al., 862

2023) to extract the configuration. 863

Subsequently, the meta-model expert conducts a meta- 864

model evolution step that results in mmv2, leading to a need 865

to co-evolve the grammar. To this end, first, the grammar 866

expert obtains a synchronized version gv2 of the grammar, 867

by having it inferred from the meta-model. Grammar- 868

Transformer offers a custom user interface to infer gv2 869

without the need to use the Xtext project creation wizard, 870

which would result in a cumbersome workflow due to the 871

generation of the complete editor environment. To replay 872

the previously made concrete syntax changes, the gram- 873

mar expert re-applies the transformation rule configuration 874

15

Figure 4: The class design for representing grammar rules.

cv1 to gv2. The grammar engineer might then intend to875

perform further changes to the grammar, for example, to876

change the concrete syntax for new language elements. To877

this end, they proceed in the same way as before, either878

by manually writing a configuration or by automatically879

inferring one from manual changes.880

All further meta-model and grammar co-evolution steps881

follow the same principle.882

6.2. Grammar Representation883

We designed GrammarTransformer to parse an884

Xtext grammar into an internal data structure which is then885

modified and written out again. This internal representa-886

tion of the grammar follows the structure depicted in Fig-887

ure 4. A Grammar contains a number of GrammarRules that888

can be identified by their names. In turn, a GrammarRule889

consists of a sorted list of LineEntrys with their textual890

lineContent and an optional attrName that contains the891

name of the attribute defined in the line. Note that we892

utilize the fact that Xtext generates a new line for each893

attribute.894

6.3. Transformation Rule Design895

Internally, all transformation rules derive from the ab-896

stract class TransformationRule as shown in Figure 5.897

Derived classes overwrite the apply()-method to perform898

the specific text modifications for this rule. By doing so, the899

specific rule can access the necessary information through900

the class members: grammar (i.e., the entire grammar rep-901

resentation as explained in Section 6.2 and depicted in902

Figure 4), grammarRuleName (i.e., the name of the speci-903

fied grammar rule that a user wants to transform exclu-904

sively), and attrName (i.e., the name of an attribute that a905

Figure 5: Excerpt of the class diagram for transformation rules.

user wants to transform exclusively). Sub-classes can also 906

add additional members if necessary. This architecture 907

makes the GrammarTransformer extensible, as new 908

transformation rules can easily be defined in the future. 909

We built the transformation rules in a model-based man- 910

ner by first creating the meta-model shown in Figure 5 and 911

then using EMF to automatically generate the class bodies 912

of the transformation rules. This way we only needed to 913

overwrite the apply()-method for the concrete rules. Inter- 914

nally, the apply()-methods of our transformation rules are 915

implemented using regular expressions. Each transforma- 916

tion rule takes a number of parameters, e.g., the name of 917

the grammar rule to work on or an attribute name to iden- 918

tify the line to work on. In addition, some transformation 919

rules take a list of exceptions to the scope. For example, 920

the transformation rule to remove braces can be applied 921

to a global scope (i.e., all grammar rules) while excluding 922

a list of specific grammar rules from the processing. This 923

allows to configure transformation rule applications in a 924

more efficient way. We implemented all identified trans- 925

formation rules.3 For testing, we built a comprehensive 926

test suite, based on the transformed grammars considered 927

in our design methodology. We created one test case per 928

scenario, to ensure that the grammar produced by our 929

implementation after applying a full given configuration to 930

3See folder ‘1_Source_Code/org.bumble.xtext.grammartransformer’

in our supplemental material (Zhang et al., 2024), which contains

the ‘transformationrule’ project with the full implementation.

16

an Xtext-generated grammar exactly matches an expected931

ground-truth grammar, for which we previously manually932

established that it agrees (in the sense of imitation) with933

an expert-created one).934

6.4. Configuration935

The language engineer has to configure what transfor-936

mation rules the GrammarTransformer should apply937

and how. This is supported by the API offered by Gram-938

marTransformer. Listing 8 shows an example of how to939

configure the transformation rule applications in a method940

executeTransformation(), where the configuration revis-941

its the DOT grammar transformation example transforming942

Listing 4 into Listing 7. Lines 3 to 6 configure transfor-943

mation rule applications. For example, line 3 removes all944

curly braces in the grammar rule NodeStmt. The value of945

the first parameter is set to “NodeStmt”, which means that946

the operation of removing curly braces will occur in the947

grammar rule NodeStmt. If this first parameter is set to948

“null”, the operation would be executed for all grammar949

rules in the grammar. The second parameter is used to in-950

dicate the target attribute. Since it is set to “null”, all lines951

in the targeted grammar rule will be affected. However, if952

the parameter is set to a name of an attribute, only curly953

braces in the line containing that attribute will be removed.954

Finally, the third parameter can be used to indicate names955

of attributes for which the braces should not be removed.956

This can be used in case the second parameter is set to957

“null”.958

Similarly, the transformation rule application in line 4 is959

used to remove all keywords in the grammar rule NodeStmt.960

Again, the second parameter can be used to specify which961

lines should be affected using an attribute. The third962

parameter is used to indicate the target keyword. Since it963

is set to “null”, all keywords in the targeted lines will be964

removed. However, if the keyword is set, only that keyword965

will be removed. The last parameter can be used to indicate966

names of attributes for which the keyword should not be967

Listing 8: Excerpt of the configuration of GrammarTransformer

for the QVTo 1.0 language.)

1 public stat ic boolean executeTrans format ion (\

grammartransformer go) {

2 . . .

3 go . removeBraces (" NodeStmt " , null , null) ;

4 go . removeKeyword (" NodeStmt " , null , null ,

null) ;

5 go . removeOptional i ty (" NodeStmt " , null) ;

6 go . convert1toStarToStar (" NodeStmt " , "

a t t r L i s t s ") ;

7 . . .

8 }

removed. This can be used in case the second parameter is 968

set to “null”. 969

Line 5 is used to remove the optionality from all lines 970

in the grammar rule NodeStmt. If the second parameter 971

gets an argument that carries the name of an attribute, 972

the optionality is removed exclusively from the grammar 973

line specifying the syntax for this attribute. 974

Finally, line 6 changes the multiplicity of the attribute 975

attrLists in the grammar rule NodeStmt from 1..* to 976

0..*. If the second parameter would get the argument 977

“null”, this adaptation would have been executed to all 978

lines representing the respective attributes. 979

6.5. Execution 980

Once the language engineer has configured Gram- 981

marTransformer, they can invoke the tool using 982

GrammarTransformerRunner on the command line and 983

providing the paths to the input and output grammars 984

there. Alternatively, instead of invoking Grammar- 985

Transformer via the command line and modifying 986

executeTransformation(), it is also possible to use JUnit 987

test cases to access the API and transform grammars in 988

known locations. This is the approach we have followed in 989

order to generate the results presented in this paper. 990

Figure 6 uses the first transformation operation from List- 991

ing 8 removing curly braces as an example to depict how 992

17

GrammarTransformer works internally when trans-993

forming grammars. The top of the figure shows an example994

input, which is the grammar rule NodeStmt generated from995

the meta-model of DOT (cf. Listing 4). In the lower right996

corner, the resulting transformed Xtext grammar rule is997

illustrated. In both illustrated grammar rule excerpt, blue998

fonts are the keywords and symbols (braces and commas).999

In Step 1 (initialization), GrammarTransformer1000

builds a data structure out of the grammar initially gener-1001

ated by Xtext. That is, it builds a :Grammar object contain-1002

ing multiple :GrammarRule objects, with each of them con-1003

taining several :LineEntry objects in an ordered list. For1004

example, the :Grammar object contains a :GrammarRule1005

object with the name "NodeStmt". This :GrammarRule1006

object contains seven :LineEntry objects, which represent1007

the seven lines of the grammar rule in Listing 4. Three of1008

these :LineEntry objects contain at least one curly brace1009

(“ ‘{’ ” or “ ‘}’ ”). These lines are explicitly repre-1010

sented in order to later map relevant transformation rules1011

to them. Figure 6 shows an excerpt of the object structure1012

created for the example with the three line objects for the1013

NodeStmt rule.1014

In Step 2 (per Transformation Rule) each trans-1015

formation rule application is processed by executing the1016

apply()-method. For our example, the transformation rule1017

removeBraces is applied via the GrammarTransformer1018

API as configured in line 3 of Listing 8.1019

In Step 2a (localization of affected grammar rules1020

and lines), the grammar rule and lines that need to be1021

changed are located, based on the configuration of the1022

transformation rule application. In the case of our exam-1023

ple, the grammar rule NodeStmt (cf. line 1 in Listing 4) is1024

identified. Then, all lines of that grammar rule are iden-1025

tified that include a curly brace. For example, the lines1026

represented by :LineEntry objects as shown in Figure 61027

are identified.1028

In Step 2b (change), the code uses regular expressions1029

for character-level matching and searching. If it finds curly1030

braces surrounded by single quotes (i.e., “ ‘{’ ” and “ 1031

‘}’ ”), it removes them. 1032

Finally, in Step 3 (finalization), the GrammarTrans- 1033

former writes the complete data structure containing the 1034

transformed grammar rules to a new file by means of the 1035

call setFileText(...). 1036

After the execution of these steps, the transformed ver- 1037

sions of the grammar is ready for use. The typical next step 1038

is to re-generate the parser, textual editor and other arti- 1039

facts for the grammar via Xtext. We recommend that the 1040

language engineer should systematically test the resulting 1041

grammar to check whether it matches their expectations, 1042

based on the generated artifacts and a test suite with di- 1043

verse language instances. After evolution steps, previously 1044

developed tests can act as regression tests. 1045

6.6. Post-Processing vs. Changing Grammar Generation 1046

GrammarTransformer is designed to modify gram- 1047

mars that Xtext generated out of meta-models. An al- 1048

ternative to this post-processing approach is to directly 1049

modify the Xtext grammar generator as, e.g., in XMLText 1050

(Neubauer et al., 2015, 2017). However, we deliberately 1051

chose a post-processing approach, because the application 1052

of conventional regular expressions enables the transfer- 1053

ability to other recent language development frameworks 1054

like Langium (TypeFox GmbH, 2022) or textX (Dejanović 1055

et al., 2017), if they support the grammar generation from 1056

a meta-model in a future point in time. While the trans- 1057

formation rules implemented in grammar transformer are 1058

currently tailored to the structure of Xtext grammars, 1059

GrammarTransformer does not technically depend on 1060

Xtext and the rules could easily be adapted to a different 1061

grammar language. Furthermore, as the implementation 1062

of an Xtext grammar generator necessarily depends on 1063

many version-specific internal aspects of Xtext, the post- 1064

processing approach using regular expressions is consider- 1065

ably more maintainable. 1066

18

DotAst returns DotAst:
 {DotAst}
 'DotAst'
 '{'
 ('graphs' '{' graphs+=DotGraph ("," graphs+=DotGraph)* '}')?
 '}';

strRaw = IOHelper.readFile("MyDot.xtext");
GrammarTransformer go = new GrammarTransformer();
if (!go.processGrammar(strRaw)) {
 ...
 }

