
Manual Abstraction in the Wild:
A Multiple-Case Study on OSS Systems’

Class Diagrams and Implementations
Wenli Zhang 1, Weixing Zhang 2, Daniel Strüber 2,3, Regina Hebig 4

1Chalmers University of Technology, Gothenburg, SE 2Chalmers | University of Gothenburg, Gothenburg, SE
3Radboud University, Nijmegen, NL 4University of Rostock, Rostock, DE

wenliz@student.chalmers.se, {weixing,danstru}@chalmers.se, regina.hebig@uni-rostock.de

Abstract—Models are a useful tool for software design, analy-
sis, and to support the onboarding of new maintainers. However,
these benefits are often lost over time, as the system implemen-
tation evolves and the original models are not updated. Reverse
engineering methods and tools could help to keep models and
implementation code in sync; however, automatically reverse-
engineered models are typically not abstract and contain exten-
sive information that prevents understanding. Recent advances
in AI-based content generation make it likely that we will soon
see reverse engineering tools with support for human-grade
abstraction. To inform the design and validation of such tools, we
need a principled understanding of what manual abstraction is, a
question that has received little attention in the literature so far.

Towards this goal, in this paper, we present a multiple-case
study of model-to-code differences, investigating five substantial
open-source software projects retrieved via repository mining.
To explore characteristics of model-to-code differences, we, all
in all, manually matched 466 classes, 1352 attributes, and 2634
operations from source code to 338 model elements (classes, at-
tributes, operations, and relationships). These mappings precisely
capture the differences between a provided class diagram design
and implementation codebase. Studying all differences in detail
allowed us to derive a taxonomy of difference types and to provide
a sorted list of cases corresponding to the identified types of
differences. As we discuss, our contributions pave the way for
improved reverse engineering methods and tools, new mapping
rules for model-to-code consistency checks, and guidelines for
avoiding over-abstraction and over-specification during design.

Index Terms—software design, modeling

I. INTRODUCTION

Models are an important tool for software analysis and
design [1]. By capturing structural and behavioral system as-
pects at a suitable abstraction level, models aid with thinking,
communication, and as a blueprint for implementing software
via manual programming and automated code generation.

However, once that the development of a system has moved
to implementation and maintenance, models exist as a separate
artifact from the implementation code, which leads to chal-
lenges with keeping models and code synchronized with each
other [2]. The literature reports on two main sources of model-
to-code inconsistencies: First, during maintenance, developers
tend to neglect to update the model after code changes [3].
Second, already during implementation, developers may either
miss or intentionally deviate from parts of the model [4],
[5]. Once that models and code become inconsistent, models

become less useful and, worse, can even create confusion when
software engineers try to use them for system comprehension.

A solution could be offered by available reverse engineering
methods and tools, which can automatically extract models
from code. Still, as traditional reverse engineering tools usually
lack an ability to abstract, their produced models tend to con-
tain excessive information, rendering them ineffective for com-
prehension. Recent advances in AI-based content generation,
specifically, large language models such as GPT-4 [6], suggest
an ability to mimic human-grade abstraction. As such, they
could enable the development of improved reverse engineering
tools with native support for abstraction. Yet, to design and
validate such techniques, we need an understanding of what
abstraction actually entails. Understanding the characteristics
of manual abstraction requires in-depth, manual studies.

To our knowledge, no existing study has investigated manual
abstraction by considering concrete model-to-code differences.
Existing studies on manual abstraction are based on participant
opinions and experiences [7], yet, do not study actual cases of
models and code. Available consistency checking techniques
are purely structural and do not take semantics of model
elements into account [8]–[10]. However, semantics is key for
understanding abstraction. Given that different systems have
their own implementation structures, the desired functionalities
require code structures that are interrelated while also account-
ing for the application of architectural and design patterns.
These factors need to be considered jointly, which can only
be achieved by careful manual studies of models and code.

In this paper, to close this gap, we present a multiple-case
study on model-to-code differences. We investigate five sub-
stantial cases with available models and implementation code,
retrieved from the Lindholmen Dataset [11]. To explore char-
acteristics of model-to-code differences, we manually created
mappings that precisely capture differences in real projects
together with explanations of their origins. Our study focuses
on class models, a particularly widely used model type, whose
main diagram type are class diagrams. Class models are an
especially important case for model-to-code consistency: as
they model the domain of interest in terms of classes and
relationships between them [12], they are intensively used in
the early development stages to specify the system’s structure.
Maintainers benefit from using class models to understand



the system’s structure and then identify code locations to be
modified [13], which requires the class model to remain an
accurate representation of the system over time.

By pinpointing abstraction practices that are naturally ap-
plied by humans, our findings are valuable for tool developers
in the reverse engineering and consistency checking domains,
who aim for their tools to emulate human behavior.

In particular, we find that the main cause of omission on
class level is inheritance structure omission; that is, inheritance
structures are valuable for distinguishing what to include in
and exclude from the model. For example, model elements
connected to a superclass are more likely to be candidates for
inclusion, whereas elements connected to a subclass are more
likely to be omitted. We further identify a number of easy-to-
apply best practices for abstraction, including collection type
underspecification and relationship loosening, acknowledging
that collection types and particular association types, e.g.,
composition vs. aggregation, are often regarded as minor
implementation details. Other omissions, e.g., of parameter
type and return type, are particularly useful if the omitted
information is already obvious through the name of the param-
eter or method at hand. Surprisingly, we find very few cases
of summary of elements, e.g., by representing four source-
code classes through one model-level class, suggesting that
this practice appears to be less natural and needs less explicit
support in tools.

Specifically, we make the following contributions:
• A taxonomy of model-to-code differences.
• A systematically elicited list of cases corresponding to

the identified types of differences.
• A discussion of the potential uses of our taxonomy and

case list.
• A replication package [14], which includes links to the

models, code versions used, manually annotated models,
reverse-engineered models, and corresponding compari-
son templates for the five cases.

