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Abstract—In Model-Driven Optimisation, meta-heuristic opti-
mization algorithms are applied to models to solve optimization
problems. A meta-model is used to describe a modelling language
which defines the search space. Exploration operators (e.g., mu-
tation) are usually expressed as model transformations. During
the search space exploration, transformations as well as model
copying can become a performance bottleneck, significantly
slowing down performance. In this paper, as a first step towards
solving this issue, we contribute a low-level encoding of models
that does not replace, but compliments them. The encoding stores
information about the mutable parts of the model in a way that
is inexpensive to change and copy, whereas other operations (e.g.,
querying of non-mutable parts) are still performed on the actual
model. We include a formal framework for expressing what such
an encoding looks like, together with an implementation on top of
MDEOptimiser, an existing tool for Model-Driven Optimization.
In a performance evaluation on two scenarios, we find improved
performance in one, and new, clearly identified performance
challenges in a second scenario.

Index Terms—modeling techniques, optimization

I. INTRODUCTION

Optimization problems—problems of finding a best or near-
best solution among multiple feasible ones—play an important
role in our everyday lives and manifold professional contexts,
such as healthcare, education, and finance. Search-Based Soft-
ware Engineering (SBSE, [1]) describes the application of
meta-heuristic techniques to optimization problems in software
engineering. Examples of problems for which the use has been
widely explored in a SBSE context are test case selection,
design space exploration, and requirements prioritization.

Model-Driven Optimisation (MDO, [2]) combines princi-
ples from Model-Driven Engineering [3] and SBSE to increase
the abstraction level for specifying optimization problems and
their solution using meta-heuristic search techniques. In MDO,
users specify the search space for multi-objective optimization
problems in the form of a meta-model with associated con-
straints and fitness functions. Each valid model represents one
solution candidate. Exploration operators such as mutation are
implemented as model transformations that query and update
solution candidate models. This provides several key benefits,
including improved usability as users interact with declarative
domain models, and potential performance improvements, as
one can define domain-specific mutation [4]–[6] and crossover
operators [7], [8] that avoid constraint violations or have
other useful properties. There exist several tools that apply
this concept, including MDEOptimiser [9], MoMOT [10],
VIATRA-DSE [11], and FitnessStudio [12].
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Fig. 1: Overview of approach

Despite its user-oriented benefits and performance-oriented
motivation, MDO can be affected by performance drawbacks,
especially when applied to large problem instances. Executing
a meta-heuristic optimisation algorithm on models requires
that a large population of solution candidates is maintained
and evolved through model transformations, which leads to
many model querying and updating operations based on an
available Model API (e.g., an automatically generated one
from EMF [13]). Such Model APIs are often not optimized
for performance in this use-case, in which many versions of
the same model (solution candidates) exist in parallel in one
population. Furthermore, models are routinely copied to create
new variants for the mutation and crossover steps. Since these
models are big data structures with a lot of information, their
copying can become a computational bottleneck.

Our long-term vision is an approach that enables all com-
putational steps to be performed on low-level encodings (i.e.,
based on primitive types and standard collections), while
the user specifies the problem and interacts exclusively with
declarative domain models and model transformations. Such
a solution is promising to yield significant improvements,
offering the best of both worlds. However, it presents an
ambitious technical challenge, as it entails questions such
as: how to execute exploration operators defined as model
transformations directly on low-level encodings?

In this paper, we present the first steps towards improving
the performance of MDO approaches by using low-level
encodings as the basis upon which the optimisation algorithms
are applied. We provide an approach in which solution candi-
dates are expressed as low-level encodings that exist in parallel
to the model. Some of the invocations of model queries – those
that involve mutable parts of solutions – are performed on the



Fig. 2: Meta model for NRP [9]

low-level encoding, while others are performed on the model
itself. The overview in Fig. 1 shows the components of our
approach: a formally defined low-level encoding which we
can automatically generate from the input model, as well as
instrumented model API that ensures that queries and updates
to the mutable model parts from exploration operators and
fitness evaluation are performed on the low-level encoding. In
particular, this approach reduces the effort associated with the
copying of models.

Specifically, we make the following contributions:
• We present a formal framework for expressing what an

encoding looks like for any given model instance and
meta-model.

• Based on this framework, we implemented a Java library
for encoding any meta-model with model instance that is
expressed within the EMF framework.

• We discuss and show how the instrumented model API
can be implemented for two particular MDO scenarios.

