
Henshin:
A Model Transformation Language
and its Use for Search-Based Model

Optimisation in MDEOptimiser

Daniel Strüber1, Alexandru Burdusel2,
Stefan John3, Steffen Zschaler2

1 Universität Koblenz-Landau,
2 King’s College London, 3 Philipps-Universität Marburg

Fachtagung Modellierung
February 21, 2018

69

Part 1

Model-driven software engineering:
Transformations everywhere

70

Analysis
model

Design
model

Source
code

Formal
model

Optimisation
Code

Generation

Validation

Forward
Engineering

Reverse
Engineering

Refactoring

Henshin

 Intuitive model transformation language with graphical syntax
 Supports various kinds of transformations
 Based on graph transformation theory
 Rule-based
 Expressive: advanced concepts

71

Henshin: Japanese for Transformation

Overview

 Part 1: Henshin: A Guided Tour
 Language
 In Action (interactive)
 Features
 Applications

 Part 2: Henshin in Search-Based Model Optimization
 Background
 MDEOptimiser
 Case 1: Class Responsibility Assignment (interactive)
 Case 2: SCRUM Planning (interactive)

72

73

HENSHIN
LINE

GRAPH TRANSFORMATION
LINE OPTIMISATION

LINE

Henshin: A Guided Tour

74

HENSHIN
LINE

GRAPH TRANSFORMATION
LINE OPTIMISATION

LINE

Henshin: A Guided Tour

75

Specify banking processes to analyse and simulate them
1. Create an account 3. Delete an account
2. Transfer money 4. Batch-delete accounts

Language: Running example

Example meta-model (in EMF)

Bank 1

Example model

Client
Anne

Manager
Frank

Client
Bill

Account
0538
40$

76

Example rule

create Newly created by rule
delete Removed by rule
preserve Context for creations and deletions
forbid Prevents rule from being applied
require Additional required parts
parameters Data passed into and from rule (in, out, inout)

Graph-transformation-based language
Example 1: createAccount

77

Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

with parameter values
client = “Bill“
accountID = 0539

Example 1: Create an account

?

78

Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

Client
Anne

Client
Bill

Bank 1 Manager
Frank

Account
0538

Account
0539

with parameter values
client = “Bill“
accountID = 0539

Example 1: Create an account

79

Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

with parameter values
client = “Bill“
accountID = 0538

Example 1: Create an account

Output
model

?

80

Bank 1

Example application of rule Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

with parameter values
client = “Bill“
accountID = 0538

Example 1: Create an account

Output
model No rule

application
possible

81

Example rule

Variables (var keyword) used inside rules to propagate values
Attribute manipulated using parameters, variables and ->
Conditions can restrict rule applications

Example 2: Transfer money

82

Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

Account
id=0539

credit=30

Output model

variables:
set automatically
on rule application

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = 10

?

83

Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

Account
id=0539

credit=30

Output model

Client Anne Client Bill

Account
id=0538

credit=40

Account
id=0539

credit=40

variables:
set automatically
on rule application

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = 10

84

Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = -30

Account
id=0539

credit=30

Output model ?

85

Example 2: Transfer money

Example application of rule

Input model

Client Anne Client Bill

Account
id=0538

credit=50

with parameters
client = “Anne“
fromID = 0538
toID = 0539
amount = -30

Account
id=0539

credit=30

Output model

No rule
application
possible

86

Example rule (first draft)

Example 3: Delete an account

87

Example rule (first draft)

Want to delete an account
which is given by its ID.

Is this rule sufficient?

Example 3: Delete an account

88

Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

?

89

Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

Bank 1

Client
Anne

Manager
Frank

Client
Bill

90

Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

?

Bank 1

Client
Anne

Manager
Frank

Client
Bill

By deleting the node only, without
incident edges, these edges would be
left behind dangling.
Henshin ensures this won‘t happen

91

Example rule (first draft)

Example 3: Delete an account

Bank 1

Input
model

Client
Anne

Manager
Frank

Client
Bill

Account
0538

Output
model

By deleting the node only, without
incident edges, these edges would be
left behind dangling.
Henshin ensures this won‘t happen

No rule
application
possible

92

Example rule (improved)

Example 3: Delete an account

93

Example rule (improved)

Example 3: Delete an account

Deletion: When deleting a model
element, need to specify all
references from and to that element
as deleted, too. (Dangling Condition)

94

Example rule

For-all operator: multi-rule (*)
Semantics:

1. apply kernel rule (part without *) once
2. apply multi-rule as often as possible

at the given place in the input model

Example 4: Batch-delete accounts

95

Example application of rule Input
model

Output
model

with parameter
client = “George“

?