II. RELATED WORK

This section focuses on studies of abstraction, reverse en-
gineering, and the consistency of models and code.

a) Manual Abstraction: Class diagrams used in soft-
ware development can be overwhelming with volumes of
information, making it challenging for software maintain-
ers to understand system architecture [7]. To simplify class
diagrams, understanding how software engineers manually
create abstraction is crucial. For this purpose, Osman et al.
surveyed developers to investigate how manual abstraction is
created over code [7]. They found that developers considered
it important to include the following elements in a class
diagram: class relationships, meaningful class names, and
class properties. Developers in the survey further claimed that
GUI-related information, Private and Protected operations,
Helper classes, and should be excluded from class diagrams
[7]. Also, Baltes and Diehl’s online survey found that most
participants related sketches (including UML notations) to
methods, classes, or packages but rarely to more detailed

aspects, such as attributes [15]. What the above studies have
in common is that they are based on participant opinions and
experiences rather than studying actual models.

b) Reverse-Engineering Class Diagrams: Müller et
al. [16] defined reverse engineering in [17] as the process
of analyzing a system to identify its components and their
relationships and extract and create system abstractions and
design information. Reverse engineering tools today can au-
tomatically generate class diagrams from the current code,
even though they can only make limited abstraction deci-
sions. One of the earliest approaches, PTIDEJ, was developed
by Guéhéneuc et al. [13] and infers relationships in class
diagrams. A well-known tool is MoDisco [18], which is a
framework for model-driven reverse engineering that extracts
information from existing artifacts to generate different rep-
resentations of the system. Koschke [19] reviews techniques
for architecture reconstruction, which refers to reverse en-
gineering that allows concluding on the architecture of the
system. He concludes that while it seems trivial to generate
class diagrams from code, the challenge is in identifying
what should be shown and what not. As reverse-engineered
diagrams are often cluttered [20], approaches for abstraction
by rules and using machine learning were developed. In the
former group, Egyed [21] [22] defined semantic abstraction
rules, such as a rule to substitute two relationships that form
an indirect relationship with one direct relationship. Booshehri
and Luksch [23] developed an approach that utilized semantic
web techniques based on the V-OntModel. Another approach
for Ontology-based model abstraction comes from Guizzardi
et al. [24]. They implement a collection of abstraction rules,
such as, similar to Egyed, abstractions by introducing direct
relationships to substitute indirect relators. In the latter group,
Osman et al. experimented with a supervised classification al-
gorithm to condense class diagrams [25]. Thung et al. extended
the work of Osman et al. by adding network metrics (e.g.,
closeness centrality) and achieved a 9% improvement [20].
Yang et al. [26] introduce MCCondenser which is a tool
that requires small amounts of labeled data to learn what
aspects of a class diagram should be shown and what not.
Compared to Thung et al. they achieve an improvement of
10-20%. What is common to all these tools and techniques
is that there is still room for improvement when it comes to
abstraction – especially with the recent progress in AI/ML.
One precondition for that is a better understanding of what
abstraction performed by humans actually looks like.

c) Consistency Check(s) between Code and Design:
Reverse-engineered diagrams are generated by extracting in-
formation from code based on the absence of a design that can
be referenced. In contrast, consistency checks between code
and design rely on the existence of an existing design. Multiple
semantics can explain the same piece of code, which makes
evolving designs of higher quality provided traceability with
code is maintained [8]. Different models and methods exist to
check consistency between code and design, with Antoniol et
al. [8] and Dennis et al. [9] finding that class names play the
most critical role in mappings between entities in design and



constructs in code. However, a lack of systematic study exists
on the reasons for deviations between unmatched classes.

III. METHODOLOGY

We performed a multiple-case study [27] in this paper,
aiming to answer the following questions.

RQ1: Which types of differences can be found between
models and corresponding source code?

RQ2: How can we classify forms of abstraction between
model and source code?

RQ3: How can we classify forms of non-abstraction differ-
ence between model and source code?

A. Project Selection

The Lindholmen dataset [11] is a collection of open-source
projects from Github that include UML models. The collected
models are stored in image formats (.jpeg, .png, .gif, .svg,
and .bmp) and standard formats (.xmi, and .uml files). The
dataset lists over 24,000 open-source projects which together
include 93,000 UML files [11], [28]. The advantage of using
this dataset as a starting point is that it provides us with access
to cases that include code as well as models.

The analysis of the source code and models is very time-
consuming, due to the need to understand the semantics of the
system for making correct judgments. On the other hand, it
is required to study multiple projects as we do not expect to
get a full picture of typical differences by studying a single
project only. In the end, we decided to study five projects.

To identify suitable projects within the dataset, we defined
the following criteria: First, the projects should include both,
class diagrams and the source code of the modeled system.
Second, the models should be available in an image format.
The reason for that is that models in .xmi or .uml format
requires extra effort and – often – specific tools to be opened.
Selecting class diagrams in image format can save us time
and allow us to acquire information on the class diagrams
directly. Third, the model must be created manually and not
with the help of a reverse engineering tool. Note that it was not
trivial to automatically exclude models that are the result of
reverse engineering. Therefore this had to be done manually,
which took a lot of time. For pragmatic reasons, we ended up
studying Java projects, as it was easiest to identify suitable
project candidates in that language.