• We conduct several experiments in the two scenarios to
validate the potential performance improvements.

• We discuss the results, providing pointers for future work.
For our implementation, we focus on the MDEOptimiser

tool, since it provides out-of-the-box support for the consid-
ered scenarios, and has shown favorable performance in an ex-
perimental comparison in a previous study [14]. However, our
solution is generally applicable for EMF-based frameworks
for model-driven optimization. All of the code written for this
paper can be found on GitHub12.

II. BACKGROUND AND RELATED WORK

MDO by Example. We now illustrate the concept of MDO
introduced in Sect. I on an example, the Next Release Problem
(NRP, [15]). The essence of NRP is that we have several
software artifacts that have a cost of realisation and an impor-
tance for a customer. These customers also have a differing

1https://github.com/larsvanarragon/mde optimiser-hilo/tree/nobitset
2https://github.com/larsvanarragon/mde optimiser/tree/encoding

Fig. 3: Mutation rules for NRP [9]

importance. Now the question becomes what artifacts do we
realize for the next release? We want to minimise the cost of
the realisation and maximize the customer satisfaction.

In an MDO framework, this problem can be modeled using
the meta-model shown in Fig. 2. Notably, the meta-model has
a small part that is mutable in solution candidates, i.e., the
edge between Solution and SoftwareArtifact denoting which
artifacts are contained in the current solution, whereas most
other parts remain constant over solution candidates (e.g., the
cost of particular artifacts). In addition to the meta-model,
the problem definition includes constraints (e.g., C1: if an
artifact is included in the solution, all of its dependencies
need to be included as well), and fitness functions (e.g., F1:
user satisfaction is to be maximized). In MDEOptimizer [9],
constraints such as C1 can be specified in OCL, Xtend or Java.

MDO further involves the definition of problem-specific
exploration operators, typically using model transformation
languages. Such operators can be either manually specified
or automatically generated. Fig. 3 shows mutation operators
for assigning and un-assigning artifacts to and from solutions,
respectively, specified as transformation rules in Henshin [16].
The (un-)assignment is achieved via the create and delete
edges. Both rules are designed to ensure that a particular con-
straint – C1 as defined above – is respected during mutations.
In particular, the requires* edge in addSingleSa denotes an
application condition, ensuring that artifacts are only added to
solutions if all dependent artifacts are in the solution as well.
Previous encoding approaches. Previous work on combining
model-driven and search-based software engineering has ex-
plored the use of generic encodings of MDE models [17], [18].
However, during exploration, they relied on the standard mu-
tation and cross-over operators, whereas our approach aims to
make domain-specific exploration operators defined as model
transformation applicable to the encoding. The NRP example
illustrates a benefit of such exploration operators: given a
bit-vector encoding of NRP, applying the standard ”bit-flip”
mutation operator may lead to a constraint violation regarding
constraint C1. While search-based optimization algorithms are
geared to deal with invalid solutions (in particular, during se-
lection), producing and then later discarding invalid solutions
might not be the most efficient strategy. Previous work [5]
shows a benefit of using tailored mutation operators that never
produce invalid solutions over existing approaches.
Domain-specific search operators. An inherent benefit of
our approach is its potential to support domain-specific search

https://github.com/larsvanarragon/mde_optimiser-hilo/tree/nobitset
https://github.com/larsvanarragon/mde_optimiser/tree/encoding


operators specified using model transformations, as opposed
to generic search operators, which have been used in previous
encoding-based approaches. A recent research line addresses
the specification of such search operators, either in the context
of a specific domain (e.g., product line configuration [5] or
feature allocation [19]–[21]) or by providing a generic operator
generation approach that addresses constraint-aware encodings
[4] or uses a notion of meta-learning to generate optimized
domain-specific operators [12]. Follow-up work has addresses
the analysis of search operators to ensure that they either
remove or at least do not create new constraint violations
[22], and to specify search operators in a flexible way, to have
optional changes in search operators that are only executed if
required by a constraint [23].

Constraint satisfaction problems. In the context of design
space exploration, there exists related work on declarative
DSLs with an automated transformation to a low-level encod-
ing in the context of constraint satisfaction problems (CSP).
Saxena et al. [24], [25] have proposed an approach in which
users use a high-level DSL and constraint language for prob-
lem specification, which they transform to an intermediate,
solver independent encoding supporting several back-end CSP
solvers. Chenouard et al. [26] have proposed an approach for
topology optimization, in which the user models components
and requirements, and automated transformations to and from
the MiniZinc CSP solver are provided. While low-level CSP
solvers such as MiniZinc offer some support for optimization
problems, they address a different scope than our scope of
search-based optimization, in particular: support is limited to
mono-objective problems and exact optimization (identifying
global maxima), which is desirable, but for large problem
instances terminates without result.