: Grammar

: GrammarRule

name = "DotAst"

rules

...
: LineEntry

lineContent="('graphs' '{' ... '}')?"

lines ...

1: Initialization

Grammar rule data structure

go.removeBraces("DotAst", null,
null);

2b: Change

setFileText("MyDot1.xtext", strFinal);

DotAst returns DotAst:
 {DotAst}
 'DotAst'

 ('graphs' graphs+=DotGraph ("," graphs+=DotGraph)*)?
 ;

: LineEntry

lineContent=" '}'; "

: Grammar

: GrammarRule

name = "DotAst"

rules

...
: LineEntry

lineContent="('graphs' ...)?"

lines ...

Grammar rule data structure

: LineEntry

lineContent=" ; "

2a: Locate affected
rules and lines

2: Per Transformation Rule

3: Finalization

Figure 6: Exemplary Interplay of the Building Blocks of the GrammarTransformer

6.7. Limitations and Caveats1067

Our solution has the following limitations and caveats.1068

First, we were not able to completely imitate one of the1069

seven languages. In order to do so, we would have had1070

to provide an transformation rule that would require the1071

GrammarTransformer user to input a multitude of1072

parameter options. This would have strongly increased1073

the effort and reduced the usability to use this one trans-1074

formation rule, and the rule is only required for this one1075

language. Thus, we argue that a manual post-adaptation1076

is more meaningful for this one case. However, the inherent1077

extensibility of the GrammarTransformer allows to1078

add such an transformation rule if desired. We describe the1079

issue in a more detailed manner in Section 7.1.4, which sum- 1080

marizes the evaluation results for the grammar adaptions 1081

of the seven analyzed languages. 1082

Second, our solution is non-commutative, that is, apply- 1083

ing the same rules with the same parametrization, but in a 1084

different order might lead to different results. For example, 1085

if ChangeBracesToAngle and ChangeBracesToSquare are 1086

successively applied to the same grammar rule, the out- 1087

come is “last write wins”, i.e., the rule obtains square 1088

braces. Users should be aware of this property to ensure 1089

that the achieved outcome is consistent with their intended 1090

outcome. 1091

Third, our solution does not strive to maintain back- 1092

19

wards comparability to previous grammar versions—in1093

general, after rule applications, instances of the previous,1094

un-transformed grammar can no longer be parsed. This1095

lack of backwards compatibility is generally desirable, as1096

the alternative would be support for a mixing of old and1097

new grammar elements (e.g., changed keywords and paran-1098

theses styles) in the same instance, which would generally1099

be confusing to the user, and lead to issues with parsing1100

and other tool support. However, to reduce manual effort1101

in cases where legacy grammar instances exist, automated1102

co-evolution of grammar instances after grammar changes1103

is generally possible and leads to a promising future work1104

direction (discussed in Section 8.4).1105

7. Evaluation1106

In this evaluation, we focus on two research questions:1107

• RQ1: Can our solution be used to adapt generated1108

grammars so that they produce the same language as1109

available expert-created grammars?1110

The goal of this question is to validate the claim that1111

our approach can automatically perform the changes1112

that an expert would need to do manually. To this1113

end, we consider languages for which an expert-created1114

grammar exists, and validate the capability of our1115

approach to re-create an equivalent grammar.1116

• RQ2: Can our solution support the co-evolution of1117

generated grammars when the meta-model evolves?1118

Our original motivation for the work was to enable1119

evolution and rapid prototyping for textual languages1120

built with a meta-model. The aim here is to evaluate1121

whether our approach is suitable for supporting these1122

evolution scenarios.1123

In the following, we address both questions. Our supple-1124

mental material (Zhang et al., 2024) contains the source1125

code of the implementation as well as all experiments.1126

7.1. Grammar Adaptation (RQ1) 1127

To address the first question, we evaluate the Grammar- 1128

Transformer by transforming the generated grammars 1129

of the seven DSLs, so that they parse the same syntax as 1130

the expert-created grammars. 1131

7.1.1. Cases 1132

Our goal is to evaluate whether the GrammarTrans- 1133

former can be used to transform the generated grammars 1134

so that their rules imitate the rules of the expert-created 1135

grammars. We reused the meta-model adaptations and 1136

generated grammars from Section 4.3. Furthermore, we 1137

continued working with the versions of ATL and SML in 1138

which parts of their languages were excluded as described 1139

in Section 4.2. 1140

7.1.2. Method 1141

For each DSL, we wrote a configuration for the final 1142

version of GrammarTransformer which was the result 1143

of the work described in Sections 4 to 6. The goal was 1144

to transform the generated grammar so as to ‘imitate’ as 1145

many grammar rules as possible from the expert-created 1146

grammar of the DSL. Note that this was an iterative pro- 1147

cess in which we incrementally added new transformation 1148

rule applications to the GrammarTransformer’s con- 1149

figuration, using the expert-created grammar as a ground 1150

truth and using our notion of ‘imitation’ (cf. Section 4.4) 1151

as the gold standard. Essentially, we updated the Gram- 1152

marTransformer configuration and then ran the tool 1153

before analysing the transformed grammar for imitation 1154

of the original. We repeated the process and adjusted 1155

the GrammarTransformer configuration until the test 1156

grammar’s rules ‘imitated’ the expert-created grammar. 1157

Note that in the case of Spectra, we did not reach that 1158

point. We explain this in more detail in Section 7.1.4. For 1159

all experiments, we used the set of 56 transformation rules 1160

that were identified after the two iterations described in 1161

Section 4 and as summarized in Section 5. 1162

20

To verify whether the transformed grammar imitates the1163

expert-created grammar, we adopted a manual verification1164

method, in which we systematically compared the gram-1165

mar rules in the transformed grammar with the grammar1166

rules in the expert-created grammar. An expert-created1167

grammar is imitated by an transformed grammar if every1168

grammar rule in it is imitated by one (or several) grammar1169

rules from the transformed grammar. The procedure and1170

results of this step are documented in our supplementary1171

materials (Zhang et al., 2024).41172

7.1.3. Metrics1173

To evaluate the transformation results of the Grammar-1174

Transformer on the case DSLs, we assessed the following1175

metrics.1176

#GORA Number of GrammarTransformer rule ap-1177

plications used for the configuration.1178

Grammar rules The changes in grammar rules per-1179

formed by the GrammarTransformer when adapt-1180

ing the generated grammar towards the expert-created1181

grammar. We measure these changes in terms of1182

• mod: Number of modified grammar rules1183

• add: Number of added grammar rules1184

• del: Number of deleted grammar rules1185

Grammar lines The changes in the lines of the gram-1186

mar performed by the GrammarTransformer when1187

adapting the generated grammar towards the expert-1188

created grammar. We measure these changes in terms1189

of1190

• mod: Number of modified lines1191

• add: Number of added lines1192

• del: Number of deleted lines1193

Transformed grammar Metrics about the resulting1194

transformed grammar. We assess1195

4See directory ‘2_Supplemental_Material/Section_7_Evaluation‘.

• lines: Number of overall lines 1196

• rules: Number of grammar rules 1197

• calls: Number of calls between grammar rules 1198

#iGR Number of grammar rules in the expert-created 1199

grammar that were successfully imitated by the trans- 1200

formed grammar. 1201

#niGR Number of grammar rules in the expert-created 1202

grammar that were not imitated by the transformed 1203

grammar. 1204

7.1.4. Results 1205

Table 4 shows the results of applying the Grammar- 1206

Transformer to the seven DSLs. See Table 1 for the 1207

corresponding metrics of the initially generated grammars. 1208

Imitation. For all case DSLs in the first two iterations 1209

except Spectra, we were able to achieve a complete adap- 1210

tation, i.e., we were able to modify the grammar by using 1211

GrammarTransformer so that the grammar rules of 1212

the transformed grammar imitate all grammar rules of the 1213

expert-created grammar. 1214

Limitation regarding Spectra. For one of the languages, 1215

Spectra, we were able to come very close to the expert- 1216

created grammar. Many grammar rules of Spectra could 1217

be nearly imitated. However, we did not implement all 1218

grammar rules that would have been necessary to allow 1219

the full transformation of Spectra. Listing 9 shows the 1220

grammar rule TemporalPrimaryExpr in Spectra’s gener- 1221

ated grammar, while Listing 10 shows what that grammar 1222

rule looks like in the expert-created grammar. In order to 1223

transform the grammar rule TemporalPrimaryExpr from 1224

Listing 9 to Listing 10, we need to configure the Grammar- 1225

Transformer so that it combines the attribute pointer 1226

and operator multiple times, and the default value of the 1227

attribute operator is different each time. The language en- 1228

gineers using the GrammarTransformer need to input 1229

21

Table 4: Result of applying the GrammarTransformer to different DSLs (RQ1)

Transformation Grammar Rules Lines in Grammar Transformed Grammar
DSL degree #GORA mod add del mod add del lines rules calls 1 #iGR #niGR

ATL Complete 178 30 0 0 187 0 23 187 30 76 28 0
BibTeX Complete 14 47 0 1 291 0 0 291 47 188 46 0
DOT Complete 79 24 1 3 112 2 0 114 25 41 13 0
SML Complete 421 40 5 56 267 18 2 285 45 121 44 0

Spectra Close 585 54 3 8 190 9 13 414 57 223 54 2
Xcore Complete 307 20 7 14 179 35 10 214 27 100 25 0
Xenia Complete 74 13 0 2 74 0 0 74 13 28 13 0

1 The number includes the calls to dummy OCL and dummy SML expressions.

Listing 9: Example — grammar rule TemporalPrimaryExpr in the

generated grammar of Spectra

1 TemporalPrimaryExpr r e t u r n s

TemporalPrimaryExpr:

2 {TemporalPrimaryExpr}

3 ’ TemporalPrimaryExpr ’

4 ’ { ’

5 (’ operator ’ operator=EString) ?