Example 4: Batch-delete accounts

Bank 1

Client
George

Manager
Frank

Account
0912

Account
0915

96

Example application of rule Input
model

Output
model

with parameter
client = “George“

Example 4: Batch-delete accounts

Bank 1

Client
George

Manager
Frank

Account
0912

Account
0915

Bank 1

Client
George

Manager
Frank

97

Input
model

Output
model

?

Example 4: Batch-delete accounts

Bank 1

Client
Hank

Manager
Earl

Example application of rule

with parameter
client = “Hank“

98

Input
model

Output
model

Example 4: Batch-delete accounts

Bank 1

Client
Hank

Manager
Earl

Bank 1

Client
Hank

Manager
Earl

Example application of rule

with parameter
client = “Hank“

99

Input
model

Output
model

Example 4: Batch-delete accounts

Bank 1

Client
Hank

Manager
Earl

Bank 1

Client
Hank

Manager
Earl

Example application of rule

with parameter
client = “Hank“

Semantics:
1. apply kernel rule once
2. apply multi-rule as often as

possible at the given place

100

Language definition: meta-model excerpt
Can link negative and positive

application conditions
using boolean formulas

mark identity of nodes
in different graphs

(like preserve nodes in LHS and RHS)

LHS and RHS
Multi-rules

101

Abstract syntax: Based on left-hand side and right-hand side

Language definition: illustration

Negative
application

condition

Mappings

Right-hand side (RHS):
Created + Preserved elements

Left-hand side (LHS):
Deleted + Preserved elements

102

Control flow in transformations

Task: build a sparse grid
[Varró et al. 2005]

Three rules for extending the grid

@Grid = additional
container node

103

Control flow in transformations

Task: build a sparse grid
[Varró et al. 2005]

Three rules for extending the grid

@Grid = additional
container nodeBut, how to orchestrate the rules?

104

Control flow in transformations: units

105

Control flow in transformations: units

106

Control flow in transformations: units

107

Control flow in transformations: units

108

Meta-model excerpt: Units

Exogenous transformations (model translation)

109

Metamodel  Relational
database schema

Henshin Trace meta-model
• Establishes traceability
• Supports containment of traces

9

Big picture: Model transformations based on the
Eclipse Modeling Framework (EMF)

instance of

Source
Model

Source Meta-
Model

Ecore

instance of

instance of

Transformation
Specification

applied

instance of

Transformation
Meta-Model

instance of
defined for

Target
Model

Target Meta-
Modeldefined for

111

Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour

112

Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour

113

Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule

114

Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule

 In Eclipse, do File  Import… 
General  Existing Projects Into
Workspace  Next
 Do Select Archive File 

Choose henshin-example.zip
 The dialog should now

look like the image to the right
 Click Finish
 The project org.henshin.bank

should appear in the
Package Explorer

Henshin - Gabriele Taentzer 115

Import project

116

Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule

 In the Package Explorer, inspect the imported project:
Navigate tofolder src/org.henshin.bank.

 Have a look at the files, including the meta-model
bank.ecore, its visualization bank.aird and example models
like example-bank.xmi (without visualization).

 Open bank.henshin_diagram.
The example rules are now
shown in Henshin‘s graphical
editor. You can use this editor
to modify and edit rules.

117

View rules (and related files)

118

Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule

To apply the rule createAccount to the model example-
bank.xmi:

 In Package Explorer, right-click
on bank.henshin ->
Henshin -> Apply transformation
 In the dialog, use Browse

Workspace… to select
example-bank.xmi
 Use the suggested

output model, and
enter parameter values
“Alice“ and 5 (see figure)
 Click on Transform

119

Apply rules using the Interpreter Wizard

 The result is saved to example-bank_transformed.xmi
 A Compare

viewer opens
automatically,
allowing us
to see the changes
performed to the
model.