III. MDO USING A LOW-LEVEL ENCODING

A. Encoding

We now introduce our encoding in the form of a formal
definition. We aim to support a way to flexibly encode model
instances in which both model elements and references be-
tween model elements can be added and removed. To that
end, we assume a graph-based representation of the meta-
model (C,R) and a model instance (V,E), with C being
the set of classes, R being the set of references, V being
the set of objects (vertices), and E being the set of reference
instances (edges), respectively. The meta-model and model we
consider here contain exactly the information that needs to be
contained in the encoding, that is, classes and references which
can be subject to additions and deletions. They might be sub-
graphs of a larger graphs that represent the full context of the
optimization problem (e.g., the full NRP case and an instance).

We define a mapping from a meta model and a model
instance to an encoding P(RA,P(RI ,P(L))). Here we have
that RA is a set of labels that denote the abstract relations
within the meta-model, RI is a set of labels that denote the
relation instances within the model instance and P(L) is the
powerset of labels. The powersets in the encoding denote that

we have several abstract relationships who in turn have several
relationship instances. All specific label sets like RA and RI

have that RI ⊆ L and RA ⊆ L. The usage of these names is
just for convenience.

To enable the encoding to link between label representations
of the object instances we assume that there is a bijective
function id : V → L from which we can obtain an identifier
for any object instance v ∈ V . With its corresponding inverse
which we call obj : L → V which links any identifier to
its object. Lastly we also assume that we have an operator +
which concatenates any two k, l ∈ L labels. To start of this
definition we need to gather all of the referenced objects of
any object within the model instance as identifiers and relate
them to the identifier of the object that references them.

Definition 1 (Relation instance). Suppose a graph (V,E) with
a vertex v ∈ V , a set of relation labels RI and a set of
labels L. We call rI : (RI ,P(L)) a relation instance of v if
rI = (id(v), { id(w′) | (w,w′) ∈ E ∧ w = v })
Suppose a graph (V,E). We define RelInst(V,E) as all rela-
tion instances for (V,E). Namely, we define RelInst(V,E) =
{ rI | v ∈ V ∧ rI is a relation instance of v}.

This gives us a set containing all relation instances for
the graph. We now want to obtain all relation instances for
any given abstract relation. For this we restrict the relation
instances to a relation in the corresponding meta-model.

Definition 2 (Restricted set of relation instances). Sup-
pose a meta-model (C,R) and a corresponding model
instance (V,E). For an arbitrary r ∈ R we de-
fine RelInstRestr(V,E, r) as all of the relation in-
stances for (V,E) restricted to r. Namely, we de-
fine RelInstRestr(V,E, r) = { (v,W/U) | (v,W ) ∈
RelInst(V,E) ∧ U = { w | w ∈ W ∧ (obj(v), obj(w)) ∈
E ∧ (obj(v), obj(w)) /∈ r} ∧W/U ̸= ∅}.

In essence, this definition removes all of the edges from
RelInst that are not an instance of the meta relation r. Using
this restriction we can now define what an encoded abstract
relation looks like.

Definition 3 (Encoded relationship). Suppose a graph (V,E)
which is a model instance of a meta-model (C,R) with
a relation r = ((c, P ), (d,Q), l, Q) ∈ R. We call rA :
(RA,RelInstRestr(V,E, r)) an encoded relationship of r if
rA = (l+ id(c)+ id(d), { rI | rI ∈ RelInstRestr(V,E, r)})

We can now construct the formal encoding for any given
meta-model (C,R) with a corresponding model instance
(V,E). For every r ∈ R we can construct an encoded
relationship and take a set of all of them.