6 (’ predPatt ’ predPatt =[

Pred i cateOrPatte rnRe fe r rab l e | EStr ing]) ?

7 (’ p o i n t e r ’ p o i n t e r =[R e f e r r a b l e | EStr ing]) ?

8 (’ regexpPointer ’ regexpPointer =[

DefineRegExpDecl | EStr ing]) ?

9 (’ predPattParams ’ ’ { ’ predPattParams+=

TemporalExpression (" , " predPattParams

+=TemporalExpression) ∗ ’ } ’) ?

10 (’ tpe ’ tpe=TemporalExpression) ?

11 (’ index ’ ’ { ’ index+=TemporalExpression (" , "

index+=TemporalExpression) ∗ ’ } ’) ?

12 (’ tempora lExpress ion ’ tempora lExpress ion=

TemporalExpression) ?

13 (’ regexp ’ regexp=RegExp) ?

14 ’ } ’ ;

multiple parameters to ensure that the GrammarTrans-1230

former gets enough information, and this complex trans-1231

formation requirement only appears in Spectra. Therefore1232

we did not do such an transformation.1233

Size of the Changes. It is worth noting that the number1234

of transformation rule applications is significantly larger1235

than the number of grammar rules for all cases but Bib-1236

TeX. This indicates that the effort required to describe1237

Listing 10: Example — grammar rule TemporalPrimaryExpr in the

expert-created grammar of Spectra

1 TemporalPrimaryExpr r e t u r n s

TemporalExpress ion:

2 Constant | ’ (’ Quant i f i e rExpr ’) ’ | {

TemporalPrimaryExpr}

3 (predPatt =[Pred i cateOrPatte rnRe fe r rab l e]

4 (’ (’ predPattParams+=TemporalInExpr (’ , ’

predPattParams+=TemporalInExpr) ∗ ’) ’ | ’

() ’) |

5 operator =(’− ’ | ’ ! ’) tpe=TemporalPrimaryExpr |

6 p o i n t e r =[R e f e r r a b l e] (’ [’ index+=

TemporalInExpr ’] ’) ∗ |

7 operator=’ next ’ ’ (’ tempora lExpress ion=

TemporalInExpr ’) ’ |

8 operator=’ regexp ’ ’ (’ (regexp=RegExp |

regexpPointer =[DefineRegExpDecl]) ’) ’ |

9 p o i n t e r =[R e f e r r a b l e] operator=’ . a l l ’ |

10 p o i n t e r =[R e f e r r a b l e] operator=’ . any ’ |

11 p o i n t e r =[R e f e r r a b l e] operator=’ . prod ’ |

12 p o i n t e r =[R e f e r r a b l e] operator=’ . sum ’ |

13 p o i n t e r =[R e f e r r a b l e] operator=’ . min ’ |

14 p o i n t e r =[R e f e r r a b l e] operator=’ . max ’) ;