We iterated through the Lindholmen dataset checking
projects for these criteria. To deal with the abundance of avail-
able repositories in the Lindholmen dataset, we applied a two-
stage selection strategy: 1. From the full list of all UML files,
we considered entries both randomly and one-by-one from the
top of the list. Due to the low success rate of this approach,
we did not perform it exhaustively. Nevertheless, this strategy
lead to the identification of three projects (EAPLI PL 2NB,
RaiseMeUp, ZooTypers) that satisfy the selection criteria. 2.
Based on the experience from the first stage, we narrowed
down our preselection, by using an available list with class
diagrams from the Lindholmen dataset for which an image
was available [29]. This list contained 415 class diagrams

identified as forward diagrams, whose associated projects
we considered exhaustively. This lead to the identification
of two further projects (FreeDaysIntern, NeurophChanges),
which were indeed the only remaining ones after the filter
criteria were considered. The search was terminated when the
five projects have been identified. While none of our consid-
ered projects is actively developed at this point, our projects
span a range of active project duration, between 1,5 and 28
months of activity. Table I1 summarizes these five projects.
ZooTypers is an android project of an animal-themed typing
game. RaiseMeUp is a GUI project for keeping electronic pets,
e.g., fish. EAPLI PL 2NB is a web application for recording
transactions, e.g., income and expense. FreeDaysIntern is a
web application used for creating labor billing time sheets
and finally, NeurophChanges is a lightweight neural network
framework to develop common neural network architectures.

B. Selection of Model and Source Code Versions

For each project, we selected one class diagram to study. In
cases where only one class diagram was included, we selected
that class diagram for the study. In case we found a class
diagram that was updated over time, we decided to select
the latest version of the model. Finally, if a project included
multiple class diagrams, e.g. presenting different system parts,
we selected one of them randomly for the study. This was the
case for project 3, where multiple class diagrams were used to
present different features in the system. Note that we assume
here that the class diagram shows the complete model. The
selection of the version of the source code to study was more
complex.

1) Selection aim: Selecting a version that is too old, might
lead to an overestimation of differences between the source
code and the model because modeled elements might not yet
be implemented. Note that this can also hold for the source
code that is present when the model is committed, as the class
diagram might be prescriptive and, thus, the development of
the corresponding source code still has to follow. On the other
hand, a descriptive model might in rare cases also be most
similar to a slightly older version of the code. On the other
hand, selecting a version of the source code that is too young,
can also lead to an overestimation of differences, as the source
code might have evolved. Thus, we would capture differences
that are due to code evolution and it would be difficult to
distinguish which differences are due to abstraction.

2) Selection process: Due to the reasons above, we aim
to find the version of the source code that implements the
highest number of classes, attributes, and operations shown
in the model while minimizing the amount of additional code.
However, given that most of the studied projects have hundreds
of versions of source code, this assessment is not feasible.

Therefore we worked with a heuristic. We first assume that
the version of source code to select is likely to be close to
the commit with which the selected model was committed. So

1The original project 2 is not accessible anymore. We link a fork of the
project here, that we made for the study.



TABLE I: The studied projects (active period = time between first and last commit in months; #versions = the number of
code versions found in the repository (counting each commit as one version); #contributors = the number of contributors to
the repository; model elements = the number of classes, attributes, operations, and relationships shown in the studied model

ID Name Domain Active #versions #contributors files source code model
period classes operations attributes elements

1 ZooTypers [30] Android ∼1.5 745 5 87 15 77 52 59
2 RaiseMeUp [31] GUI ∼1.5 24 2 168 40 545 474 141
3 EAPLI PL 2NB [32] Web applications ∼2 483 9 103 60 255 51 54
4 FreeDaysIntern [33] Web applications ∼19 449 3 302 92 502 216 65
5 NeurophChanges [34] GUI ∼28 534 7 2270 259 1255 559 19

we select that version of source code as a starting point. We
first perform a high-level analysis of the mapping between
that version of the source code and the model, focusing on
the concepts modeled as classes, attributes, and operations
in the diagram. In the second step we would perform the
same mapping for the source code in the versions before
that commit and after the next commit. If the version of the
source code at the time of committing the model maps to
most model elements, we select that version of the source
code. Otherwise, we started a step-wise comparison. If the
code in the previous version was best at covering the modeled
elements, we performed this step-wise comparison backward
through the commit history. Otherwise, we went forward. With
each step, we took the next version of the source code (forward
or backward) and created a mapping to the model. If the
mapping covered more elements of the model compared to the
version looked at before, we continue the search. We did that
until we found no more improvement and selected the version
of the source code that, among the studied ones, offered the
greatest coverage of the model.

3) Assumption: As a result, we work with the assumption
that a) we have minimized the risk to overestimate the differ-
ences between model and source code, and b) the source code
does not include differences that are due to code evolution.

C. Analysis

The analysis was done manually.
1) Difference detection: For detecting the differences be-

tween the model and source code, we initially hoped to use an
automatic reverse engineering tool to help us visualize the code
and ease the comparison. However, after exploring different
tools (EA and IntelliJ IDEA) we had to observe that this
did not work very well as relationships might be represented
differently or incomplete and as it was necessary to understand
the semantics of the code, which required us to read the
code. In consequence, we worked directly with the source
code during the analysis. We used IntelliJ IDEA to generate
illustrating images of some of the observed differences so that
they can be illustrated in this paper.

For the analysis, we first mapped modeled classes to source
code files. We then manually create one-to-one mappings from
the model elements to the source code constructs in terms of
attributes and operations. For any suspected non-conformance
between the model and code, in terms of attributes and
operations, we studied the source code in detail to fully

understand the roles of the related classes, functionalities of
attributes, and operations associated with these classes. For
studying the differences between the relationships, we took
attributes, operations, and inheritance into account. Also here
a complete manual analysis, considering roles of classes and
semantics of modeled relationships was necessary.

2) Assessed characteristics: To ensure a systematic com-
parison we worked with a template, which included space for
information about the project, the model, the source code, the
differences between the model and code, and additional notes.
For the project we captured meta-information. For the model,
we assessed the commit identifier of the commit that added the
model, the creation date of the model as well as the number of
classes, attributes, operations, and relationships shown. For the
code, we assessed the commit identifier of the commit that led
to the studied version of source code, creation date, number
of classes, attributes, operations, and relationships as well as
whether the elements in the model were covered in the code.

