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Part 1



Model-driven software engineering:
Transformations everywhere
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Henshin 

 Intuitive model transformation language with graphical syntax
 Supports various kinds of transformations
 Based on graph transformation theory
 Rule-based
 Expressive: advanced concepts
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Henshin: Japanese for Transformation



Overview

 Part 1: Henshin: A Guided Tour
 Language
 In Action (interactive)
 Features
 Applications

 Part 2: Henshin in Search-Based Model Optimization
 Background
 MDEOptimiser
 Case 1: Class Responsibility Assignment (interactive)
 Case 2: SCRUM Planning (interactive)
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HENSHIN
LINE

GRAPH TRANSFORMATION
LINE OPTIMISATION

LINE

Henshin: A Guided Tour
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HENSHIN
LINE

GRAPH TRANSFORMATION
LINE OPTIMISATION

LINE

Henshin: A Guided Tour
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Specify banking processes to analyse and simulate them
1. Create an account 3. Delete an account
2. Transfer money 4. Batch-delete accounts

Language: Running example

Example meta-model (in EMF)

Bank 1

Example model

Client
Anne

Manager
Frank

Client
Bill

Account
0538
40$
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Example rule

create Newly created by rule
delete Removed by rule
preserve Context for creations and deletions
forbid Prevents rule from being applied
require Additional required parts
parameters Data passed into and from rule (in, out, inout)

Graph-transformation-based language
Example 1: createAccount



77

Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

with parameter values
client = “Bill“
accountID = 0539

Example 1: Create an account

?
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Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

Client
Anne

Client
Bill

Bank 1 Manager
Frank

Account
0538

Account
0539

with parameter values
client = “Bill“
accountID = 0539

Example 1: Create an account
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Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

with parameter values
client = “Bill“
accountID = 0538

Example 1: Create an account

Output
model

?
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Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

with parameter values
client = “Bill“
accountID = 0538

Example 1: Create an account

Output
model No rule 

application 
possible
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Example rule

Variables (var keyword) used inside rules to propagate values
Attribute manipulated using parameters, variables and ->
Conditions can restrict rule applications

Example 2: Transfer money
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Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

Account
id=0539

credit=30

Output model

variables:
set automatically
on rule application

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = 10

?
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Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

Account
id=0539

credit=30

Output model

Client Anne Client Bill

Account
id=0538

credit=40

Account
id=0539

credit=40

variables:
set automatically
on rule application

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = 10
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Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = -30

Account
id=0539

credit=30

Output model ?
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Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = -30

Account
id=0539

credit=30

Output model 

No rule
application
possible
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Example rule (first draft)

Example 3: Delete an account
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Example rule (first draft)

Want to delete an account
which is given by its ID.

Is this rule sufficient?

Example 3: Delete an account
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Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

?
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Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

Bank 1

Client
Anne

Manager
Frank

Client
Bill
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Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

?

Bank 1

Client
Anne

Manager
Frank

Client
Bill

By deleting the node only, without
incident edges, these edges would be
left behind dangling.
Henshin ensures this won‘t happen
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Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

By deleting the node only, without
incident edges, these edges would be
left behind dangling.
Henshin ensures this won‘t happen

No rule 
application 
possible
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Example rule (improved)

Example 3: Delete an account
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Example rule (improved)

Example 3: Delete an account

Deletion: When deleting a model
element, need to specify all
references from and to that element
as deleted, too.  (Dangling Condition)
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Example rule

For-all operator: multi-rule (*)
Semantics: 

1. apply kernel rule (part without *) once
2. apply multi-rule as often as possible

at the given place in the input model

Example 4: Batch-delete accounts
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Example application of rule Input
model

Output
model

with parameter
client = “George“

?

Example 4: Batch-delete accounts

Bank 1

Client
George

Manager
Frank

Account
0912

Account
0915
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Example application of rule Input
model

Output
model

with parameter
client = “George“

Example 4: Batch-delete accounts

Bank 1

Client
George

Manager
Frank

Account
0912

Account
0915

Bank 1

Client
George

Manager
Frank
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Input
model

Output
model

?