the transformations once is significant. However, the ac- 1238

tual changes to the grammar, e.g., in terms of modified 1239

lines in the grammar are in most cases comparable to 1240

the number of transformation rule applications (e.g., for 1241

ATL with 178 transformation rule applications and 187 1242

changed lines in the grammar) or even much larger (e.g., 1243

for BibTeX with 14 transformation rule applications and 1244

291 modified lines). Note that the number of changed, 1245

22

added, and deleted lines is also an underestimation of the1246

amount of necessary changes, as many lines will be changed1247

in multiple ways, e.g., by changing keywords and braces in1248

the same line. This explains why for some languages the1249

number of transformation rule applications is bigger than1250

the number of changed lines (e.g., for SML we specified1251

421 transformation rule applications which changed, added,1252

and deleted together 287 lines in the grammar).1253

Effort for the Language Engineer. We acknowledge that1254

the number of transformation rule applications that are1255

necessary to adapt a generated grammar to imitate the1256

expert-created grammar indicates that it is more effort1257

to configure GrammarTransformer than to apply the1258

desired change in the grammar manually once. However,1259

even with that assumption, we argue that the effort of1260

configuring GrammarTransformer is in the same order1261

of magnitude as the effort of applying the changes manually1262

to the grammar.1263

Furthermore, we argue that it is more efficient to con-1264

figure GrammarTransformer once than to manually1265

rewrite grammar rules every time the language changes –1266

under the assumption that the configuration can be reused1267

for new versions of the grammar. In that case, the effort1268

invested in configuring GrammarTransformer would1269

quickly pay off when a language is going through changes,1270

e.g., while rapidly prototyping modifications or when the1271

language is evolving. In the next section (Section 7.2), we1272

evaluate this assumption.1273

In terms of reusability of the configurable transforma-1274

tion rules, we observe that most of the languages we cover1275

require at least one unique transformation rule that is not1276

needed by any other language. This applies to DOT, Bib-1277

TeX, ATL with one unique transformation rule, each. Spec-1278

tra was our most complicated case with six unique rules,1279

whereas Xcore requires four and SML requires five unique1280

rules. This indicates that using GrammarTransformer1281

for a new language might require effort by implementing1282

a few new transformation rules. However, we argue that 1283

this effort will be reduced as more transformation rules are 1284

added to GrammarTransformer and that, in particular 1285

for evolving languages, the small investment to create a 1286

new transformation rule will pay off quickly. 1287

7.2. Supporting Evolution (RQ2) 1288

To address the second question, we evaluate the Gram- 1289

marTransformer on two languages’ evolution histories: 1290

The industrial case of EAST-ADL and the evolution of the 1291

DSL QVTo. We focus on the question to what degree a 1292

configuration of the GrammarTransformer that was 1293

made for one language version can be applied to a new 1294

version of the language. 1295

7.2.1. Cases 1296

The two cases we are using to evaluate how Grammar- 1297

Transformer supports the evolution of a DSL are a 1298

textual variant of EAST-ADL (EAST-ADL Association, 1299

2021) and QVT Operational (QVTo) (Object Management 1300

Group, 2016). 1301

EAST-ADL. EAST-ADL is an architecture description 1302

language used in the automotive domain (EAST-ADL As- 1303

sociation, 2021). Together with an industrial language 1304

engineer for EAST-ADL, we are currently developing a 1305

textual notation for version 2.2 of the language (Holtmann 1306

et al., 2023). We started this work with a simplified version 1307

of the meta-model to limit the complexity of the resulting 1308

grammar. In a later step, we switched to the full meta- 1309

model. We treat this switch as an evolution step here. The 1310

meta-model of EAST-ADL is taken from the EATOP repos- 1311

itory (EAST-ADL Association, 2022). The meta-model of 1312

the simplified version contains 91 classes and enumerations, 1313

and the meta-model of the full version contains 291 classes 1314

and enumerations. 1315

QVTo. QVTo is one of the languages in the OMG QVT 1316

standard (Object Management Group, 2016). We use the 1317

23

original meta-models available in Ecore format on the OMG1318

website (Object Management Group, 2016). The baseline1319

version is QVTo 1.0 (Object Management Group, 2008)1320

and we simulate evolution to version 1.1 (Object Man-1321

agement Group, 2011), 1.2 (Object Management Group,1322

2015) and 1.3 (Object Management Group, 2016). Our1323

original intention was to use the Eclipse reference imple-1324

mentation of QVTo (Eclipse Foundation, 2022b), but due1325

to the differences in abstract syntax and concrete syntax1326

(see Section 2), we chose to use the official meta-models1327

instead. We analyzed four versions of QVTo’s OMG offi-1328

cial Ecore meta-model. There are 50 differences between1329

the meta-models of version 1.0 and 1.1, 29 of which are1330

parts that do not contain OCL (as for ATL as described1331

in Section 4.2, we exclude OCL in our solution for QVTo).1332

These 29 differences include different types, for example, 1)1333

the same set of attributes has different arrangement orders1334

in the same class in different versions of the meta-model;1335

2) the same class has different superclasses in different1336

versions; 3) the same attribute has different multiplicities1337

in different versions, etc. There are 3 differences between1338

versions 1.1 and 1.2, all of which are from the OCL part.1339

There is only one difference between versions 1.2 and 1.3,1340

and it is about the same attribute having a different lower1341

bound for the multiplicity in the same class in the two1342

versions. Altogether we observed 54 meta-model differ-1343

ences in QVTo between the different versions (cf. the file1344

“Comparison of QVTo metamodel versions” in the folder1345

“Section_7_Evaluation/Subsection_7.2_Support” lists all1346

the metamodel differences).1347

The OMG website provides an EBNF grammar for each1348

version of QVTo, which is the basis for our imitations of1349

the QVTo languages. Among them, versions 1.0, 1.1, and1350

1.2 share the same EBNF grammar for the QVTo part1351

except for the OCL parts, despite the differences in the1352

meta-model. The EBNF grammar of QVTo in version 1.31353

is different from the other three versions.1354

7.2.2. Preparation of the QVTo Case 1355

In contrast to the EAST-ADL case, we needed to perform 1356

some preparations of the grammar and the meta-model to 1357

study the QVTo case. All adaptations were done the same 1358

way on all versions of QVTo. 1359

Exclusion of OCL. As described in detail in Section 4.2, 1360

we excluded the embedded OCL language part from QVTo. 1361

For the meta-model, we introduced a dummy class for 1362

OCL, changed all calls to OCL types into calls to that 1363

dummy class, and removed the OCL metaclasses from the 1364

meta-model. 1365

As described in Section 4.2, excluding a language part 1366

such as the embedded OCL from the scope of the investi- 1367

gation also implies that we need to exclude this language 1368

part when it comes to judging whether a grammar is imi- 1369

tated. Therefore, we substituted all grammar rules from 1370

the excluded OCL part with a placeholder grammar rule 1371

called ExpressionGO where an OCL grammar rule would 1372

have been called. This change allows us to compare the 1373

expert-created grammar of the different QVTo versions to 1374

the transformed grammar versions. 1375

QVTo Meta-model Adaptations. We found that some non- 1376

terminals of QVTo’s EBNF grammar are missing in the 1377

QVTo meta-model provided by OMG. For example, there 1378

is a non-terminal <top_level> in the EBNF grammar, but 1379

there is no counterpart for it in the meta-model. Therefore, 1380

we need to adapt the meta-model to ensure that it contains 1381

all the non-terminals in the EBNF grammar. To ensure 1382

that the adaptation of the meta-model is done systemat- 1383

ically, we defined seven general adaptation rules that we 1384

followed when adapting the meta-models of the different 1385

versions. We list these adaptation rules in the supplemental 1386

material (Zhang et al., 2024). 1387

As a result, we added 62 classes and enumerations with 1388

their corresponding references to each version of the meta- 1389

model. Note that this number is high compared to the 1390

original number of classes in the meta-model (24 classes). 1391

24

This massive change was necessary, because the available1392

Ecore meta-models were too abstract to cover all elements1393

of the language. The original meta-model did contain most1394

key concepts, but would not allow to actually specify a1395

complete QVTo transformation. For example, with the1396

original meta-model, it was not possible to represent the1397

scope of a mapping or helper.1398

These changes enable us to imitate the QVTo gram-1399

mar. However, they do not bias the results concerning1400

the effects of the observed meta-model evolution as, with1401

exception of a single case, these evolutionary differences1402

are neither erased nor increased by the changes we per-1403

formed to the meta-model. The exception is a meta-model1404

evolution change between version 1.0 and 1.1 where the1405

class MappingOperation has super types Operation and1406

NamedElement, while the same class in V1.1 does not. The1407

meta-model change performed by us removes the superclass1408

Operation from MappingOperation in version 1.0. We did1409

this change to prevent conflicts as the attribute name would1410

have been inherited multiple times by MappingOperation.1411

This in turn would cause problems in the generation pro-1412

cess. Thus, only two of the 54 meta-model evolutionary1413

differences could not be studied. The differences and their1414

analysis can be found in the supplemental material (Zhang1415

et al., 2024).1416

7.2.3. Method1417

To evaluate how GrammarTransformer supports the1418

evolution of meta-models we look at the effort that is1419

required to update the transformation rule applications1420

after an update of the meta-models of EAST-ADL and1421

QVTo.1422

Baseline GrammarTransformer Configuration. First,1423

we generated the grammar for the initial version of a lan-1424

guage’s meta-model (i.e., the simple version for EAST-ADL1425

and version 1.0 for QVTo). Then we defined the configu-1426

ration of transformation rule applications that allows the1427

GrammarTransformer to modify the generated gram-1428

mar so that its grammar rules imitate the expert-created 1429

grammar for each case. Doing so confirmed the obser- 1430