Definition 4 (Encoding). Suppose a graph (V,E) which is
a model instance of a meta-model (C,R). We define an
encoding of (C,R) and (V,E) to be { rA | r ∈ R ∧
rA is an encoded relationship of r}

Example. We apply the above definitions to the small NRP
example shown in Fig. 4. Considering the relevant meta-model



exerpt as (C,R) and the instance (V,E), we obtain:

C = {(Solution, S), (Artifact, A)}
R = {((Solution, S), (Artifact, A), selectedArtifacts, SEL),

((Artifact, A), (Solution, S), solutions, SOL),

((Artifact, A), (Artifact, A), requires,REQ)}
V = {proposedSolution,mainArtifact,

drawArtifact, logArtifact}
E = {(proposedSolution,mainArtifact),

(mainArtifact, proposedSolution),

(mainArtifact, drawArtifact),

mainArtifact, logArtifact)}
(1)

First, we look at what a relation instance looks like for some
vertex. This small example only has two relation instances, as
there are only two classes that have outgoing relations. We
show them for mainArtifact and proposedSolution:

rImainArtifact
= (id(mainArtifact),

{id(proposedSolution), id(drawArtifact),
id(logArtifact)})

rIproposedSolution
= (id(proposedSolution),

{id(mainArtifact)})
(2)

Taking both rImainArtifact
and rIproposedSolution

as a set
now already is RelInst(V,E). We can now look at what all
restricted relations look like for (V,E), but we will focus
only on those of mainArtifact as here we can restrict to
different abstract relations. We can either restrict to r0 =
((Artifact, A), (Solution, S), solutions, SOL) which gives:

RelInstRestr(V,E, r0) = {(id(mainArtifact),

{id(proposedSolution)})}
(3)

Alternatively, we can restrict to r1 =
((Artifact, A), Artifact, A), requires,REQ), yielding:

RelInstRestr(V,E, r1) = {(id(mainArtifact),

{id(drawArtifact), id(logArtifact)})}
(4)

This enables us to encode one of these restricted relationship
instances. Let us pick r0, we have then that rA is an encoded
relationship for r0 if:

Fig. 4: Simple NRP instance

rA = (solutions+ id(Artifact, A)+

id(Solution, S), {(id(mainArtifact),

{id(proposedSolution)})})
(5)

The entire encoding of (C,R) and (V,E) can now be
instantiated, leading to the set shown in Fig. 5.

B. Embedding in Model-Driven Optimisation

Using the above definitions, we have encoded a meta-model
with its model instance. However, this is not yet enough to
actually use the encoding within any given MDO technique.
To enable this, we have to consider two things. One, how do
we evolve the encoding instead of the model? Two, how do
we evaluate the encoding with the fitness function? Both of
these questions concern other, user-defined aspects of the opti-
mization setup, specifically, the fitness function and evolution
operators. We do not want a user of an MDO technique to
consider the encoding. That would defeat the entire purpose
of using models as a way of representing the population. Our
goal is to make sure the user of such an MDO technique does
not even realise it is being encoded.

One way to enable the seamless integration of the en-
coding is to intercept relevant function calls to the model
and supply the information based on the encoding. To do
this it is important that we add an extra ingredient to the
encoding. A bidirectional map of the id : V → L and
obj : L → V . We call this bidirectional map the ‘Repository’,
and it implements the storage of all relevant model instances.
To use the Repository we fill it with the initial objects in the
model instance during the encoding phase. Then, whenever an
exploration operator adds an object instance to the model, we
instantiate the object, generate an identifier for it, and add it to
the Repository. If an exploration operator removes an object
from the model, the Repository should remove the relevant
mapping to save space. Note that maintaining the bidirectional
map increases the required memory for storing information for
our encoding; at the same time, it does so to a smaller extent
than our considered baseline of storing solution candidates as
modified copies of the same model in some standard model
representation (e.g., EMF).

With the addition of this Repository it is now easy to
intercept functions on the model. From the context of the
function we can retrieve the relevant abstract relationship. We
can then, based on the object on which it is called, retrieve
the relevant identifiers it is related to within the encoding, and
return the list of actual objects back to caller. We will illustrate
this idea using the small NRP model example—recall Fig. 2.
A logical function every Solution has is to get its selected
artifacts. The context gives us the identifier for this encoded
relationship. Namely, selectedArtifacts+ id(Solution, S)+
id(Artifact, A). With this we can then obtain all relationship
instances for this abstract relationship. Now suppose we call
this function on the proposedSolution. We can then invoke
id(proposedSolution) to lookup the relevant set of identifiers
that this Solution references. We then simply return a new



{(solutions+ id(Artifact, A) + id(Solution, S), {(id(mainArtifact), {id(proposedSolution)})}),
(requires+ id(Artifact, A) + id(Artifact, A),

{(id(mainArtifact), {id(drawArtifact), id(logArtifact)})}),
(selectedArtifacts+ id(Solution, S) + id(Artifact, A), {(id(proposedSolution), {id(mainArtifact)})})}

Fig. 5: Complete encoding

set that contains the actual object instances for the set of
identifiers.