D. Time consumption

Both the selection of the right code version and the analysis
were very time intensive. In general, the fewer attributes
and operations from the model covered by the source code,
the more time was required to check other attributes and
operations in the source code to exclude a match during the
data selection phase. For three of the five projects studied,
the finally selected version of the source code is the one
associated with the commit of the model. In these cases, it
took around half a day to select the version of source code
to study per project. For the other two projects, the time
spans between the commit of the model and the commit of
the selected version of the source code were both less than
ten days. In both cases, the effort to identify the source
code to study was about one full day. The analysis took
even more time. In general, the bigger the source code, the
longer it took to analyze the system. For example, checking
whether multiple classes/attributes/operations are represented
by a given model element requires a comprehension of the
complete source code. Altogether, we studied 466 source code
classes with together 1352 attributes and 2634 operations,
which had to be matched to 338 classes, attributes, operations,
and relationships from the models.

IV. RESULTS

The first observation we made when inspecting the differ-
ences between source code and model was that they did not



always lead to the models being a more abstract version of the
source code. Not all differences can be considered abstractions
in the classical understanding. Thus, we distinguish three types
of changes and define them as follows:

Real abstraction are cases where the model uses elements
that specify more general semantics or contain fewer details
than what can be found in the source code.

Disagreement are cases where the model uses elements that
specify more specific semantics or contain more or different
details than what can be found in the source code.

Inaccuracies are differences that cannot be classified as a
difference in level of specificity and detail, but rather as non-
conceptual differences in representation.

Note that we do not distinguish in these definitions whether
the model was created before or after the source code.

Observation: Not all identified differences serve the
purpose to create a more abstract (and thus, readable)
model.

A. Real Abstraction

Table II summarizes the observed cases of real abstraction.
1) Omissions: The first and, probably, least surprising

group of abstractions are the omissions. We find omissions of
subsystems, inheritance structures, classes, attributes, attribute
types, default values, operations, parameters, parameter names,
return types, and relationships.

Subsystem omission is a special case, as not all models
aim to show an abstraction of the complete system. We found
subsystem omission in 3 out of the 5 cases (cases 3, 4, and
5). In two cases, the model focused only on a very specific
part and feature of the system and omitted all other system
parts. In one case the model focused on the majority of the
system and excluded a few specific features (e.g. Adapters and
Image Recognition). On the other hand class omission, affects
classes (and their attributes, operations, and relationships) that
are part of the system part illustrated by the model. We
observed different reasons for that. In project 2 most classes
related to the view of the MVC pattern were omitted while
in projects 1 and 5 the models omitted all classes that were
not important to understand the domain of the system, e.g.
classes responsible for running frameworks, utility classes, and
test classes were omitted. Inheritance structure omission
can be seen as a special case of class omission. However,
here the omitted classes are still represented in the model
through their superclass. This representation is missing for
most classes affected by class omission. For example, a case
of inheritance structure omission can be seen in Figures 1a
and 1b. Here the subclasses Max and Min derived from the
superclass InputFunction are hidden in the model. Similarly,
the figures also show a case of operation omission as the
operations of InputFunction are not shown either in the model.

TABLE II: Cases of real abstraction.

Real Abstraction

Subsystems
Subsystem omission: The model focuses on one or more sub-
systems of the system only and omits all information about other
parts of the code.

Classes
Inheritance structure omission: Inheritance structures in the
source code are not shown in the model
Class omission: Classes present in the source code of the modeled
system part are not shown in the model.
Class summary: Two or more classes present in the source code
are shown as one class in the model.

Attributes
Attribute omission: Attributes in the source code are not shown
in the model
Attribute summary: Multiple attributes in the source code are
shown as one attribute in the model
Attribute type omission: The type of an attribute in the source
code is not shown in the model.
Default value omission: An attribute in the source code has a
default value that is not shown in the model

Operations
Operation omission: Operations in the source code are not
shown in the model.
Operation summary: Multiple operations in the source code are
shown as one operation in the model
Parameter omission: Parameters in the source code are not
shown in the model.
Parameter name omission: Parameter names in the source code
are not shown in the model.
Return type omission: The return type of a method in the source
code is not shown in the model.
Collection type underspecification: Either the types of objects
that can be stored in collections as specified in the source code
are not shown in the model, which only shows the type of the
collection, or only the types of objects are shown, but not the
information that there is a collection of these objects.

Relationships (between classifiers)
Relationship omission: Relationships in the source code are not
shown in the model
Relationship loosening: An attribute (i.e. owned element) in the
source code is modeled as a named association in the model (and
not as a composition or aggregation).
Relationship summary: For two classes that access each others’
values indirectly via a third class in the source code a direct
association is shown in the model.

2) Summaries: Another group of changes that we expected
to find are cases where multiple elements from the source code
are summarized. Indeed we could find such cases, concerning
classes, relationships, attributes, and operations.

For example, a case of relationship summary can be
found in project 2. The naming of the classes in Figure
2a indicates an observer design pattern [35], based on the
naming of the class PetObserver, its operation update(): void
of PetObserver, and the association between PetObserver and
the observable class Pet. In the source code the relationship
is reverse and indirect. This is possibly due to the particular
MVC architectural pattern applied in the source code. To
be specific, PetObserver and Pet are Model classes, which
are managed by the Controller class RaiseMeUp. Figure 2b
illustrates that the operation getCurrentPet() of RaiseMeUp is



(a) Extract from the model of project 5.

(b) Visualization of corresponding code part from project 5.

Fig. 1: The subclasses and operations are hidden in the model.

(a) Extract from the model of project 2 (re-layouted for readability).

(b) Visualization of corresponding code part from project 2.

Fig. 2: The model shows an association between Pet (origin)
and PetObserver (target). In the source code PetObserver only
indirectly accesses Pet via another class RaiseMeUp.

invoked within PetObserver and the operation getEnergy() of
Pet is further invoked with the help of RaiseMeUp.

