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Part 2



Overview

 Part 1: Henshin: A Guided Tour
 Language
 In Action (interactive)
 Features
 Applications

 Part 2: Henshin in Search-Based Model Optimization
 Background
 MDEOptimiser
 In Action

 Case 1: Class Responsibility Assignment (interactive)
 Case 2: SCRUM Planning (interactive)
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Optimization problems in software engineering
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Common task: find an optimal solution
among a vast number of candidates
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Example: Class Responsibility Assignment (CRA)
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Courtesy of Fleck
et al. [TTC 2016]
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Input model

Courtesy of Fleck et al. [TTC 2016]
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Example: Class Responsibility Assignment (CRA)
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Input model Example solution

Quality

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Objective combining cohesion + coupling



Example: Class Responsibility Assignment (CRA)
Fitness function
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Courtesy of Fleck
et al. [TTC 2016]
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Courtesy of Fleck
et al. [TTC 2016]
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 Problem: Search space usually too large to enumerate all solutions
 Solution: Guided search can explore space more efficiently than humans

Mutation Crossover Selection

Fitness
criteria

based on

Genetic algorithm

Search-based software engineering
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 Problem: Search space usually too large to enumerate all solutions
 Solution: Guided search can explore space more efficiently than humans

Mutation Crossover Selection

Fitness
criteria

based on

Genetic algorithm

 Cost: Search algorithms need to be customized to problem at hand; 
substantial expertise required

Search-based software engineering



Optimal
solution
models

Solution: Search-based model optimisation
 Use models to describe solutions
 Standard manipulations available (model transformations!)
 Move optimisation knowledge from humans to tools

68

Domain expert
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Optimal
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has domain
knowledge

encodes 
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knowledge

Optimization tool
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technology



Search-based model optimisation: what‘s needed?
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MDE Optimiser
 Multi-objective optimization
 Directly over models (no separate solution encoding)
 Specification language + kernel
 Uses Henshin to specify evolutionary operators
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MDE Optimiser
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Framework
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Problem specification in MDEOptimiser: CRA



Pre-defined mutation rules for CRA
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Pre-defined objective function for CRA
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Pre-defined constraint for CRA
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Pre-defined constraint for CRA
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Solution‘s „fitness“ w.r.t. a constraint:
How far is the solution away from 
fulfilling the constraint?



Problem specification in MDEOptimiser: CRA



Problem specification in MDEOptimiser: CRA

„Depth“ of the search,
runtime vs. effectiveness
trade-off
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MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator



82

MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator



 In Eclipse, do File  Import…  General  Existing Projects Into 
Workspace  Next
 Do Select Archive File  Choose optimization-cases.zip
 By now, you should be an expert on importing projects. :-)
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Import projects
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View the specification of CRA case

 In the Package Explorer, navigate to project 
uk.ac.kcl.mdeoptimise.cra.solutions, folder src/models.cra

 Have a look at the files:

MDEOptimiser spec: cra-solution.mopt
meta-model: architectureCRA.ecore
five input models: TTC_InputRDG_<A-E>.xmi
objective function: MaximiseCRA.xtend
constraint: NoClasslessFeatures.xtend
mutation operators: craEvolvers.henshin_diagram
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MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator
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Set up and apply run configuration
To execute cra-solution.mopt, create a new run configuration:
 Click on the triangle next to the Run Icon,

select Run Configurations…
 Right click on MDEOptimiser Search,

select New. As Name for the
configuration, enter: CRA
 Do Browse Workspace ->

Select Source cra-solution.mopt
 In the Classpath tab, add the

current project as a User Entry, 
using Add Projects…
 Hit Apply and Run. If everything

works correctly, you will see
console output like on the right.
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MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator
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View created results

After approximately 15 seconds, the
run is finished: No new console outputs,
„Terminate“ switch has turned gray.

Results are in a newly created folder:
In the Package Explorer, click on mde-results,
hit F5 (refresh) and find the folder.

Open overall-results.txt. This shows the
execution time and an overview of the
best solution with its CRA index.
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MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator
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Design a good mutation operator

Problem: Search is time-consuming.
Solution: Improve the search by designing good evolutionary
operators.