This way both the fitness functions and exploration opera-
tors can still treat the population as models, while they are
actually using the encoding. Ideally, the generation of this
interception should be done automatically. This was out of
scope for the paper and will thus be left as future work.

C. Implementation

We implemented all of the aforementioned concepts as a
Java library for the EMF framework. The library currently
supports the automatic generation of the encoding and the
automatic lookup of related objects. Within the library there
are three important classes that facilitate all the functionality
for the encoding to be applied in any situation. These are the
classes Converter, Encoding, and Repository, as we can see in
the class diagram in Fig. 6. The ModelLoader class is utility
for loading in the files.

The converter exposes an interface that accepts any meta-
model ecore file and a model instance xmi file and converts
it to an encoding. The Repository class is implemented as
described in the previous section, it contains the bidirectional
map between object instances and identifiers. It supplies
functionality for the id and obj functions. The Encoding class
itself contains as data a HashMap that has as keys all of the
abstract relationships within the meta-model and as values
another HashMap which contains the RelInstRestr for that
abstract relationship.

Fig. 6: Encoding Java library class model

A user of this library should only ever have to work with
the Converter.convert() function and the lookup function from
the Encoding class. This gives a two layered approach where
the model exists within the code to guide the user to not
construct violations of the models within their implementation.
The encoding should now be used to do the heavy lifting of
the optimisation algorithm, namely the evolution and copying.

Within the library we also support the addition of new
objects to the repository as described within the previous
section. However, we do not support the removal of objects
from the repository, as efficient garbage collection is a big
challenge in itself, out of the scope of this paper.

The interception of the calls on the models (Instrumented
Model API in Fig. 1) is not part of the Java library. We discuss
two options to implement the instrumentation, before explain-
ing our choice taken for our implementation and experiments.
The first is a wrapper that is generated with the generation
of the actual code for the models by EMF. The wrapper then
functions as the bridge between the model and the encoding
and should as such be context aware, which is possible because
it is generated based on the model. The second is to intercept
the calls to the models using aspect-oriented programming,
e.g., in its Java implementation AspectJ [27]. Since AspectJ
does not require us to interfere with the code generation of
EMF and gives us relative easy access to the interfaces we
need this is what we chose to implement the interception of
the calls within the experiments we performed.

IV. EVALUATION

To validate our concepts and implementation, we consider
two scenarios for which an available solution in our baseline
tool MDEOptimiser was available: NRP [15] and CRA [28].
We apply our encoding and its implementation on top of
MDEOptimizer to both scenarios. We measured the time for
completion of the optimisation based on the population size
and the number of evaluations. All experiments were executed
on a Windows 11 machine (CPU: Intel i7 7700K 4 cores;
RAM: 16GB DDR4-3200 CL16) with Java 11.

A. Set-up

This section presents the set-up for the experiments done
for NRP and CRA, including main design decisions.

Next Release Problem. Our first scenario is NRP. From the
meta-model for NRP from Fig. 2, we can observe that the
crucial relation for this problem lies between Solution and
SoftwareArtifact. The core of the NRP is to decide for each



software artifact whether it is added to the solution or not.
Hence, the obtained encoding in this case precisely captures
this information, rendering it essentially a bit vector. The rest
of this model will always stay the same for each member of
the population.

We use the Java implementation of the NRP provided in
[9], on which we implemented the MOEA framework. As we
need to evaluate two variants we implemented two problems
that represent them. The encoded problem was quite straight-
forward as we could simply use the provided BinaryVariable
given by MOEA. For the model problem however, we had to
implement our own custom variable.

In this experiment, we used the standard operators for
evolving a bit vector provided by the MOEA framework,
namely the HUX and BitFlip operators. The HUX operator,
also called the half uniform crossover operator, is an operator
which accepts two parents and then compares their vectors.
For parents p and q with vectors p1, · · · , pn and q1, · · · , qn
we have that if pi ̸= qi then their values are swapped. In a
usual case there is only a chance that this swap happens, but in
the case of this experiment this chance is 100%. The BitFlip
operator accepts one parent and has for each bit a 1% chance
to flip its value to the opposite. In this experiment, we apply
HUX first and then apply BitFlip on the resulting children. We
let the MOEA framework handle the operators for the encoded
variant of the problem, and we implement these operators for
the model variant ourselves by instantiating a Variation class.
This implementation should behave exactly the same as the
standard implementations from MOEA.