3) Other abstractions: We observed two special cases of
real abstraction. The first case is the collection type under-
specification. In some cases, the model specifies that the type
is a collection, e.g. a Map as for the return type of operation
listUser() in class DAO of project 2, but not what type of
objects can be stored in the collection. In the example case

these would be objects of type Integer and User. In other
cases, the model specifies the type of the stored objects but
omits the information that a collection is used.

The second case is relationships loosening, where an
attribute, i.e. an owned element, in the source code is not
modeled as a composition, but as a more general association.
Figure 3a illustrates that in the model of project 4, a bidirec-
tional association is modeled between the classes Employee
and Schedule. In the source code (Figure 3b) the type of
the attribute schedList (ArrayList<Schedule>) indicates that
a group of instances of the class Schedule is referenced by
the class Employee, representing a uni-directional relationship.
These instances are further initiated within that class (in
operation Employee(Integer id, String nm, String position)).

(a) Extract from the
model of project 4.

(b) Visualization of corresponding code part
from project 4.

Fig. 3: The ownership between Employee and Schedule from
the source code is shown as a simple association in the model.

Observation: Real abstraction cases observed include
omissions, summaries, relationship loosening, and col-
lection type underspecification.

B. Disagreements

Table III summarizes the observed cases of disagreement.
1) Pretences: The most common form of disagreement

that we observed is the pretence, where the model shows
structures that are not present in the source code. We observed
such pretence occurrences for inheritance structures, attributes,
operations, parameters, and relationships. Figures 4a and 4b
show an example of an inheritance structure pretence from
project 2. The four subclasses Dog, Cat, Fish, and Penguin
that are shown in the model are not present in the source code.
There, only the superclass Pet can be found, which implements



TABLE III: Cases of disagreements

Disagreements

Classes
Inheritance structure pretence: Inheritance structures in the
model are not present in the source code

Attributes
Attribute pretence: Attributes shown in the model are not present
in the source code
Attribute substitution: Attributes in the model are replaced by
different attributes (with different names and types) in the source
code
Attribute type substitution: The type of an attribute in the source
code is different from the type shown in the model
Attribute pull up: Within an inheritance structure, attributes
belonging to a superclass in the source code are shown as part of
the subclasses in the model.

Operations
Operation pretence: Operations shown in the model are not
present in the source code.
Parameter pretence: Parameters shown in the model are not
present in the source code.
Parameter type substitution: A parameter has different types in
the model and the source code
Return type substitution: A method’s return type in the source
code and model are different.
Operation move: Operations are located in different classes in
the source code and model.

Relationships (between classifiers)
Relationship pretence: Relationships shown in the model are not
present in the source code.

the difference between the pet types using an attribute type. In
the same figures we also see an operation pretence, where an
operation eat(food: Food) is shown in the model, which does
not occur in the source code.

2) Substitution: Substitutions are cases where a struc-
ture (most often a type) shown in the model is substi-
tuted/substitutes a different structure (type) in the source code.
We found such substitutions for attributes, attribute types,
parameter types, and return types. For example, the Figures
5a and 5b show a case of attribute substitution, where an
attribute amount: BigDecimal is shown in the model for the
class CheckingAccount, instead of the attribute expenseRepo:
ExpenseRepository, which is shown in the source code. For
cases of a pure attribute type substitution, we find situations
where non-primitive datatypes are substituted by other non-
primitive data types and situations where non-primitive data
types are shown in the model for attributes implemented by
primitive data types. An example for a return type substi-
tution is the method modifyPet(): void from class Control
in project 2. Here the model shows a return type Boolean
(modifyPet(kit: Pet): Boolean) instead of void.

3) Refactorings: Finally we observed two cases where
the implementation and model differ in the way of simple
refactorings, which concerned attributes and operations.

The first case is attribute pull up, where attributes are
moved between superclass and subclasses within an inheri-
tance structure. Figures 6a and 6b show an example from
project 2, where the attribute image is shown for the subclasses
Food and Upgrade in the model. Within the source code the

(a) Extract from the model of project 2

(b) Visualization of corresponding code parts from project 2

Fig. 4: The model includes an inheritance structure with the
superclass Pet and an operation eat(food: Food), which are
both not present in the source code.

attribute is pulled up to the superclass Item. Note that this
example also includes a case of attribute type substitution
as the types of the attribute in the model (non-primitive
type image) and the source code (primitive type String) are
different.

The other case observed is operation move, where an
operation is moved from one class to the other. For example, in
the model of project 2, the operation listUser(): Map is shown



(a) Extract from the model of project 3

(b) Visualization of corresponding code parts from project 3

Fig. 5: The model shows an attribute amount: BigDecimal,
which is substituted by another attribute expenseRepo: Ex-
penseRepository in the source code.

in the class DAO. However, in the source code the operations
is moved to the class RaiseMeUp. Similar to the other case
of refactoring, also this refactoring is accompanied with other
changes, namely an attribute name inaccuracy (see Section
IV-C) concerning the methods name (listUser() vs. listUsers())
and a collection type underspecification (as explained above).

Observation: Disagreements result in the pretence
of elements in the model that are not present in
the code, substitution of elements, and refactorings
between model and code.

C. Inaccuracies

Table IV summarizes identified inaccuracies, which come
in two groups: name inaccuracies and type inaccuracies.

1) Name inaccuracies: Observed name inaccuracies con-
cern class names, attribute names, operation names and pa-
rameter names. We identified the following situations.

Misspelling Sometimes the model includes a difference in
spelling compared to the code. For example, in project 1 a

(a) Extract from the model of project 2.

(b) Visualization of corresponding code part from project 2.

Fig. 6: The attribute image that is shown for both subclasses
Food and Upgrade in the model is pulled up to the superclass
Item in the source code.

class is named SinglePlayModel in the model, but Single-
PlayerModel in the source code. Similarly in project 2, the
method onCreat in class SinglePlayer has a parameter that
is called saveInstaceState in the model and saveInstanceState
in the source code. We observed such misspellings for class,
operation, and parameter names.