vation from the first part of the evaluation that a new 1431

language of sufficient complexity requires at least some new 1432

transformation rules (see Section 7.1.4). Consequently, we 1433

identified the need for four additional transformation rules 1434

for QVTo, which we implemented accordingly as part of 1435

the GrammarTransformer (this is also summarized in 1436

Section 5 in Table 2). This step provided us with a baseline 1437

configuration for the GrammarTransformer. 1438

Evolution. For the following language versions, i.e., the full 1439

version of EAST-ADL and QVTo 1.1, we then generated 1440

the grammar from the corresponding version of the meta- 1441

model and applied the GrammarTransformer with the 1442

configuration of the previous version (i.e., simple EAST- 1443

ADL and QVTo 1.0). We then identified whether this 1444

was already sufficient to imitate the language’s grammar 1445

or whether changes and additions to the transformation 1446

rule applications were required. We continued adjusting 1447

the transformation rule applications accordingly to gain a 1448

GrammarTransformer configuration valid for the new 1449

version (full EAST-ADL and QVTo 1.1, respectively). For 1450

QVTo, we repeated that process two more times: For QVTo 1451

1.2, we took the configuration of QVTo 1.1 as a baseline, 1452

and for QVTo 1.3, we took the configuration of QVTo 1.2 1453

as a baseline. 1454

7.2.4. Metrics 1455

We documented the metrics used in Section 7.1.3 for 1456

EAST-ADL and QVTo in their different versions. In addi- 1457

tion, we also documented the following metric: 1458

#cORA The number of changed, added, and deleted 1459

transformation rule applications compared to the pre- 1460

vious language version. 1461

7.2.5. Results 1462

Table 5 shows the results of the evolution cases. 1463

25

EAST-ADL. Compared with the simplified version of1464

EAST-ADL, the full version is much larger. It contains1465

291 metaclasses, i.e., 200 metaclasses more than the simple1466

version of EAST-ADL, which leads to a generated grammar1467

with 291 grammar rules and 2,839 non-blank lines in the1468

generated grammar file (cf. Table 5).1469

The 22 transformation rule applications for the simple1470

version of EAST-ADL already change the grammar sig-1471

nificantly, causing modifications of all 91 grammar rules1472

and changes in nearly every line of the grammar. This1473

also illustrates how massive the changes to the generated1474

grammar are to reach the desired grammar. The number of1475

changes is even larger with the full version of EAST-ADL.1476

We only needed to change and add a total of 10 grammar1477

transformation rule applications to complete the transfor-1478

mation of the grammar of full EAST-ADL. For example,1479

we excluded the primary type String0 from the full ver-1480

sion of the EAST-ADL grammar, which led us to add1481

a line of configuration go.removeRule(String0). While1482

this is increasing the GrammarTransformer configura-1483

tion from the simple EAST-ADL version quite a bit (from1484

22 transformation rule applications to 31 transformation1485

rule applications), the increase is fairly small given that1486

the meta-model increased massively (with 200 additional1487

metaclasses).1488

The reason is that our grammar transformation require-1489

ments for the simplified version and the full version of1490

EAST-ADL are almost the same. This transformation1491

requirement is mainly based on the look and feel of the1492

language and is provided by an industrial partner. These1493

transformation rule applications have been configured for1494

the simplified version. When we applied them to the gener-1495

ated grammar of the full version of EAST-ADL, we found1496

that we can reuse all of these transformation rule applica-1497

tions. Furthermore, we benefit from the fact that many1498

transformation rule applications are formulated for the1499

scope of the whole grammar and thus can also influence1500

grammar rules added during the evolution step. We do not1501

list a number of grammar rules in a expert-created gram- 1502

mar of EAST-ADL in Table 5, because there is no “original” 1503

text grammar of EAST-ADL. Instead, we transform the 1504

generated grammar of EAST-ADL according to our in- 1505

dustrial partner’s requirements for EAST-ADL’s textual 1506

concrete syntax. 1507

QVTo. The baseline configuration of the Grammar- 1508

Transformer for QVTo includes 733 transformation rule 1509

applications, which is a lot given that the expert-created 1510

grammar of QVTo 1.0 has 115 non-terminals. Note that the 1511

transformed grammar has even fewer grammar rules (77) as 1512

some of the rules in the transformed grammar imitate mul- 1513

tiple rules from the expert-created grammar at once. This 1514

again is a testament to how different the expert-created 1515

grammar is from the generated one (over 228 lines in the 1516

grammar are modified, 2 lines are added, and 580 lines are 1517

deleted by these 733 transformation rule applications). 1518

However, if we look at the evolution towards versions 1519

1.1, 1.2, and 1.3 we witness that very few changes to the 1520

GrammarTransformer configuration are required. In 1521

fact, only between 0 and 2 out of the 733 transformation 1522

rule applications needed adjustments. This significantly 1523

reduces the effort required compared to manually modifying 1524

a grammar generated from a new version of the QVTo 1525

metamodel, which would require modifying hundreds of 1526

lines. The reason is that, even though there are many 1527

differences between different versions of the QVTo meta- 1528

model, there are only 0 to 2 differences that affect the 1529

transformation rule applications. 1530

For example, version 1.0 of the QVTo meta-model has an 1531

attribute called bindParameter in the class VarParameter, 1532

whereas it is called representedParameter in version 1.1. 1533

This attribute is not needed according to the expert-created 1534

grammars, so the GrammarTransformer configuration 1535

includes a call to the transformation rule RemoveAttribute 1536

to remove the grammar line that was generated based on 1537

that attribute. The second parameter of the transforma- 1538

26

tion rule RemoveAttribute needs to specify the name of1539

the attribute. As a consequence of the evolution, we had1540

to change that name in the transformation rule applica-1541

tion. Another example concerns the class TypeDef, which1542

contains an attribute typedef_condition in version 1.2 of1543

the QVTo meta-model. We added square brackets to it by1544

applying the transformation rule AddSquareBracketsToAttr1545

in the grammar transformation. However, in version 1.3 of1546

the QVTo meta-model, the class TypeDef does not contain1547

such an attribute, so the transformation rule application1548

AddSquareBracketsToAttr was unnecessary.1549

Most of the differences between different versions of the1550

meta-model do not lead to changes in the transformation1551

rule applications. For example, the multiplicity of the1552

attribute when in the class MappingOperation is different1553

in version 1.0 and 1.1. We used RemoveAttribute to remove1554

the attribute during the transformation of grammar version1555

1.0. The same command can still be used in version 1.1,1556

as the removal operation does not need to consider the1557

multiplicity of an attribute. Therefore, this difference1558

does not affect the configuration of transformation rule1559

applications.1560

8. Discussion1561

In the following, we discuss the threats to validity of1562

the evaluation, different aspects of the GrammarTrans-1563

former, and future work implied by the current limita-1564

tions.1565

8.1. Threats to Validity1566

The threats to validity structured according to the taxon-1567

omy of Runeson et al. (Runeson and Höst, 2008; Runeson1568

et al., 2012) are as follows.1569

8.1.1. Construct Validity1570

We limited our analysis to languages for which we could1571

find meta-models in the Ecore format. Some of these meta-1572

models were not “official”, in the sense that they had been1573

reconstructed from a language in order to include them 1574

in one of the “zoos”. An example of that is the meta- 1575

model for BibTeX we used in our study. In the case of the 1576

DOT language, we reconstructed the meta-model from an 1577

Xtext grammar we found online. We adopted a reverse- 1578

engineering strategy where we generated the meta-model 1579

from the expert-created grammar and then generated a 1580

new grammar out of this meta-model. This poses a threat 1581

to validity since many of the languages we looked at can 1582

be considered “artificial” in the sense that they were not 1583

developed based on meta-models. However, we do not 1584

think this affects the construct validity of our analysis 1585

since our purpose is to analyze what changes need to be 1586

made from an Xtext grammar file that has been generated. 1587

In addition, we address this threat to validity by also 1588

including a number of languages (e.g., Xenia and Xcore) 1589

that are based on meta-models and using the meta-models 1590

provided by the developers of the language. 1591

Furthermore, we had to make some changes to some of 1592

the meta-models to be able to generate Xtext grammars 1593

out of them at all (cf. Section 4.3) or to introduce cer- 1594

tain language constructs required by the textual concrete 1595

syntax (cf. Section 7.2.2). These meta-model adaptations 1596

might have introduced biased changes and thereby impose 1597

a threat to construct validity. However, we reduced these 1598

adaptations to a minimum as far as possible to mitigate 1599

this threat and documented all of them in our supplemental 1600

material (Zhang et al., 2024) to ensure their reproducibility. 1601

8.1.2. Internal Validity 1602

In the evaluation (cf. Section 7), we set up and quantita- 1603

tively evaluate size and complexity metrics regarding the 1604

considered meta-models and grammars as well as regard- 1605

ing the GrammarTransformer configurations for the 1606

use cases of one-time grammar adaptations and language 1607

evolution. Based on that, we conclude and argue in Sec- 1608

tions 7.1.4 and 8.2 about the effort required for creating and 1609

evolving languages as well as the effort to create and re-use 1610

27

Table 5: Result of supporting evolution (RQ2)

Meta-m. Generated grammar Transformed grammar Grammar rules Lines in Grammar
DSL Classes 1 lines rules calls lines rules calls 2 mod add del mod add del #GORA #cORA

EAST-ADL 91 755 91 735 767 103 782 70 12 0 517 14 2 22 /
(simple)
EAST-ADL 291 2,839 291 3,062 2,851 303 3,074 233 12 1 2,046 16 4 31 10
(full)

QVTo 1.0 85 1,026 109 910 444 77 181 66 1 33 228 2 580 733 /
QVTo 1.1 85 992 110 836 444 77 181 66 1 34 228 2 546 733 2
QVTo 1.2 85 992 110 836 444 77 181 66 1 34 228 2 546 733 0
QVTo 1.3 85 991 110 835 443 77 180 66 1 34 228 2 546 733 1

1 The number is after adaptation, and it contains both classes and enumerations.
2 The number includes the calls to dummy OCL and dummy SML expressions.