To intercept the calls to the model we use AspectJ to redirect
them to obtain the information from our encoding. This is
quite simple to implement, as the only calls that we have to
intercept are the getters in the SoftwareArtifact and Solution
classes that reference each other.

We used two available model instances for this experiment,
differing in their size. The smaller one, called model A,
included 5 customers, 25 requirements, and 63 software arti-
facts. The bigger one, called model B, included 25 customers,
50 requirements, and 203 software artifacts. For each model
instance we ran the experiment on two variables; namely, the
population size and amount of evaluations. Per combination of
these variables we run the experiment several times. Our goal
was to identify whether the configuration of these variables
has an impact on the observed performance differences.

Class Responsibility Assignment. Our implementation of
CRA is based on the available implementation provided by [9],
augmented with our generated encoding. To ensure that our
encoding instead of the model is used for queries to mutable
parts, we used AspectJ again to intercept the relevant calls to
the model and redirect them to the encoding.

We made every effort to stay as close as possible to the
available MDEOptimiser solution, to ensure that any observed
performance differences come from our encoding. We copied
the way MDEOptimiser calls MOEA, and then filled in
our custom AbstractProblem, Variable and Variation that are

to be used during the optimisation algorithm. We used the
exploration operators as provided by [9]. Like MDEOptimiser,
we rely on Henshin for the pattern matching of the rule to the
model. To enable this we implemented a stub for the graph
that Henshin expects that is filled with the information of the
encoding. We then tell Henshin to pattern match to that graph,
which calls the relevant getters in the model. Henshin then
gives us back a list of changes that should happen to the model,
which we apply to the encoding instead.

To measure the performance we recorded the time it took
for each of the actions as described in the methodology to
complete as well as the overall time. Since these steps get
executed multiple times throughout the algorithm we take the
average of each of these times per experiment. To measure it
for MDEOptimiser we add measurements as hard coded pieces
within the corresponding classes in MDEOptimiser.

We use five model instances within this experiment provided
by [9]. These model instances range from 9 features with 14
dependencies to 160 features and 600 dependencies. For the
population size we have chosen 40 with 500 evaluations per
member of the population (i.e. 20, 000 total evaluations). For
this case, to obtain detailed information about the different
components of the total time taken, we measure the total time
for the experiments to complete and the average time per
experiment it took to complete: copying a solution candidate,
applying mutation, and evaluating a solution candidate.

B. Results
In this section we will show and discuss the results gotten

from the experiments we conducted. Firstly, we will discuss
the results for the NRP case study. Then we will move on to
the results for the CRA case study.

NRP. Table I gives an overview of the results obtained for
the NRP case. Within NRP we performed the experiment
on two problem instances (models). While we performed the
results with varying parametrizations for population size and
number of evaluations, we only show the results for varying
numbers of evaluations, as the trend we observed only shows
linear growth when higher iteration numbers are considered.
Population size had no effect on the performance, since the
amount of calculations is solely determined by the number
of iterations. A higher population size just resulted in every
member of the population receiving a smaller portion of the
number of iterations. We observe that the search was generally
twice as fast when our encoding was used, indicating a clear
benefit of the encoding over the baseline.

Following standard recommendations for evaluations of
meta-heuristic algorithms [29], we tested our results for statis-
tical significance, using t-testing in the available implementa-
tion scipy.stats.ttest. For both models and all considered com-
parisons, the obtained p-values range between e−9 and e−26,
which is greatly below the predefined threshold of α = 0.05.
In consequence, we can conclude that the observed differences
regarding execution time are statistically significant.

As a correctness check, we considered the quality of the
produced solutions for both treatments, with the encoding and



TABLE I: Results for NRP case (times in sec.), with number
of evaluations (E), median times and standard deviations (SD)

Encoding Baseline
Model E Median time SD Median time SD

A 10K 4.5 0.16 8.8 0.31
20K 8.9 0.17 17.6 0.44
30K 13.0 0.14 25.8 0.35

B 10K 14.7 0.66 28.3 0.57
30K 42.6 0.14 83.7 0.33
50K 70.6 0.08 138.5 0.28

in the baseline, measured in terms of the hypervolume indica-
tor, a standard quality indicator in multi-objective problems,
present in the original case [9]. Our implementation is correct
if there is no significant difference between the quality of its
solutions and the solutions produced by the baseline. For all
experiments, we calculated the hypervolumes for each variant
with respect to a previously calculated pareto front of the
model instance. This pareto front is the combination of the
result of running both experiments with a large population
size and amount of evaluations. To validate significance, we
again applied t-testing. In t-test, a statistically significant
difference is observed if the obtained p-value is greater than
the predefined significance threshold. The obtained p-value
was greater than 0.05 in all cases, indicating no significant
difference and, therefore, a correct implementation.