Synonyms In some cases names in the model and code
are synonyms of each other. For example, the class Reg-
isterIncomeUI in the source code of project 3 is called
IncomeRegisterUI in the corresponding model. In project 4,
the operation getNoOfHours from the source code is named
getNumberOfHours in the model. We observed such synonyms



TABLE IV: Cases of inaccuracies

Inaccuracies

Classes
Class name inaccuracy: A class has different names in the source
code and model.

Attributes
Attribute name inaccuracy: An attribute has different names in
the source code and model.
Attribute type inaccuracy: An attribute type from the source
code is inaccurately, but recognizably, shown in the model.

Operations
Operation name inaccuracy: An operation has different names
in the source code and model.
Parameter name inaccuracy: A parameter has different names
in the source code and model.
Parameter type inaccuracy: A parameter type from the source
code is inaccurately, but recognizably, shown in the model.

for class, attribute, and operations names.
Renaming Some names are outright changed. So is the class

Control from the model of project 2 called RaiseMeUp in the
source code. Here the name in the model refers to the class’s
role within the Model-View-Controller pattern, while the name
in the source code reflects the project’s name. We observed
such renaming for class and parameter names.

Conversion of case types In some cases there is a case
conversion, e.g. from setbackground in the model to setBack-
ground in the code (operation name in project 1). We observed
case types conversions for operation and attribute names.

Conversion from singular to plural We observed a case
where the name of an operation changed from singular (list-
Food) in the model to plural (listFoods) in the source code
(project 2). We observed this conversion from singular to
plural only for operation names.

2) Type inaccuracies: Types are also sometimes affected by
inaccuracies. We found inaccuracies concerning attribute types
and parameter types. For example, we found a case where the
attribute type int from the source code was represented as
Integer in the model (attribute money in class Pet in project
2). In another case a parameter type char was represented as
Char in the model (class SinglePlayModel in project 1).

Observation: Inaccuracies in names are due to mis-
spellings, synonym usage, renamings, as well as con-
versions of case types and singular/plural.

D. Summary of occurrences

Table V summarizes the found cases with regard to the
projects that they have been found in. Not all cases have
been observed in more than one project, while others occurred
in most of the studied projects, namely attribute omission,
operation omission, parameter name omission, return type
omission, relationship omission, and class name inaccuracy.

Similarly, we observe that most cases of disagreement are
mostly due to one of the studied projects (project 2) Even
though we found disagreements in 4 out of 5 projects, future

TABLE V: Summary of occurrences of types of difference in
the studied projects.

Difference types Affected projects Occurrences

Real Abstraction
Operation omission 1, 2, 3, 4, 5 573
Class omission 1, 2, 3, 4, 5 417
Attribute omission 1, 2, 3, 4, 5 245
Relationship omission 1, 2, 3, 4, 5 28
Parameter omission 1, 2, 3, 4 28
Return type omission 1, 2, 3, 4 16
Parameter name omission 1, 2, 3 13
Subsystem omission 3, 4, 5 3
Default value omission 1, 2 7
Collection type underspecification 2, 3 6
Inheritance structure omission 5 25
Attribute type omission 4 15
Operation summary 2 6
Relationship loosening 4 3
Class summary 2 1
Attribute summary 2 1
Relationship summary 2 1
Disagreements
Operation pretence 2, 4 28
Relationship pretence 2, 5 3
Attribute type substitution 2 6
Operation move 2 5
Inheritance structure pretence 2 4
Attribute substitution 3 2
Attribute pretence 2 2
Parameter pretence 2 1
Parameter type substitution 2 1
Return type substitution 2 1
Attribute pull up 2 1
Inaccuracies
Class name inaccuracy 1, 2, 3, 5 5
Operation name inaccuracy 1, 2, 4 19
Attribute name inaccuracy 1, 2, 4 14
Attribute type inaccuracy 2, 3 16
Parameter name inaccuracy 1, 2 4
Parameter type inaccuracy 1 1

work will need to show whether project 2 is an exception with
regards to the variety of disagreements that have been found.

V. DISCUSSION

Name inaccuracies. In the inaccuracies category, a particu-
larly widespread issue was with naming inaccuracies, which
we found in class, attribute, operation, and parameter names,
with several different explanations. Naming inaccuracies are
crucial to consider for developers of tools that need to
automatically match models to code, in particular, reverse
engineering tools that update existing models based on code,
and consistency checking tools. These tools often work based
on names [8] [9]. They also raise a concern about training
abstraction capabilities in tools on real examples: as inaccu-
racies are a potential source of confusion, tools should strive
to avoid producing them, which requires careful curation of
training data. Finding additional types of reasons for naming
accuracies is also a relevant area for future research: as we
found so many instances of this issue in only a few cases, we
speculate that we have not reached saturation, and could even
find more different issues in further projects.



Theory building. Our findings partially support findings and
design decisions from previous studies on abstraction, partially
lead to new findings and add new nuances to existing ones.
We indeed found disagreement as a source of differences in
four out of five considered projects, which supports previous
developer studies which highlight the role of that found
deliberate deviations made by developers [4] [5]. Furthermore,
our results confirm that classes may be omitted, e.g. if they are
view-related or are utility classes, [7] [15]. Yet, even though
we found omissions of attributes, only in one case they were
systematically omitted. Thus, in contrast to Baltes and Diehl
[15], we do not find a systematic trend to omit attributes. This
might be explained, by the fact that they studied sketches,
which are different in nature from models committed to repos-
itories. Particularly surprising was that summary elements,
as they are proposed by approaches to create abstraction
automatically [24] [22], were rarely observed in our subject
projects, namely only in one out of five cases.

Real abstraction vs. disagreement. Due to their definitions,
there is a symmetry between real abstraction and disagreement.
Indeed some types of differences, such as e.g., inheritance
structure omission vs. inheritance structure pretence, can be
considered dual opposites of each other. Such omission-
pretence pairs exist also for attributes, operations, parameters,
and relationships. However, this does not work for all cases
of omission, as source code leaves much less room for
underspecification than models do. For example, even though
we found a case of return type omission, the dual phenomenon
return type pretence would not be possible. Nonetheless, this
allows us to speculate and predict that the dual opposites of
some of the found cases might exist in practice, even though
we did not observe them in the studied systems, e.g., class
pretense arising as the dual opposite of class omission.