Example 4: Batch-delete accounts

Bank 1

Client
Hank

Manager
Earl

Example application of rule

with parameter
client = “Hank“
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Input
model

Output
model

Example 4: Batch-delete accounts

Bank 1

Client
Hank

Manager
Earl

Bank 1

Client
Hank

Manager
Earl

Example application of rule

with parameter
client = “Hank“
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Input
model

Output
model

Example 4: Batch-delete accounts

Bank 1

Client
Hank

Manager
Earl

Bank 1

Client
Hank

Manager
Earl

Example application of rule

with parameter
client = “Hank“

Semantics: 
1. apply kernel rule once
2. apply multi-rule as often as

possible at the given place
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Language definition: meta-model excerpt
Can link negative and positive

application conditions
using boolean formulas

mark identity of nodes
in different graphs

(like preserve nodes in LHS and RHS)

LHS and RHS
Multi-rules
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Abstract syntax: Based on left-hand side and right-hand side

Language definition: illustration

Negative
application

condition

Mappings

Right-hand side (RHS):
Created + Preserved elements

Left-hand side (LHS):
Deleted + Preserved elements
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Control flow in transformations

Task: build a sparse grid
[Varró et al. 2005]

Three rules for extending the grid

@Grid = additional
container node
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Control flow in transformations

Task: build a sparse grid
[Varró et al. 2005]

Three rules for extending the grid

@Grid = additional
container nodeBut, how to orchestrate the rules?



104

Control flow in transformations: units
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Control flow in transformations: units
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Control flow in transformations: units
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Control flow in transformations: units
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Meta-model excerpt: Units



Exogenous transformations (model translation)

109

Metamodel  Relational
database schema

Henshin Trace meta-model
• Establishes traceability
• Supports containment of traces
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Big picture: Model transformations based on the
Eclipse Modeling Framework (EMF)

instance of

Source
Model

Source Meta-
Model

Ecore

instance of

instance of

Transformation
Specification

applied

instance of

Transformation
Meta-Model

instance of
defined for

Target
Model

Target Meta-
Modeldefined for
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Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour
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Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour
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Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule
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Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule



 In Eclipse, do File  Import… 
General  Existing Projects Into
Workspace  Next
 Do Select Archive File 

Choose henshin-example.zip
 The dialog should now

look like the image to the right
 Click Finish
 The project org.henshin.bank

should appear in the
Package Explorer

Henshin - Gabriele Taentzer 115

Import project
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Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule



 In the Package Explorer, inspect the imported project:
Navigate tofolder src/org.henshin.bank.

 Have a look at the files, including the meta-model 
bank.ecore, its visualization bank.aird and example models 
like example-bank.xmi (without visualization).

 Open bank.henshin_diagram.
The example rules are now
shown in Henshin‘s graphical
editor. You can use this editor
to modify and edit rules.
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View rules (and related files)
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Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule



To apply the rule createAccount to the model example-
bank.xmi:

 In Package Explorer, right-click
on bank.henshin ->
Henshin -> Apply transformation
 In the dialog, use Browse

Workspace… to select
example-bank.xmi
 Use the suggested

output model, and
enter parameter values
“Alice“ and 5 (see figure)
 Click on Transform

119

Apply rules using the Interpreter Wizard



 The result is saved to example-bank_transformed.xmi
 A Compare

viewer opens
automatically,
allowing us
to see the changes
performed to the
model.

120

Apply rules using the Interpreter Wizard
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Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule



Problem: Want to automate the application of rules - for example, 
when developing some refactoring tool on top of Henshin

Solution: The Interpreter API. Usage example in BankExample.java:

122

Execute rules from Java, using Interpreter API
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Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule
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Roll your own rule

Task 1: PayLongtimeBonus: Add 10$ to an account whose ID is
lower than 5

Task 2: FireUnproductiveManager: Delete from a given bank a
manager who is not assigned to any customers

Hints: 
 To create a parameter or variable in a rule, double-click the rule‘s 

title bar and change the list after the rule name (in round brackets)
 To change the action of an element (e.g. from preserve to delete), 

double-click on the action in the graphical editor, and type in the 
new action
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Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour
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Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
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LINE

Henshin: A Guided Tour



Features

Features: What would you like to do today?