CRA. Table II gives an overview for the results obtained for
the CRA case. For the smaller cases A and B, the overall
results look promising for the encoding: according to the
total runtime column, the encoding experiments completed on
average faster for the model instances A and B. For model
instance C the encoding experiments where on average as fast
as MDEOptimiser, but had greater variance among the values.
For the larger model instances D and E we see the opposite
picture: the encoding is much slower. To further understand a
possible cause for these results we measured the time it took
an experiment to complete several steps.

We started with looking at the average time it took to copy
members of the population. The results for these experiments
are shown in the copying time column in the table. From these
results we can observe that, like in the NRP case study, the
encoding beats out MDEOptimiser for every model instance.
Having an average speedup of 2.36 for the biggest model
instance E. This means that we have to look at the other steps
within the algorithm that interact with the encoding.

We first consider the average time taken to mutate a member
of the population. These results are shown in the mutation time
column. We observe the same trend as in the total runtime
column, we start of faster in models A and B, we have similar
results for model C and are slower for the bigger models.

We move on to the evaluation of the members of the popula-
tion. The results for this step are visible in the evaluation time
column. These results immediately show that the encoding
is slower when evaluating a member of the population. This
slowdown becomes even more noticeable when the size of the

model increases, which is the inverse of what we aimed to
achieve. Similar to the observations for the mutation time, the
time taken for large models increases by a factor between two
and three.

We again performed tests for statistical significance and
correctness using the same strategy as for NRP, based on t-
testing and the problem-specific quality indicator called CRA
index. We found that the observed performance differences for
all models except for model C are statistically significant, with
p-values between e−5 and e−35. The absence of significance
for model C, with p = 0.44, is expected, as C, in terms
of model size, is exactly at the turning point from when
the baseline approach performs favorably. For the correctness
test, again we found no significant difference between the
obtained solutions produced with our encoding compared to
the baseline, indicating correctness of our implementation.

In conclusion, considering CRA, the fitness evaluation and
mutation of members of the population is slower in the exper-
iments that implement the encoding than in MDEOptimiser
itself. Whereas the copying of the members of the population
is still faster when using the encoding. We will further discuss
these results in the next section.

V. DISCUSSION

This section will discuss the results of our experiments. In
the case of the NRP, we see that the results show that in
both cases of the model instance using an encoding as the
representation is a lot quicker than using the model (Table I).
However, for CRA, we observe slowdowns for the two largest
models. When looking at the different components of the over-
all execution times, we see that both mutation and evaluation
became slower when our encoding was used (Table II). The
worst offender in the CRA case is Henshin’s pattern matching
during mutation. Now there can be several reasons for this
observation. One is that since we use AspectJ to intercept
all calls to the model, the overhead that is created due to
this makes it impossible to have faster or even comparable
times. This makes the most amount of sense in our opinion,
AspectJ is known to increase overhead somewhat [30], but that
is usually deemed negligible due to the amount of calls typical
Java programs have to libraries, which dwarfs the amount of
time spent in user code. In our case however, we spent a lot
of time in the user code, as we capture any call towards the
domain model. It is also the case that a simple getter that
returns part of the model is faster than having to gather the
right objects from the object repository, as this list needs to
be constructed every time. When combining this with the fact
that these getters are called a lot, we can easily see how
just a slight decrease in performance can lead to seconds or
even minutes when running an entire optimisation algorithm.
Another explanation could be that using an encoding this way
and intercepting calls to the models just is not viable as it
costs more in performance than it gains.