120

Apply rules using the Interpreter Wizard

121

Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule

Problem: Want to automate the application of rules - for example,
when developing some refactoring tool on top of Henshin

Solution: The Interpreter API. Usage example in BankExample.java:

122

Execute rules from Java, using Interpreter API

123

Henshin in action

1. Import project

2. View rules

3. Execute rules with the Interpreter Wizard

4. Execute rules from Java, using interpreter API

5. Roll your own rule

124

Roll your own rule

Task 1: PayLongtimeBonus: Add 10$ to an account whose ID is
lower than 5

Task 2: FireUnproductiveManager: Delete from a given bank a
manager who is not assigned to any customers

Hints:
 To create a parameter or variable in a rule, double-click the rule‘s

title bar and change the list after the rule name (in round brackets)
 To change the action of an element (e.g. from preserve to delete),

double-click on the action in the graphical editor, and type in the
new action

125

Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour

126

Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour

Features

Features: What would you like to do today?

 Execute a transformation

127

Diagram
editor

Interpreter
Wizard

Interpreter
API

 Define a transformation

 Analyse a transformation

Rule
generation

Giraph
integration

State Space
Exploration

Conflict
analysis

Dependency
analysis

Textual
editor

Tree-based
editor

Features

Features: What would you like to do today?

 Execute a transformation

128

Diagram
editor

Tree-based
editor

Textual
editor

Interpreter
Wizard

Interpreter
API

Giraph
Integration

 Define a transformation

 Analyse a transformation

Rule
generation

State space
exploration

Dependency
analysis

Conflict
analysis

Features

Features: What would you like to do today?

 Execute a transformation

129

Diagram
editor

Tree-based
editor

Textual
editor

Interpreter
Wizard

Interpreter
API

Giraph
Integration

 Define a transformation

 Analyse a transformation State space
exploration

Dependency
analysis

Conflict
analysis

Rule
generation

Problem: defining complex rules takes effort

130

Deleting an association in a UML model

Solution: generate rules from examples

131

O
rig

in
al

 M
od

el
Re

vi
se

d
M

od
el

Initial draft of rule

Ge
ne

ra
tio

n

 Use familiar graphical editors to define model pair: original-revised
 Uses model comparison to identify identical elements
 First draft of rule: may need to add parameters, NACs etc.

Features

Features: What would you like to do today?

 Execute a transformation

132

Diagram
editor

Tree-based
editor

Textual
editor

Interpreter
Wizard

Interpreter
API

 Define a transformation

 Analyse a transformation State space
exploration

Dependency
analysis

Conflict
analysis

Rule
generation

Giraph
integration

Problem: EMF does not scale to large models

 Code generation for Apache Giraph
 Massive parallel execution
 Scales to millions of nodes and edges

133

Scales to IMDB data
924054 movies
1777656 male actors
980396 actresses

Solution: Massive parallel model transformation with Giraph

Features

Features: What would you like to do today?

 Execute a transformation

134

Diagram
editor

Tree-based
editor

Textual
editor

Interpreter
Wizard

Interpreter
API

 Define a transformation

 Analyse a transformation Dependency
analysis

Conflict
analysis

Rule
generation

Giraph
integration

State Space
Exploration

135

Example: Dining Philosophers

136

Example: Dining Philosophers
Question: Is
there a deadlock?