 Execute a transformation

127

Diagram
editor

Interpreter 
Wizard

Interpreter 
API

 Define a transformation

 Analyse a transformation

Rule
generation

Giraph
integration

State Space
Exploration

Conflict
analysis

Dependency
analysis

Textual
editor

Tree-based
editor



Features

Features: What would you like to do today?

 Execute a transformation
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Diagram
editor

Tree-based
editor

Textual
editor

Interpreter 
Wizard

Interpreter 
API

Giraph
Integration

 Define a transformation

 Analyse a transformation

Rule
generation

State space
exploration

Dependency
analysis

Conflict
analysis



Features

Features: What would you like to do today?

 Execute a transformation
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Diagram
editor

Tree-based
editor

Textual
editor

Interpreter 
Wizard

Interpreter 
API

Giraph
Integration

 Define a transformation

 Analyse a transformation State space
exploration

Dependency
analysis

Conflict
analysis

Rule
generation



Problem: defining complex rules takes effort
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Deleting an association in a UML model



Solution: generate rules from examples
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O
rig

in
al

 M
od

el
Re

vi
se

d
M

od
el

Initial draft of rule

Ge
ne

ra
tio

n

 Use familiar graphical editors to define model pair: original-revised
 Uses model comparison to identify identical elements
 First draft of rule: may need to add parameters, NACs etc. 



Features

Features: What would you like to do today?

 Execute a transformation

132

Diagram
editor

Tree-based
editor

Textual
editor

Interpreter 
Wizard

Interpreter 
API

 Define a transformation

 Analyse a transformation State space
exploration

Dependency
analysis

Conflict
analysis

Rule
generation

Giraph
integration



Problem: EMF does not scale to large models

 Code generation for Apache Giraph
 Massive parallel execution
 Scales to millions of nodes and edges

133

Scales to IMDB data
924054 movies
1777656 male actors
980396 actresses

Solution: Massive parallel model transformation with Giraph



Features

Features: What would you like to do today?

 Execute a transformation
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Diagram
editor

Tree-based
editor

Textual
editor

Interpreter 
Wizard

Interpreter 
API

 Define a transformation

 Analyse a transformation Dependency
analysis

Conflict
analysis

Rule
generation

Giraph
integration

State Space
Exploration
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Example: Dining Philosophers
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Example: Dining Philosophers
Question: Is
there a deadlock?



Computing the state space for verification

 Full state space is computed
 Abstracts from order and a certain 

attributes
 State invariants, qualitative and

probabilistic model checking

137

Philosophers States (= 3^p) Transitions Time 

3 27 63 56ms

4 81 252 69ms

5 243 945 224ms

6 729 3,402 616ms

7 2,187 11,907 1.3s

8 6,561 40,824 5.0s

9 19,683 137,781 19.8s

10 59,049 459,270 80.5s

11 177,147 1,515,591 6min

12 531,441 4,960,116 61min

13 1,594,323 16,120,377 593min
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 Full state space is computed
 Abstracts from order and a certain 
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Computing the state space for verification

 Full state space is computed
 Abstracts from order and a certain 

attributes
 State invariants, qualitative and

probabilistic model checking
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Philosophers States (= 3^p) Transitions Time 

3 27 63 56ms

4 81 252 69ms

5 243 945 224ms

6 729 3,402 616ms

7 2,187 11,907 1.3s

8 6,561 40,824 5.0s

9 19,683 137,781 19.8s

10 59,049 459,270 80.5s

11 177,147 1,515,591 6min

12 531,441 4,960,116 61min

13 1,594,323 16,120,377 593min

Deadlock



Features

Features: What would you like to do today?