A mutation operator m1 is better than a mutation
operator m2, if the solutions found using m1 are better
than those found using m2 (assuming an otherwise
equal configuration).

Task: Design a better mutation operator for the CRA case
than the given one.

Reference values:

Hint: What are desirable structures from the perspective
of the objective function, and how to create them?

Model A B C D E

CRA 1.6 2.2 1.8 2.4 -11.6
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SCRUM Planning
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Have a backlog of work
items for different
customers.
Need to allocate work
items to sprints.

Goals: Be fast and
keep customers satisfied.
Multi-objective optimisation

problem: pareto front 
instead of one best solution 



SCRUM Planning

Henshin - Gabriele Taentzer 94

Meta-model
Stakeholder 1 

Backlog

Item A
Imp: 3
Eff: 10

Item D
Imp: 5
Eff: 30

Item B
Imp: 3
Eff: 10

Item E
Imp: 3
Eff: 15

Item C
Imp: 3
Eff: 10

Item F
Imp: 1
Eff: 15

Example model
(without sprints)

Stakeholder 2 



SCRUM Planning: Objectives and constraints
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Backlog

Example model
(without sprints)

Constraint 1: Number
of sprints is below a given maximum

Constraint 2: Every work
item is assigned to a sprint.

Objective 2: Maximize
customer satisfaction -> next slide

Objective 1: Sprints are
as balanced as possible.Stakeholder 1 

Stakeholder 2 

Item A
Imp: 3
Eff: 10

Item D
Imp: 5
Eff: 30

Item B
Imp: 3
Eff: 10

Item E
Imp: 3
Eff: 15

Item C
Imp: 3
Eff: 10

Item F
Imp: 1
Eff: 15



SCRUM Planning: Customer satisfaction index
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Low means good:
Indicates low standard deviation

Sprint 1  Capacity: 28 Sprint 2  Capacity: 27

Sprint 1  Capacity: 28 Sprint 2  Capacity: 27



SCRUM Planning: Customer satisfaction index
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𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠.𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐∈𝑝𝑝.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠𝑠𝑠.𝑑𝑑𝑑𝑑𝑣𝑣𝑠𝑠∈𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐, 𝑠𝑠)))

𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐, 𝑠𝑠 = ∑𝑖𝑖∈𝑠𝑠.𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=𝑐𝑐 𝑖𝑖. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
Satisfaction of customer c in sprint s

Customer satisfaction index of plan p

Sprint 1  Capacity: 28 Sprint 2  Capacity: 27



Problem specification in MDEOptimiser: SCRUM
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MDEOptimiser in action: SCRUM case

1. View the specification of SCRUM case

2. Set up and apply run configuration

3. View created results
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View the specification of the SCRUM case

 In the Package Explorer, navigate to project 
uk.ac.kcl.mdeoptimise.scrum.planning.solutions, folder 
src/models.scrum

 Have a look at the files:

MDEOptimiser spec: scrum-planning.mopt
meta-model: planning.ecore
input models: input directory
objective functions: MinimiseSprintEffortDeviation.xtend 

and MinimiseCustomerSatisfactionIndex.xtend
constraints: HasTheAllowedMaximalNumberOfSprints.xtend

and HasNoUnassignedWorkItems.xtend
mutation operators: sprint-repair.henshin_diagram
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MDEOptimiser in action: SCRUM case

1. View the specification of SCRUM case

2. Set up and apply run configuration

3. View created results



Set up and apply run configuration

Similar to the CRA case, create a new configuration
Name: SCRUM
Source: scrum-planning.mopt
Make sure to add the corresponding classpath entry:
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MDEOptimiser in action: SCRUM case

1. View the specification of SCRUM case

2. Set up and apply run configuration

3. View created results
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View created results

Results are, again, in a newly created folder:
In the Package Explorer, click on mde-results,
hit F5 (refresh) and find the folder.

Open overall-results.txt. This shows the
execution time and an overview of the
best solutions with their objective values.

Since we have multiple solutions in
general, an image file 
batch-0-pareto-front.jpeg is generated
showing the pareto front.



Summary of Part 2
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Further information:
www.eclipse.org/henshin
mde-optimiser.github.io
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