GrammarTransformer configurations. These relations1611

might be incorrect. However, the applied metrics provide1612

objective and obvious indications about the particular sizes1613

and complexities and thereby the associated engineering1614

efforts.1615

8.1.3. External Validity1616

As discussed in the analysis part, we analyzed a total1617

of seven DSLs to identify generic transformation rules.1618

Whereas we believe that we have achieved significant cover-1619

age by selecting languages from different domains and with1620

very different grammar structures, we cannot deny that1621

analysis of further languages could have led to more trans-1622

formation rules. However, due to the extensible nature1623

of GrammarTransformer, the practical impact of this1624

threat to generalisability is low since it is easy to add ad-1625

ditional generic transformation rules once more languages1626

are analyzed.1627

Generalisability is further affected by the question of how1628

representative our cases are for other cases encountered1629

in practice. Our evaluation would be most insightful if1630

the considered languages resemble typical practical cases,1631

instead of corner cases. The fact that we were able to1632

derive rules from a subset of cases that were sufficient for1633

largely—in one case, entirely— covering the other cases is a1634

first indication that we did not exclusively deal with corner1635

cases. However, A nuanced assessment of how typical1636

our considered cases are for other cases would require 1637

systematic studies of evolution histories of metamodel- 1638

driven DSLs, which, to, our knowledge, are not available 1639

yet and would be a worthwhile direction for future work. 1640

A related threat is with the software quality of our con- 1641

sidered languages. Arguably, a language that was designed 1642

following best practices might require less evolution and 1643

would then also benefit less from our approach. Our ap- 1644

proach is designed for practical use-cases, in which quality 1645

issues might be common. By supporting language evolu- 1646

tion, our approach can contribute to changes that improve 1647

the quality of a language (e.g., introduce clearer keywords, 1648

more consistent parenthesis layout). The responsibility to 1649

use our tool in such way is with the user of our technique. 1650

Offering guidance for language design is an orthogonal issue 1651

addressed by other studies (Czech et al., 2018). 1652

8.1.4. Reliability 1653

Our overall procedure to conceive and develop the Gram- 1654

marTransformer encompassed multiple steps. That is, 1655

we first determined the differences between the particu- 1656

lar initially generated Xtext grammars and the grammars 1657

of the actual languages in two iterations as described in 1658

Section 4. This analysis yielded the corresponding identi- 1659

fied conceptual grammar transformation rules summarized 1660

in Section 5. Based on these identified conceptual gram- 1661

mar transformation rules, we then implemented them as 1662

28

described in Section 6. This procedure imposes multiple1663

threats to reliability. For example, analyzing a different1664

set of languages could have led to a different set of iden-1665

tified transformation rules, which then would have led to1666

a different implementation. Furthermore, analyzing the1667

languages in a different order or as part of different itera-1668

tions could have led to a different abstraction level of the1669

rules and thereby a different number of rule. Finally, the1670

design decisions that we made during the identification1671

of the conceptual transformation rules and during their1672

implementation could also have led to different kinds of1673

rules or of the implementation. However, we discussed all1674

of these aspects repeatedly amongst all authors to miti-1675

gate this threat and documented the results as part of our1676

supplemental material (Zhang et al., 2024) to ensure their1677

reproducibility.1678

8.2. The Effort of Creating and Evolving a Language with1679

the GrammarTransformer1680

The results of our evaluation show three things. First,1681

the expert-created grammars of all studied languages differ1682

greatly in appearance from the generated grammars. Thus,1683

in most cases, creating a DSL with Xtext will require the1684

language engineer to perform big changes to the generated1685

grammar. Second, in the case of complex changes, manu-1686

ally writing a GrammarTransformer configuration can1687

lead to considerably less effort for the language engineer1688

compared to manually adapting the grammar. Third, there1689

seems to be a large potential for the reuse of Grammar-1690

Transformer configurations between different versions1691

of a language, thus supporting the evolution of textual1692

languages.1693

These observations can be combined with the experience1694

that most languages evolve with time and that especially1695

DSLs go through a rapid prototyping phase at the be-1696

ginning where language versions are built for practical1697

evaluation (Wang and Gupta, 2005). Therefore, we con-1698

clude that the GrammarTransformer has big potential1699

to save manual effort when it comes to developing DSLs. 1700

Additionally, a topic worth mentioning is how the in- 1701

volvement of different people and their skill sets affect 1702

the effort when creating and reusing transformation rule 1703

configurations. For example, in case that updates to an 1704

existing configuration are needed after an evolution step, 1705

the maintainers need to understand the transformation rule 1706

configuration of the previous version, which could take a 1707

new contributor more time than the original contributor. 1708

Assessing the impact of this aspect is a subject for future 1709

work. 1710

8.3. Implications for Practitioners and Researchers 1711

Our results have several implications for language engi- 1712

neers and researchers. 1713

Blended Modeling. Ciccozzi et al. (Ciccozzi et al., 2019) 1714

coin the term blended modeling for the activity of interact- 1715

ing with one model through multiple notations (e.g., both 1716

textual and graphical notations), which would increase the 1717

usability and flexibility for different kinds of model stake- 1718

holders. However, enabling blended modeling shifts more 1719

effort to language engineers. This is due to the fact that the 1720

realization of the different editors for the different notations 1721

requires many manual steps when using conventional mod- 1722

eling frameworks. In this context, Cicozzi and colleagues 1723

particularly stress the issue of the manual customization of 1724

grammars in the case of meta-model evolution. Thus, as 1725

one research direction to enable blended modeling, Ciccozzi 1726

et al. formulate the need to automatically generate the dif- 1727

ferent editors from a given meta-model. Our work serves as 1728

one building block toward realizing this research direction 1729

and opens up the possibility to develop and evolve blended 1730

modeling languages that include textual versions. 1731

A relevant question is to which extent our approach 1732

enables cost savings in a larger context, as the cost for 1733

evolving the existing tools and applications working with 1734

existing languages might be higher than the cost for evolv- 1735

ing the languages themselves. We benefit from the exten- 1736

29

sive tool support offered by Xtext, which can automatically1737

re-generate large parts of the available textual editor af-1738

ter changes of the underlying grammar, including features1739

such as, e.g., auto-formatting, auto-completion, and syntax1740

highlighting. In consequence, by supporting automated1741

grammar changes (in particular, after evolution steps), we1742

also save effort for the overall adaptation of the textual1743

editor. However, in MDE contexts, other applications1744

and tools typically refer to the metamodel, instead of the1745

grammar, and hence, are outside our scope.1746

Prevention of Language Flaws. Willink (Willink, 2020)1747

reflects on the version history of the Object Constraint1748

Language (OCL) and the flaws that were introduced dur-1749

ing the development of the different OCL 2.x specifications1750

by the Object Management Group (Object Management1751

Group (OMG), 2014). Particularly, he points out that the1752

lack of a parser for the proposed grammar led to several1753

grammar inaccuracies and thereby to ambiguities in the1754

concrete textual syntax. This in turn led to the fact that1755

the concrete syntax and the abstract syntax in the Eclipse1756

OCL implementation (Eclipse Foundation, 2022a) are so1757

divergent that two distinct meta-models with a dedicated1758

transformation between both are required, which also holds1759

for the QVTo specification and its Eclipse implementation1760

(Willink, 2020) (cf. Section 2). The GrammarTrans-1761

former will help to prevent and bridge such flaws in1762

language engineering in the future. Xtext already enables1763

the generation of the complete infrastructure for a textual1764

concrete syntax from an abstract syntax represented by a1765

meta-model. Our approach adds the ability to transform1766

the grammar (i.e., the concrete syntax), as we show in1767

the evaluation by deriving an applicable parser with an1768

transformed grammar from the QVTo specification meta-1769

models.1770

8.4. Future Work1771

The GrammarTransformer is a first step in the di-1772

rection of supporting the evolution of textual grammars for1773

DSLs. However, there are, of course, still open questions 1774

and challenges that we discuss in the following. 1775

Name Changes to Meta-model Elements. In the Gram- 1776

marTransformer configurations, we currently reference 1777

the grammar concepts derived from the meta-model classes 1778

and attributes by means of the class and attribute names 1779

(cf. Listing 8). Thus, if a meta-model evolution involves 1780

many name changes, likewise many changes to transforma- 1781

tion rule applications are required. Consequently, we plan 1782

as future work to improve the GrammarTransformer 1783

with a more flexible concept, in which we more closely 1784

align the grammar transformation rule applications with 1785

the meta-model based on name-independent references. 1786

More Efficient Rules and Libraries. We think that there is 1787

a lot of potential to make the available set of transforma- 1788

tion rules more efficient. This could for example be done by 1789

providing libraries of more complex, recurring changes that 1790

can be reused. Such a library can contain a default set of 1791

transformation rule configurations to make the generated 1792

grammar follow a particular style (e.g., mimicking an exist- 1793

ing language, to be appealing for users of that language). 1794

Language engineers can use it as a basis and with mini- 1795