Computing the state space for verification

 Full state space is computed
 Abstracts from order and a certain

attributes
 State invariants, qualitative and

probabilistic model checking

137

Philosophers States (= 3^p) Transitions Time

3 27 63 56ms

4 81 252 69ms

5 243 945 224ms

6 729 3,402 616ms

7 2,187 11,907 1.3s

8 6,561 40,824 5.0s

9 19,683 137,781 19.8s

10 59,049 459,270 80.5s

11 177,147 1,515,591 6min

12 531,441 4,960,116 61min

13 1,594,323 16,120,377 593min

Computing the state space for verification

 Full state space is computed
 Abstracts from order and a certain

attributes
 State invariants, qualitative and

probabilistic model checking

138

Philosophers States (= 3^p) Transitions Time

3 27 63 56ms

4 81 252 69ms

5 243 945 224ms

6 729 3,402 616ms

7 2,187 11,907 1.3s

8 6,561 40,824 5.0s

9 19,683 137,781 19.8s

10 59,049 459,270 80.5s

11 177,147 1,515,591 6min

12 531,441 4,960,116 61min

13 1,594,323 16,120,377 593min

Computing the state space for verification

 Full state space is computed
 Abstracts from order and a certain

attributes
 State invariants, qualitative and

probabilistic model checking

139

Philosophers States (= 3^p) Transitions Time

3 27 63 56ms

4 81 252 69ms

5 243 945 224ms

6 729 3,402 616ms

7 2,187 11,907 1.3s

8 6,561 40,824 5.0s

9 19,683 137,781 19.8s

10 59,049 459,270 80.5s

11 177,147 1,515,591 6min

12 531,441 4,960,116 61min

13 1,594,323 16,120,377 593min

Computing the state space for verification

 Full state space is computed
 Abstracts from order and a certain

attributes
 State invariants, qualitative and

probabilistic model checking

140

Philosophers States (= 3^p) Transitions Time

3 27 63 56ms

4 81 252 69ms

5 243 945 224ms

6 729 3,402 616ms

7 2,187 11,907 1.3s

8 6,561 40,824 5.0s

9 19,683 137,781 19.8s

10 59,049 459,270 80.5s

11 177,147 1,515,591 6min

12 531,441 4,960,116 61min

13 1,594,323 16,120,377 593min

Deadlock

Features

Features: What would you like to do today?

 Execute a transformation

141

Diagram
editor

Tree-based
editor

Textual
editor

Interpreter
Wizard

Interpreter
API

 Define a transformation

 Analyse a transformation Dependency
analysis

Rule
generation

Giraph
integration

State Space
Exploration

Conflict
analysis

Example: conflicts in model refactorings

142

1

2

Meta-model Rules

143

addParameter
(print,(p,Printer))

addParameter
(queue, (f,File))

MoveMethod
(File, Printer,print)

MoveMethod
(File,Spooler,print)

Input model

1 2

1

2

1

1

2 1

2 2

1

1

Not applicable
anymore! -> Conflict

File
print()

Printer
queue()

File
print(p:Printer)

Printer
queue(f: File)

File Printer
queue()
print()

Spooler

2

2

Conflict and dependency analysis

144

1. Input: meta-model + rules

2. Context menu ->
Calculate Critical Pairs

3. Rule selection + options

Analysis result

145

origin of
conflict

146

Henshin: A Usability-Focused Framework for EMF Model Transformation Development

HENSHIN
LINE

GRAPH
TRANSFORMATION

LINE
OPTIMISATION

LINE

Henshin: A Guided Tour

Applications

147

Model uncertainty
Model-based security
Model versioning
 Search-based model optimisation
…

Can do many things with HenshinCan do many things with Henshin

Models with uncertainty and variability

148

Courtesy of Famelis et al. [MODELS 2013]

Models with uncertainty and variability

149

Courtesy of Famelis et al. [MODELS 2013]

Models with uncertainty and variability

150

Courtesy of Famelis et al. [MODELS 2013]

Security Engineering: keep system design
aligned with security knowledge

151

Courtesy of Bürger et al. [JSS 2018]

 Security knowledge
maintained in a
security ontology

 Ontology evolution
triggers
corresponding
design-model
co-evolution rules

Model versioning: Recognizing executed
edit operations

152

Courtesy of Kehrer et al. [ASE 2013]

Model versioning: Recognizing executed
edit operations

153

Courtesy of Kehrer et al. [ASE 2013]

Model versioning: Recognizing executed
edit operations

154

Courtesy of Kehrer et al. [ASE 2013]

Search-based model optimisation

155

Applications

156

Model uncertainty
Model-based security
Model versioning
 Search-based model optimisation
…

Can do many things with HenshinCan do many things with Henshin

Summary of Part 1

157

Further information:
www.eclipse.org/henshin

Backup material

Model instances as graphs
 typed attributed graphs

 with node type inheritance
 Containment constraints

159

Node type
Edge type

Attribute type

Node type
inheritance

1

2

1

3

2

Transformation rules need to comply with containment constraints

Henshin in action 1: EMF meta-models and models

160

Eclipse Modeling Framework:
• base technology for modeling in Eclipse
• supports various technologies

• graphical editors
• model query, comparison,

transformation etc.

Structured data models
• Classes with references

(instead of associations)
• Containment
• Resource Sets

Henshin in action 1: EMF meta-models and models

161

Eclipse Modeling Framework:
• base technology for modeling in Eclipse
• supports various technologies

• graphical editors
• model query, comparison,

transformation etc.

Structured data models
• Classes with references

(instead of associations)
• Containment
• Resource Sets

Meta-
model

Henshin in action 1: EMF meta-models and models

162

Eclipse Modeling Framework:
• base technology for modeling in Eclipse
• supports various technologies

• graphical editors
• model query, comparison,

transformation etc.