VI. THREATS TO VALIDITY

Internal Validity To avoid possible misconceptions arising
from subjective definitions of the term “differences”, we used
the specifications for UML v2.4.1 [36] and JavaSE7 [37],
which were published at almost the same time, to obtain clear
definitions for considered model and code elements and derive
precise mappings between them. Another threat is that during
data selection, if multiple code versions correspond to the
considered model, we make a (motivated) selection between
them. Furthermore the assumption that the studied class di-
agram shows the complete model might not always be true.
In that case we would overestimate the abstraction regarding
the complete model. Nonetheless the results are valid when
it comes to abstraction decisions about what to show in the
diagram. This leaves it possible that, e.g, missed attributes
and operations in a particular code version are implemented
in other code versions. Yet, our finding that a difference existed
at a given point in time remains valid. Furthermore, there
is a risk that some of the captured differences are due to
code evolution. With our data selection method, we aimed to
minimize this risk. In addition, there is a threat that we might

have selected projects, where the code has been automatically
generated based on the models. During project selection we
took care to avoid projects where we could identify that this
was the case. Of course, cannot completely rule out that we
did not identify an instances of generated code. However, our
results indicate that we were to some extent successful, due to
the many inaccuracies found (which affect all 5 projects, see
table V), which one would not expect in cases with generated
code (if generated from the studied diagrams).
External validity. This paper focuses only on Java projects.
Therefore, future studies are required to conclude whether our
results are valid for systems built with other languages as
well. Furthermore, as with all research that is conducted with
GitHub repositories, there is a certain risk that the results are
not representative of the industrial use of models. Specifically,
3 out of the five projects have a fairly short active period
and all projects have below 10 contributors. We also did not
assess the quality of the selected projects, which means that
we cannot make statements on the representatives regarding
low- or high-quality projects. We tried to mitigate this risk by
scanning the selected projects for obvious signs that they might
stem from, e.g., teaching materials or classroom projects. Still,
future work on industrial projects is required to establish
generalizability of our results. Finally, we focused on class
diagrams stored in image formats, only. It is possible that
models stored as .uml or .xmi relate differently to the source
code. Also here future studies are required to further explore
how abstraction changes, e.g. if modeling tools change.

VII. CONCLUSION

In this paper, we presented an in-depth study of manual
abstraction, focusing on five open-source software projects
with their included class models and codebases. We systemat-
ically established a collection of mappings between model and
code elements, which we analyzed to derive three main types
of differences between models and code—real abstraction,
disagreements, and inaccuracies—together with lists of cases.
Our observed differences shed light on particularly important
practices applied during manual abstraction, including inher-
itance structure omission, collection type underspecification,
and relationship loosening.

We foresee the following directions for future work. First, as
we discuss in the paper, our results can be used to inform the
design and evaluation of improved reverse engineering tools,
consistency-checking rules, and manual abstraction guidelines.
It would be of particular interest to see how our identified
types of manual abstraction relate to abstractions created with
the help of large language models. Second, to further improve
the reliability of our findings and study the importance of our
identified and hypothesized categories of changes, it would be
worthwhile to conduct future studies with additional subject
systems. Third, future work should investigate manual ab-
straction in different diagram types beyond class models. Our
overarching categories of omission, pretence, and inaccuracies
are by no means specific to class diagrams, and it would be
interesting to study how they apply to different diagram types.



REFERENCES

[1] A. Dennis, B. H. Wixom, and R. M. Roth, Systems analysis and design.
John Wiley & Sons, 2008.

[2] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84, 2015.

[3] M. H. Osman and M. R. V. Chaudron, “Uml usage in open source
software development: A field study,” in 3rd International Workshop on
Experiences and Empirical Studies in Software Modeling co-located with
16th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), 2013, pp. 23–32.

[4] Y.-G. Gueheneuc, “A systematic study of uml class diagram constituents
for their abstract and precise recovery,” in 11th Asia-Pacific Software
Engineering Conference, 2004, pp. 265–274.

[5] T. Ho-Quang, R. Hebig, G. Robles, M. R. V. Chaudron, and M. A.
Fernandez, “Practices and perceptions of uml use in open source
projects,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP),
2017, pp. 203–212.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[7] M. H. Osman, A. van Zadelhoff, D. R. Stikkolorum, and M. R. V.
Chaudron, “Uml class diagram simplification: What is in the developer’s
mind?” ser. EESSMod ’12, 2012.

[8] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “Design-code
traceability recovery: selecting the basic linkage properties,” Science of
Computer Programming, vol. 40, no. 2, pp. 213–234, 2001, special Issue
on Program Comprehension.

[9] D. J. van Opzeeland, C. F. Lange, and M. R. V. Chaudron, “Quantitative
techniques for the assessment of correspondence between uml designs
and implementations,” in 9th ECOOP Workshop on Quantitative Ap-
proaches in Object-Oriented Software Engineering, 2005.

[10] R. Shatnawi and A. Alzu’bi, “A verification of the correspondence
between design and implementation quality attributes using a hierarchal
quality model,” IAENG International Journal of Computer Science,
vol. 38, no. 3, pp. 225–233, 2011.

[11] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use uml: Mining
github,” in Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, ser. MODELS
’16, 2016, p. 173–183.

[12] D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on uml class
diagrams,” Artificial Intelligence, vol. 168, no. 1, pp. 70–118, 2005.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0004370205000792

[13] Y.-G. Guéhéneuc, “A reverse engineering tool for precise class di-
agrams,” in Proceedings of the 2004 conference of the Centre for
Advanced Studies on Collaborative research, 2004, pp. 28–41.