Another aspect noticed during the implementation of the
encoding is that if we have a bit vector as the underlying data
structure, lookups through this vector would take at worst n



TABLE II: Results for CRA case, with median times and standard deviations (SD)

Total runtime (in seconds) Copying time (in microseconds) Mutation time (in microseconds) Evaluation time (in microseconds)
Encoding Baseline Encoding Baseline Encoding Baseline Encoding Baseline

Model t med. SD t med. SD t med. SD t med. SD t med. SD t med. SD t med. SD t med. SD

A 1.6 0.3 2.3 0.3 4.4 0.5 13.4 1.4 45.4 9.9 67.0 10.8 25.5 5.4 18.5 3.0
B 3.8 1.2 4.5 1.0 9.2 1.4 24.9 3.8 105.3 42.8 127.2 33.4 71.2 16.7 55.4 9.7
C 16.0 5.3 15.3 4.2 17.0 1.1 42.8 2.2 541.9 231.6 519.1 188.9 238.0 36.2 182.2 21.5
D 97.9 26.0 64.0 13.8 23.1 0.9 53.6 2.6 4134.8 1233.9 2808.4 669.0 740.0 71.3 318.5 22.8
E 843.8 126.3 376.9 50.9 53.7 1.20 114.9 4.3 39207.6 6157.3 17403.3 2487.0 3004.4 183.6 1273.1 57.7

amount of cycles where n is the amount of objects within a
class. This was because in the beginning we did not take into
account that Henshin rules can add and remove objects from
the model. To alleviate this issue we adapted the encoding to
use a set of identifiers instead, which cut the amount of cycles
to only those object that are actually related to the object.

The ideas we represent within this paper can be extrapolated
to tools outside of MDEOptimiser. We think that the core
concept, the formal encoding, is a useful way of encoding
any meta-model with model instances. Which can solve, as
we show, the performance of copying the population.

The main problem that we see now is that MDEOptimiser
and the surrounding tools are not tailored towards using
such an encoding. We thought that using AspectJ would not
impact the performance as much as it did. However, we can
not yet be certain that it is the fault of AspectJ that the
performance is worse. It could just be the case that this
way of encoding the models only benefits the copying of the
population. More research is needed to figure whether we can
get MDEOptimiser to a place where the overall performance of
the encoded variant is as fast or faster than the model variant.

A further aspect that could potentially affect performance
is our choice to store encoded information in HashMaps of
strings. Arguably, HashMaps are a reasonable choice for our
prototypical implementation, due to their low cost for lookups
in O(1). However, the use of dedicated model indexers such
as Hawk [31] could lead to performance improvements.

Another big issue is the usability of the encoding. In an ideal
setting we do not want the end user that describes the domain
and exploration operators to perfectly tune their models for
the encoding. This is to preserve the advantages that a tool
like MDEOptimiser introduces. In the CRA experiment we
enabled this with the use of AspectJ, as that enabled us to
redirect calls to the model to the encoding. While we, for
this prototypical implementation, implemented the AspectJ
integration manually, it could, in principle, be automatically
generated. An orthogonal direction for future work, as outlined
in the beginning of this paper, is to provide advanced tools
that can perform fitness evaluations and mutations directly on
the encoding, instead of using an intermediate layer such as
the instrumented model API. Such tools would contribute to
the potential to keep the overall optimization framework as a
black-box to the end-user.

VI. CONCLUSION

We presented a formal low-level encoding for solution can-
didates in the context of model-driven optimization, together

with an implementation based on AspectJ for instrumenting
the used model API to forward relevant queries to the encod-
ing, and experiments from two scenarios from the literature.

From our experiments, we can draw several conclusions.
The first is that our encoding can generally lead to improved
performance, in terms of execution time, as evidenced by the
results from the NRP case. While the NRP case is conceptually
simple, it is representative for a wider class of problems
known as knapsack problems, in which items are selected for
inclusion into some container, as to maximize value. However,
as we see from the results from the CRA case, the way we
implemented the encoding within MDEOptimiser using As-
pectJ does not increase the overall performance. This implies
that the current implementation does not generally improve
performance in MDO applications. On a more positive note,
our results confirm that copying solution instances was much
faster in both experiments.

We foresee several directions for future work. The most
crucial direction is to enable apply the application of evolution
rules directly on the encoding, instead of using AspectJ to
mediate. Another interesting aspect to explore is related to
the overhead AspectJ creates. It could be worth altering the
way the model code is generated from the models the user
creates, if this takes the encoding into account, it is possible
to diminish the negative impact of AspectJ even more and
maybe even completely stop using it to intercept calls to the
model. We also intend to provide support for problems in
which attributes are altered by exploration operators, and apply
our approach to a broader selection of cases.
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