Structured data models
• Classes with references

(instead of associations)
• Containment
• Resource Sets

Meta-
model Model

163

Background: Rule Applications are a Double Pushout

Language definition: Henshin meta-model

Input
graph

Modified
graph

Mappings Right-hand side (RHS) of rule:
Created + Preserved elements

Left-hand side (LHS) of rule:
Deleted + Preserved elements

Match

164

Background: Rule Applications are a Double Pushout

Language definition: Henshin meta-model

Input
graph

Modified
graph

Negative
and positive
application
conditions

Mappings Right-hand side (RHS) of rule:
Created + Preserved elements

Left-hand side (LHS) of rule:
Deleted + Preserved elements

Match

165

Background: Rule Applications are a Double Pushout

Language definition: Henshin meta-model

Input
graph

Modified
graph

Negative
and positive
application
conditions

Mappings Right-hand side (RHS) of rule:
Created + Preserved elements

Left-hand side (LHS) of rule:
Deleted + Preserved elements

Match

	Henshin:�A Model Transformation Language�and its Use for Search-Based Model Optimisation in MDEOptimiser
	Model-driven software engineering:�Transformations everywhere
	Henshin
	Overview
	Henshin: A Guided Tour
	Henshin: A Guided Tour
	Language: Running example
	Graph-transformation-based language�Example 1: createAccount
	Example 1: Create an account
	Example 1: Create an account
	Example 1: Create an account
	Example 1: Create an account
	Example 2: Transfer money
	Example 2: Transfer money
	Example 2: Transfer money
	Example 2: Transfer money
	Example 2: Transfer money
	Example 3: Delete an account
	Example 3: Delete an account
	Example 3: Delete an account
	Example 3: Delete an account
	Example 3: Delete an account
	Example 3: Delete an account
	Example 3: Delete an account
	Example 3: Delete an account
	Example 4: Batch-delete accounts
	Example 4: Batch-delete accounts
	Example 4: Batch-delete accounts
	Example 4: Batch-delete accounts
	Example 4: Batch-delete accounts
	Example 4: Batch-delete accounts
	Language definition: meta-model excerpt
	Language definition: illustration
	Control flow in transformations
	Control flow in transformations
	Control flow in transformations: units
	Control flow in transformations: units
	Control flow in transformations: units
	Control flow in transformations: units
	Meta-model excerpt: Units
	Exogenous transformations (model translation)
	Big picture: Model transformations based on the�Eclipse Modeling Framework (EMF)
	Henshin: A Guided Tour
	Henshin: A Guided Tour
	Henshin in action
	Henshin in action
	Import project
	Henshin in action
	View rules (and related files)
	Henshin in action
	Apply rules using the Interpreter Wizard
	Apply rules using the Interpreter Wizard
	Henshin in action
	Execute rules from Java, using Interpreter API
	Henshin in action
	Roll your own rule
	Henshin: A Guided Tour
	Henshin: A Guided Tour
	Features: What would you like to do today?�
	Features: What would you like to do today?�
	Features: What would you like to do today?�
	Problem: defining complex rules takes effort�
	Solution: generate rules from examples�
	Features: What would you like to do today?�
	Problem: EMF does not scale to large models
	Features: What would you like to do today?�
	Example: Dining Philosophers
	Example: Dining Philosophers
	Computing the state space for verification
	Computing the state space for verification
	Computing the state space for verification
	Computing the state space for verification
	Features: What would you like to do today?�
	Example: conflicts in model refactorings
	Foliennummer 143
	Conflict and dependency analysis
	Analysis result
	Henshin: A Guided Tour
	Applications
	Models with uncertainty and variability
	Models with uncertainty and variability
	Models with uncertainty and variability
	Security Engineering: keep system design aligned with security knowledge
	Model versioning: Recognizing executed�edit operations
	Model versioning: Recognizing executed�edit operations
	Model versioning: Recognizing executed�edit operations
	Search-based model optimisation
	Applications
	Summary of Part 1�
	Backup material
	Model instances as graphs
	Henshin in action 1: EMF meta-models and models
	Henshin in action 1: EMF meta-models and models
	Henshin in action 1: EMF meta-models and models
	Language definition: Henshin meta-model
	Language definition: Henshin meta-model
	Language definition: Henshin meta-model