[14] OSF. Replication package. [Online]. Available: https://osf.io/p4jdr/
?view only=34b153d3b7704f4a84befd661dc9c6a1

[15] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” ser. FSE
2014. Association for Computing Machinery, 2014, p. 530–541.

[16] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley,
and K. Wong, “Reverse engineering: a roadmap,” in Proceedings of the
Conference on the Future of Software Engineering, 2000, pp. 47–60.

[17] E. Chikofsky and J. Cross, “Reverse engineering and design recovery:
a taxonomy,” IEEE Softw., vol. 7, no. 1, pp. 13–17, jan 1990.

[18] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot, “Modisco: A model
driven reverse engineering framework,” Information and Software Tech-
nology, vol. 56, no. 8, pp. 1012–1032, 2014.

[19] R. Koschke, “Architecture reconstruction: Tutorial on reverse engi-
neering to the architectural level,” Software Engineering: International
Summer Schools, ISSSE 2006-2008, Salerno, Italy, Revised Tutorial
Lectures, pp. 140–173, 2009.

[20] F. Thung, D. Lo, M. H. Osman, and M. R. V. Chaudron, “Condensing
class diagrams by analyzing design and network metrics using optimistic
classification,” in Proceedings of the 22nd International Conference on
Program Comprehension, ser. ICPC 2014, 2014, p. 110–121.

[21] A. Egyed, “Automated abstraction of class diagrams,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 11, no. 4, pp.
449–491, 2002.

[22] ——, “Semantic abstraction rules for class diagrams,” in Proceedings
ASE 2000. Fifteenth IEEE International Conference on Automated
Software Engineering. IEEE, 2000, pp. 301–304.

[23] M. Booshehri and P. Luksch, “Condensation of reverse engineered uml
diagrams by using the semantic web technologies,” in Proceedings of the
International Conference on Information and Knowledge Engineering
(IKE), 2015, p. 95.

[24] G. Guizzardi, G. Figueiredo, M. M. Hedblom, and G. Poels, “Ontology-
based model abstraction,” in 2019 13th International Conference on
Research Challenges in Information Science (RCIS). IEEE, 2019, pp.
1–13.

[25] M. H. Osman, M. R. V. Chaudron, and P. Van Der Putten, “An analysis
of machine learning algorithms for condensing reverse engineered
class diagrams,” in 2013 IEEE International Conference on Software
Maintenance. IEEE, 2013, pp. 140–149.

[26] X. Yang, D. Lo, X. Xia, and J. Sun, “Condensing class diagrams with
minimal manual labeling cost,” in 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), vol. 1. IEEE,
2016, pp. 22–31.

[27] K.-J. Stol and B. Fitzgerald, “The abc of software engineering research,”
vol. 27, no. 3, 2018.

[28] G. Robles, T. Ho-Quang, R. Hebig, M. R. V. Chaudron, and M. A.
Fernandez, “An extensive dataset of uml models in github,” in 2017
IEEE/ACM 14th International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2017, pp. 519–522.

[29] M. H. Osman, T. Ho-Quang, and M. R. V. Chaudron, “An automated
approach for classifying reverse-engineered and forward-engineered
uml class diagrams,” in 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2018, pp. 396–399.

[30] Github - zootypers. [Online]. Available: https://github.com/orgs/
ZooTypers/repositories

[31] Github - lekogabi/raisemeup. Fork from original. [Online]. Available:
https://github.com/WenliZhang1102/RaiseMeUp

[32] Github - antoniorochaoliveira/eapli pl 2nb. [Online]. Available: https:
//github.com/AntonioRochaOliveira/EAPLI PL 2NB

[33] Github - fmacicasan/freedaysintern. [Online]. Available: https://github.
com/fmacicasan/FreeDaysIntern

[34] Github - tekosds/neurophchanges. [Online]. Available: https://github.
com/tekosds/NeurophChanges

[35] H. Mu and S. Jiang, “Design patterns in software development,” in
2011 IEEE 2nd International Conference on Software Engineering and
Service Science, 2011, pp. 322–325.

[36] Object Management Group, Inc., “About the unified modeling
language specification version 2.4.1.” [Online]. Available: https:
//www.omg.org/spec/UML/2.4.1

[37] Java Techies Pvt. Ltd. Data types. [Online]. Available: http:
//jtechies.in/core-java/data-type/java-datatypesd41d.php?

https://www.sciencedirect.com/science/article/pii/S0004370205000792
https://www.sciencedirect.com/science/article/pii/S0004370205000792
https://osf.io/p4jdr/?view_only=34b153d3b7704f4a84befd661dc9c6a1
https://osf.io/p4jdr/?view_only=34b153d3b7704f4a84befd661dc9c6a1
https://github.com/orgs/ZooTypers/repositories
https://github.com/orgs/ZooTypers/repositories
https://github.com/WenliZhang1102/RaiseMeUp
https://github.com/AntonioRochaOliveira/EAPLI_PL_2NB
https://github.com/AntonioRochaOliveira/EAPLI_PL_2NB
https://github.com/fmacicasan/FreeDaysIntern
https://github.com/fmacicasan/FreeDaysIntern
https://github.com/tekosds/NeurophChanges
https://github.com/tekosds/NeurophChanges
https://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/UML/2.4.1
http://jtechies.in/core-java/data-type/java-datatypesd41d.php?
http://jtechies.in/core-java/data-type/java-datatypesd41d.php?

	Introduction
	Related Work
	Methodology
	Project Selection
	Selection of Model and Source Code Versions
	Selection aim
	Selection process
	Assumption

	Analysis
	Difference detection
	Assessed characteristics

	Time consumption

	Results
	Real Abstraction
	Omissions
	Summaries
	Other abstractions

	Disagreements
	Pretences
	Substitution
	Refactorings

	Inaccuracies
	Name inaccuracies
	Type inaccuracies

	Summary of occurrences

	Discussion
	Threats to Validity 
	Conclusion
	References