 Execute a transformation
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Diagram
editor

Tree-based
editor

Textual
editor

Interpreter 
Wizard

Interpreter 
API

 Define a transformation

 Analyse a transformation Dependency
analysis

Rule
generation

Giraph
integration

State Space
Exploration

Conflict
analysis



Example: conflicts in model refactorings
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1

2

Meta-model Rules
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addParameter
(print,(p,Printer))

addParameter
(queue, (f,File))

MoveMethod
(File, Printer,print)

MoveMethod
(File,Spooler,print)

Input model

1 2

1

2

1

1

2 1

2 2

1

1

Not applicable 
anymore! -> Conflict

File
print()

Printer
queue()

File
print(p:Printer)

Printer
queue(f: File)

File Printer
queue()
print()

Spooler

2

2



Conflict and dependency analysis
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1. Input: meta-model + rules

2. Context menu ->
Calculate Critical Pairs

3. Rule selection + options



Analysis result

145

origin of
conflict
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Applications
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Model uncertainty
Model-based security
Model versioning 
 Search-based model optimisation
…

Can do many things with HenshinCan do many things with Henshin



Models with uncertainty and variability
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Courtesy of Famelis et al. [MODELS 2013]



Models with uncertainty and variability
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Courtesy of Famelis et al. [MODELS 2013]



Models with uncertainty and variability
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Courtesy of Famelis et al. [MODELS 2013]



Security Engineering: keep system design 
aligned with security knowledge
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Courtesy of Bürger et al. [JSS 2018]

 Security knowledge
maintained in a
security ontology

 Ontology evolution
triggers 
corresponding
design-model
co-evolution rules



Model versioning: Recognizing executed
edit operations
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Courtesy of Kehrer et al. [ASE 2013]



Model versioning: Recognizing executed
edit operations
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Courtesy of Kehrer et al. [ASE 2013]



Model versioning: Recognizing executed
edit operations
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Courtesy of Kehrer et al. [ASE 2013]



Search-based model optimisation
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Applications
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Model uncertainty
Model-based security
Model versioning 
 Search-based model optimisation
…

Can do many things with HenshinCan do many things with Henshin



Summary of Part 1
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Further information:
www.eclipse.org/henshin



Backup material



Model instances as graphs
 typed attributed graphs

 with node type inheritance
 Containment constraints

159

Node type
Edge type

Attribute type

Node type
inheritance

1

2

1

3

2

Transformation rules need to comply with containment constraints



Henshin in action 1: EMF meta-models and models 
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Eclipse Modeling Framework:
• base technology for modeling in Eclipse
• supports various technologies

• graphical editors
• model query, comparison,

transformation etc.

Structured data models
• Classes with references

(instead of associations)
• Containment
• Resource Sets



Henshin in action 1: EMF meta-models and models 

161

Eclipse Modeling Framework:
• base technology for modeling in Eclipse
• supports various technologies

• graphical editors
• model query, comparison,

transformation etc.

Structured data models
• Classes with references

(instead of associations)
• Containment
• Resource Sets

Meta-
model



Henshin in action 1: EMF meta-models and models 

162

Eclipse Modeling Framework:
• base technology for modeling in Eclipse
• supports various technologies

• graphical editors
• model query, comparison,

transformation etc.

Structured data models
• Classes with references

(instead of associations)
• Containment
• Resource Sets

Meta-
model Model
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Background: Rule Applications are a Double Pushout

Language definition: Henshin meta-model 

Input
graph

Modified
graph

Mappings Right-hand side (RHS) of rule:
Created + Preserved elements

Left-hand side (LHS) of rule:
Deleted + Preserved elements

Match
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Background: Rule Applications are a Double Pushout

Language definition: Henshin meta-model 

Input
graph

Modified
graph

Negative
and positive
application
conditions

Mappings Right-hand side (RHS) of rule:
Created + Preserved elements

Left-hand side (LHS) of rule:
Deleted + Preserved elements

Match
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Background: Rule Applications are a Double Pushout

Language definition: Henshin meta-model 

Input
graph

Modified
graph

Negative
and positive
application
conditions

Mappings Right-hand side (RHS) of rule:
Created + Preserved elements

Left-hand side (LHS) of rule:
Deleted + Preserved elements

Match
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