mal effort define transformation rule configurations that 1796

perform DSL-specific changes. Such a change might make 1797

the application of the GrammarTransformer attractive 1798

even in those cases where no evolution of the language is 1799

expected. While this use-case still requires effort for defin- 1800

ing configurations, the overall effort compared to manual 1801

editing can be reduced especially in cases with applicable 1802

large-scoped rules that, e.g., globally change the parenthesis 1803

style in the grammar. 1804

In addition, the API of GrammarTransformer could 1805

be changed to a fluent version where the transformation 1806

rule application is configured via method calls before they 1807

are executed instead of using the current API that contains 1808

many null parameters. This could also lead to a reduction 1809

of the number of grammar transformation rule applications 1810

30

that need to be executed since some executions could be1811

performed at the same time.1812

Another interesting idea would be to use artificial in-1813

telligence to learn existing examples of grammar transfor-1814

mations in existing languages to provide transformation1815

suggestions for new languages and even automatically cre-1816

ate configurations for the GrammarTransformer.1817

Expression Languages. In this paper, we excluded the ex-1818

pression language parts (e.g., OCL) of two of the exam-1819

ple languages (cf. Section 4.2). However, expression lan-1820

guages define low-level concepts and have different kinds of1821

grammars and underlying meta-models than conventional1822

languages. In future work, we want to further explore1823

expression languages specifically, in order to ensure that1824

the GrammarTransformer can be used for these types1825

of syntaxes as well.1826

Visualization of Configuration. Currently, we configure the1827

GrammarTransformer by calling the methods of trans-1828

formation rules, which is a code-based way of working. In1829

the future, we intend to improve the tooling for Gram-1830

marTransformer and embed the current library into1831

a more sophisticated workbench that allows the language1832

engineer to select and parameterize transformation rule1833

applications either using a DSL or a graphical user interface1834

and provides previews of the modified grammar as well as1835

a view of what valid instances of the language look like.1836

Co-evolving Model Instances. We also intend to couple1837

GrammarTransformer with an approach for language1838

evolution that also addresses the model instances. In prin-1839

ciple, a model instance represented by a textual grammar1840

instance can be read using the old grammar and parsed1841

into an instance of the old meta-model. It can then be1842

transformed, e.g., using QVTo to conform to the new meta-1843

model, and then be serialized again using the new grammar.1844

However, following this approach means that formatting1845

and comments can be lost. Instead, we intend to derive a1846

textual transformation from the differences in the gram- 1847

mars and the transformation rule applications that can be 1848

applied to the model instances and maintain formatting 1849

and comments as much as possible. 1850

Alternative implementation strategy. Our implementation 1851

strategy relies on the format of textual grammars produced 1852

by Xtext, which is stable across recent versions of Xtext. 1853

This implementation strategy was suitable for positively 1854

answering our evaluation questions and thus, substantiating 1855

the scientific contribution of our paper. An alternative, 1856

arguably more elegant implementation strategy would be 1857

to use Xtext’s abstract syntax tree representation of the 1858

grammar. A benefit of such an implementation would 1859

be that it would be more robust in case that the output 1860

format of Xtext changes, rendering it a desirable direction 1861

for future work. 1862

9. Conclusion 1863

In this paper, we have presented GrammarTrans- 1864

former, a tool that supports language engineers in the 1865

rapid prototyping and evolution of textual domain-specific 1866

languages which are based on meta-models. Grammar- 1867

Transformer uses a number of transformation rules to 1868

modify a grammar generated by Xtext from a meta-model. 1869

These transformation rules have been derived from an anal- 1870

ysis of the difference between the actual and the generated 1871

grammars of seven DSLs. 1872

We have shown how GrammarTransformer can be 1873

used to modify grammars generated by Xtext based on 1874

these transformation rules. This automation is particularly 1875

useful while a language is being developed to allow for 1876

rapid prototyping without cumbersome manual configura- 1877

tion of grammars and when the language evolves. We have 1878

evaluated GrammarTransformer on seven grammars 1879

to gauge the feasibility and effort required for defining the 1880

transformation rules. We have also shown how Grammar- 1881

Transformer supports evolution with the examples of 1882

31

EAST-ADL and QVTo.1883

Overall, our tool enables language engineers to use a1884

meta-model-based language engineering workflow and still1885

produce high-quality grammars that are very close in qual-1886

ity to hand-crafted ones. We believe that this will reduce1887

the development time and effort for domain-specific lan-1888

guages and will allow language engineers and users to lever-1889

age the advantages of using meta-models, e.g., in terms of1890

modifiability and documentation.1891

In future work, we plan to extend GrammarTrans-1892

former into a more full-fledged language workbench that1893

supports advanced features like refactoring of meta-models,1894

a “what you see is what you get” view of the transforma-1895

tion of the grammar, and the ability to co-evolve model1896

instances alongside the underlying language. We will also1897

explore the integration into workflows that generate graph-1898

ical editors to enable blended modelling.1899

Acknowledgements1900

This work has been sponsored by Vinnova under grant1901

number 2019-02382 as part of the ITEA 4 project BUM-1902

BLE.1903

References1904

A. Van Deursen, P. Klint, J. Visser, Domain-specific languages: An1905

annotated bibliography, ACM Sigplan Notices 35 (2000) 26–36.1906

Object Management Group, QVT – MOF Query/View/Transforma-1907

tion Specification, 2016. URL: https://www.omg.org/spec/QVT/,1908

Accessed February, 2023.1909

Eclipse Foundation, ATL Syntax, 2018. URL: https://wiki.eclipse.1910

org/M2M/ATL/Syntax, Accessed February, 2023.1911

Paperpile, A complete guide to the BibTeX format, 2022. URL:1912

https://www.bibtex.com/g/bibtex-format/, Accessed February,1913

2023.1914

Graphviz Authors, Dot language, 2022. URL: https://graphviz.1915

org/doc/info/lang.html, Accessed February, 2023.1916

J. Greenyer, Scenario Modeling Language (SML) Repository, 2018.1917

URL: https://bitbucket.org/jgreenyer/scenariotools-sml/1918

src/master/, Accessed February, 2023.1919

Spectra Authors, Spectra, 2021. URL: https://github.com/1920

SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.1921

syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext, Ac- 1922

cessed February, 2023. 1923

Eclipse Foundation, Eclipse xcore wiki, 2018. URL: https: 1924

//git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/ 1925

org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/ 1926

xcore/Xcore.xtext, Accessed February, 2023. 1927

Xenia Authors, Xenia xtext, 2019. URL: https://github.com/ 1928

rodchenk/xenia/blob/master/com.foliage.xenia/src/com/ 1929

foliage/xenia/Xenia.xtext, Accessed February, 2023. 1930

S. Roy Chaudhuri, S. Natarajan, A. Banerjee, V. Choppella, Method- 1931

ology to develop domain specific modeling languages, in: Pro- 1932

ceedings of the 17th ACM SIGPLAN International Workshop on 1933

Domain-Specific Modeling, ACM SIGPLAN, 2019, pp. 1–10. 1934

U. Frank, Domain-specific modeling languages: requirements analysis 1935

and design guidelines, in: Domain engineering, Springer, 2013, pp. 1936

133–157. 1937

M. Mernik, J. Heering, A. M. Sloane, When and how to develop 1938

domain-specific languages, ACM computing surveys (CSUR) 37 1939

(2005) 316–344. 1940

L. Bettini, Implementing domain-specific languages with Xtext and 1941

Xtend, 2 ed., Packt Publishing Ltd, 2016. 1942

D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse 1943

Modeling Framework, Addison-Wesley Professional, 2008. 1944

F. Ciccozzi, M. Tichy, H. Vangheluwe, D. Weyns, Blended modelling— 1945

what, why and how, in: 1st Intl. Workshop on Multi-Paradigm 1946

Modelling for Cyber-Physical Systems (MPM4CPS), IEEE, 2019, 1947

pp. 425–430. doi:10.1109/MODELS-C.2019.00068. 1948

W. Zhang, R. Hebig, D. Strüber, J.-P. Steghöfer, Automated extrac- 1949

tion of grammar optimization rule configurations for metamodel- 1950

grammar co-evolution, in: 16th ACM SIGPLAN International 1951

Conference on Software Language Engineering (SLE’23), 2023. 1952

EAST-ADL Association, East-adl, 2021. URL: https://www. 1953

east-adl.info/, Accessed February, 2023. 1954

J. Holtmann, J.-P. Steghöfer, W. Zhang, Exploiting meta-model 1955

structures in the generation of Xtext editors, in: 11th Intl. Conf. 1956

on Model-Based Software and Systems Engineering (MODELS- 1957

WARD), 2023, pp. 218–225. doi:10.5220/0011745900003402. 1958

R. F. Paige, D. S. Kolovos, F. A. Polack, A tutorial on metamodelling 1959

for grammar researchers, Science of Computer Programming 1960

96 (2014) 396–416. doi:10.1016/j.scico.2014.05.007, selected 1961

Papers from the Fifth Intl. Conf. on Software Language Engineering 1962

(SLE 2012). 1963

International Organization for Standardization (ISO), Information 1964

technology—Syntactic metalanguage—Extended BNF (ISO/IEC 1965

14977:1996), 1996. 1966

A. Kleppe, A language description is more than a metamodel, in: 1967

4th International Workshop on Language Engineering, 2007. 1968

Object Management Group (OMG), Object constraint language 2.x 1969

32

https://www.omg.org/spec/QVT/
https://wiki.eclipse.org/M2M/ATL/Syntax
https://wiki.eclipse.org/M2M/ATL/Syntax
https://wiki.eclipse.org/M2M/ATL/Syntax
https://www.bibtex.com/g/bibtex-format/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://bitbucket.org/jgreenyer/scenariotools-sml/src/master/
https://bitbucket.org/jgreenyer/scenariotools-sml/src/master/
https://bitbucket.org/jgreenyer/scenariotools-sml/src/master/
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/src/tau/smlab/syntech/Spectra.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/src/org/eclipse/emf/ecore/xcore/Xcore.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/src/com/foliage/xenia/Xenia.xtext
http://dx.doi.org/10.1109/MODELS-C.2019.00068
https://www.east-adl.info/
https://www.east-adl.info/
https://www.east-adl.info/
http://dx.doi.org/10.5220/0011745900003402
http://dx.doi.org/10.1016/j.scico.2014.05.007

specification, 2014. URL: https://www.omg.org/spec/OCL/, Ac-1970

cessed February, 2023.1971

E. Willink, Reflections on OCL 2, Journal of Object Technology 191972

(2020) 3:1–16. doi:10.5381/jot.2020.19.3.a17.1973

Eclipse Foundation, Eclipse OCL™ (Object Constraint Lan-1974

guage), 2022a. URL: https://projects.eclipse.org/projects/1975

modeling.mdt.ocl, Accessed February, 2023.1976

Eclipse Foundation, Qvto – eclipsepedia, 2022b. URL: https://wiki.1977

eclipse.org/QVTo, Accessed February, 2023.1978

T. Parr, ANTLR, 2022. URL: https://www.antlr.org/, Accessed1979

February, 2023.1980

P. Neubauer, A. Bergmayr, T. Mayerhofer, J. Troya, M. Wimmer,1981

Xmltext: From xml schema to xtext, in: 2015 ACM SIGPLAN1982

Intl. Conf. on Software Language Engineering, 2015, pp. 71–76.1983

doi:10.1145/2814251.2814267.1984

P. Neubauer, R. Bill, M. Wimmer, Modernizing domain-specific lan-1985

guages with xmltext and intelledit, in: 2017 IEEE 24th Intl. Conf.1986

on Software Analysis, Evolution and Reengineering (SANER),1987

2017.1988

S. Chodarev, Development of human-friendly notation for xml-based1989

languages, in: 2016 Federated Conference on Computer Science1990

and Information Systems (FedCSIS), IEEE, 2016, pp. 1565–1571.1991

F. Jouault, J. Bézivin, I. Kurtev, Tcs: A dsl for the specification of1992

textual concrete syntaxes in model engineering, in: 5th Intl. Conf.1993

on Generative Programming and Component Engineering, ACM,1994

2006, p. 249–254. doi:10.1145/1173706.1173744.1995

M. Novotný, Model-driven Pretty Printer for Xtext Framework, Mas-1996

ter’s thesis, Charles University in Prague, Faculty of Mathematics1997

and Physics, 2012.1998

U. Frank, Some guidelines for the conception of domain-specific1999

modelling languages, in: Enterprise Modelling and Information2000

Systems Architectures (EMISA 2011), Gesellschaft für Informatik2001

eV, 2011, pp. 93–106.2002

J.-P. Tolvanen, S. Kelly, Effort used to create domain-specific model-2003

ing languages, in: Proceedings of the 21th ACM/IEEE Interna-2004

tional Conference on Model Driven Engineering Languages and2005

Systems, 2018, pp. 235–244.2006

G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, S. Völkel,2007

Design guidelines for domain specific languages, in: Proceedings of2008

the 9th OOPSLA Workshop on Domain-Specific Modeling (DSM’2009

09), TR no B-108, Helsinki School of Economics, Orlando, Florida,2010

USA, 2009. URL: http://arxiv.org/abs/1409.2378.2011

M. van Amstel, M. van den Brand, L. Engelen, An exercise in iterative2012

domain-specific language design, in: Proceedings of the joint2013

ERCIM workshop on software evolution (EVOL) and international2014

workshop on principles of software evolution (IWPSE), 2010, pp.2015

48–57.2016

M. Karaila, Evolution of a domain specific language and its engineer-2017

ing environment–lehman’s laws revisited, in: Proceedings of the 2018

9th OOPSLA Workshop on Domain-Specific Modeling, 2009, pp. 2019

1–7. 2020

M. Pizka, E. Jürgens, Tool-supported multi-level language evolu- 2021

tion, in: Software and Services Variability Management Workshop, 2022

volume 3, 2007, pp. 48–67. 2023

R. Hebig, D. E. Khelladi, R. Bendraou, Approaches to co-evolution of 2024

metamodels and models: A survey, IEEE Transactions on Software 2025

Engineering 43 (2016) 396–414. 2026

D. E. Khelladi, R. Bendraou, R. Hebig, M.-P. Gervais, A semi- 2027

automatic maintenance and co-evolution of OCL constraints with 2028

(meta) model evolution, Journal of Systems and Software 134 2029

(2017) 242–260. 2030

D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, M.-P. Gervais, 2031

Metamodel and constraints co-evolution: A semi automatic main- 2032

tenance of OCL constraints, in: International Conference on 2033

Software Reuse, Springer, 2016, pp. 333–349. 2034

D. D. Ruscio, R. Lämmel, A. Pierantonio, Automated co-evolution 2035

of gmf editor models, in: International conference on software 2036

language engineering, Springer, 2010, pp. 143–162. 2037

D. Di Ruscio, L. Iovino, A. Pierantonio, What is needed for managing 2038

co-evolution in mde?, in: Proceedings of the 2nd International 2039

Workshop on Model Comparison in Practice, 2011, pp. 30–38. 2040

J. García, O. Diaz, M. Azanza, Model transformation co-evolution: A 2041

semi-automatic approach, in: International conference on software 2042

language engineering, Springer, 2012, pp. 144–163. 2043

F. Heidenreich, J. Johannes, S. Karol, M. Seifert, C. Wende, Deriva- 2044

tion and refinement of textual syntax for models, in: European 2045

Conf. on Model Driven Architecture—Foundations and Applica- 2046

tions (ECMDA-FA), volume 5562 of LNCS, Springer, 2009, pp. 2047

114–129. doi:10.1007/978-3-642-02674-4_9. 2048

A. Kleppe, Towards the generation of a text-based ide from a 2049

language metamodel, in: European Conf. on Model Driven 2050

Architecture—Foundations and Applications (ECMDA-FA), vol- 2051

ume 4530 of LNCS, Springer, 2007, pp. 114–129. doi:10.1007/ 2052

978-3-540-72901-3_9. 2053

I. Dejanović, R. Vaderna, G. Milosavljević, Ž. Vuković, Textx: 2054

A python tool for domain-specific languages implementation, 2055

Knowledge-Based Systems 115 (2017) 1–4. doi:10.1016/j.knosys. 2056

2016.10.023. 2057

TypeFox GmbH, Langium, 2022. URL: https://langium.org/, Ac- 2058

cessed February, 2023. 2059

S. Kelly, J.-P. Tolvanen, Collaborative creation and versioning of 2060

modeling languages with metaedit+, in: Proceedings of the 21st 2061

ACM/IEEE International Conference on Model Driven Engineering 2062

Languages and Systems: Companion Proceedings, 2018, pp. 37–41. 2063

JetBrains, MPS: The Domain-Specific Language Creator by JetBrains, 2064

2022. URL: https://www.jetbrains.com/mps/, Accessed February, 2065

33

https://www.omg.org/spec/OCL/
http://dx.doi.org/10.5381/jot.2020.19.3.a17
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://wiki.eclipse.org/QVTo
https://wiki.eclipse.org/QVTo
https://wiki.eclipse.org/QVTo
https://www.antlr.org/
http://dx.doi.org/10.1145/2814251.2814267
http://dx.doi.org/10.1145/1173706.1173744
http://arxiv.org/abs/1409.2378
http://dx.doi.org/10.1007/978-3-642-02674-4_9
http://dx.doi.org/10.1007/978-3-540-72901-3_9
http://dx.doi.org/10.1007/978-3-540-72901-3_9
http://dx.doi.org/10.1007/978-3-540-72901-3_9
http://dx.doi.org/10.1016/j.knosys.2016.10.023
http://dx.doi.org/10.1016/j.knosys.2016.10.023
http://dx.doi.org/10.1016/j.knosys.2016.10.023
https://langium.org/
https://www.jetbrains.com/mps/

2023.2066

AtlanMod Team, Atlantic zoo, 2019. URL: https://github.com/2067

atlanmod/atlantic-zoo, Accessed February, 2023.2068

A. Nordmann, N. Hochgeschwender, D. Wigand, S. Wrede, An2069

overview of domain-specific languages in robotics, 2020. URL:2070

https://corlab.github.io/dslzoo/all.html, Accessed February,2071

2023.2072

I. Wikimedia Foundation, Wikipedia page of domain specific language,2073

2023. URL: https://en.wikipedia.org/wiki/Domain-specific_2074

language, Accessed February, 2023.2075

M. Barash, Zoo of domain-specific languages, 2020. URL: http://2076

dsl-course.org/, Accessed February, 2023.2077

I. Semantic Designs, Domain specific languages, 2021. URL: http:2078

//www.semdesigns.com/products/DMS/DomainSpecificLanguage.2079

html, Accessed February, 2023.2080

D. Community, Financial domain-specific language listing, 2021. URL:2081

http://dslfin.org/resources.html, Accessed February, 2023.2082

itemis AG, Dot xtext grammar, 2020. URL: https:2083

//github.com/eclipse/gef/blob/master/org.eclipse.gef.2084

dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext,2085

Accessed February, 2023.2086

V. Zaytsev, Grammarware bibtex metamodel, 2013. URL:2087

https://github.com/grammarware/slps/blob/master/topics/2088

grammars/bibtex/bibtex-1/BibTeX.ecore, Accessed February,2089

2023.2090

Spectra Authors, Spectra metamodel, 2021. URL: https:2091

//github.com/SpectraSynthesizer/spectra-lang/blob/master/2092

tau.smlab.syntech.Spectra/model/generated/Spectra.ecore,2093

Accessed February, 2023.2094

Eclipse Foundation, Xcore metamodel, 2012. URL: https:2095

//git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/2096

org.eclipse.emf.ecore.xcore/model/Xcore.ecore, Accessed2097

February, 2023.2098

Xenia Authors, Xenia metmodel, 2019. URL: https:2099

//github.com/rodchenk/xenia/blob/master/com.foliage.2100

xenia/model/generated/Xenia.ecore, Accessed February, 2023.2101

W. Zhang, J. Holtmann, D. Strüber, R. Hebig, J.-P. Steghöfer, Gram-2102

martransformer_data: Formal release, 2024. doi:10.5281/zenodo.2103

10683827, Accessed February 23, 2024.2104

J. E. Hopcroft, On the equivalence and containment problems for2105

context-free languages, Mathematical systems theory 3 (1969)2106

119–124.2107

EAST-ADL Association, EATOP Repository, 2022. URL: https:2108

//bitbucket.org/east-adl/east-adl/src/Revison/, Accessed2109

February, 2023.2110

Object Management Group, QVT – MOF Query/View/Transforma-2111

tion Specification Version 1.0, 2008. URL: https://www.omg.org/2112

spec/QVT/1.0/, Accessed February, 2023.2113

Object Management Group, QVT – MOF Query/View/Transforma- 2114

tion Specification Version 1.1, 2011. URL: https://www.omg.org/ 2115

spec/QVT/1.1/, Accessed February, 2023. 2116

Object Management Group, QVT – MOF Query/View/Transforma- 2117

tion Specification Version 1.2, 2015. URL: https://www.omg.org/ 2118

spec/QVT/1.2/, Accessed February, 2023. 2119

Object Management Group, QVT – MOF Query/View/Transforma- 2120

tion Specification Version 1.3, 2016. URL: https://www.omg.org/ 2121

spec/QVT/1.3/, Accessed February, 2023. 2122

P. Runeson, M. Höst, Guidelines for conducting and reporting case 2123

study research in software engineering, Empirical Software Engi- 2124

neering 14 (2008) 131–164. doi:10.1007/s10664-008-9102-8. 2125

P. Runeson, M. Höst, R. Austen, B. Regnell, Case Study Research in 2126

Software Engineering — Guidelines and Examples, 1st ed., Wiley, 2127

2012. 2128

G. Czech, M. Moser, J. Pichler, Best practices for domain-specific 2129

modeling. a systematic mapping study, in: 2018 44th Euromicro 2130

Conference on Software Engineering and Advanced Applications 2131

(SEAA), IEEE, 2018, pp. 137–145. 2132

Q. Wang, G. Gupta, Rapidly prototyping implementation infrastruc- 2133

ture of domain specific languages: a semantics-based approach, in: 2134

Proceedings of the 2005 ACM symposium on Applied computing, 2135

2005, pp. 1419–1426. 2136

34

https://github.com/atlanmod/atlantic-zoo
https://github.com/atlanmod/atlantic-zoo
https://github.com/atlanmod/atlantic-zoo
https://corlab.github.io/dslzoo/all.html
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
http://dsl-course.org/
http://dsl-course.org/
http://dsl-course.org/
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://www.semdesigns.com/products/DMS/DomainSpecificLanguage.html
http://dslfin.org/resources.html
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/eclipse/gef/blob/master/org.eclipse.gef.dot/src/org/eclipse/gef/dot/internal/language/Dot.xtext
https://github.com/grammarware/slps/blob/master/topics/grammars/bibtex/bibtex-1/BibTeX.ecore
https://github.com/grammarware/slps/blob/master/topics/grammars/bibtex/bibtex-1/BibTeX.ecore
https://github.com/grammarware/slps/blob/master/topics/grammars/bibtex/bibtex-1/BibTeX.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://github.com/SpectraSynthesizer/spectra-lang/blob/master/tau.smlab.syntech.Spectra/model/generated/Spectra.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore.xcore/model/Xcore.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
https://github.com/rodchenk/xenia/blob/master/com.foliage.xenia/model/generated/Xenia.ecore
http://dx.doi.org/10.5281/zenodo.10683827
http://dx.doi.org/10.5281/zenodo.10683827
http://dx.doi.org/10.5281/zenodo.10683827
https://bitbucket.org/east-adl/east-adl/src/Revison/
https://bitbucket.org/east-adl/east-adl/src/Revison/
https://bitbucket.org/east-adl/east-adl/src/Revison/
https://www.omg.org/spec/QVT/1.0/
https://www.omg.org/spec/QVT/1.0/
https://www.omg.org/spec/QVT/1.0/
https://www.omg.org/spec/QVT/1.1/
https://www.omg.org/spec/QVT/1.1/
https://www.omg.org/spec/QVT/1.1/
https://www.omg.org/spec/QVT/1.2/
https://www.omg.org/spec/QVT/1.2/
https://www.omg.org/spec/QVT/1.2/
https://www.omg.org/spec/QVT/1.3/
https://www.omg.org/spec/QVT/1.3/
https://www.omg.org/spec/QVT/1.3/
http://dx.doi.org/10.1007/s10664-008-9102-8

	Introduction
	Background: Textual DSL Engineering based on Meta-models
	Related Work
	Methodology
	Selection of Sample DSLs
	Exclusion of Language Parts for Low-level Expressions
	Meta-model Preparations and Generating an Xtext Grammar
	Comparing EBNF and Xtext grammars
	Analysis of Grammars
	First Iteration: Identify Transformation Rules
	Second iteration: Validate Transformation Rules

	Identified Transformation Rules
	Solution: Design and Implementation
	Language Evolution Workflow
	Grammar Representation
	Transformation Rule Design
	Configuration
	Execution
	Post-Processing vs. Changing Grammar Generation
	Limitations and Caveats

	Evaluation
	Grammar Adaptation (RQ1)
	Cases
	Method
	Metrics
	Results

	Supporting Evolution (RQ2)
	Cases
	Preparation of the QVTo Case
	Method
	Metrics
	Results

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	The Effort of Creating and Evolving a Language with the GrammarTransformer
	Implications for Practitioners and Researchers
	Future Work

	Conclusion

