
Henshin:
A Model Transformation Language
and its Use for Search-Based Model

Optimisation in MDEOptimiser

Daniel Strüber1, Alexandru Burdusel2,
Stefan John3, Steffen Zschaler2

1 Universität Koblenz-Landau,
2 King’s College London, 3 Philipps-Universität Marburg

Fachtagung Modellierung
February 21, 2018

45

Part 2

Overview

 Part 1: Henshin: A Guided Tour
 Language
 In Action (interactive)
 Features
 Applications

 Part 2: Henshin in Search-Based Model Optimization
 Background
 MDEOptimiser
 In Action

 Case 1: Class Responsibility Assignment (interactive)
 Case 2: SCRUM Planning (interactive)

46

Optimization problems in software engineering

47

Component
deployment

Architecture
refactoring

Sprint
planning

Optimization problems in software engineering

48

Component
deployment

Architecture
refactoring

Sprint
planning

Common task: find an optimal solution
among a vast number of candidates

Optimization problems in software engineering

49

Component
deployment

Architecture
refactoring

Sprint
planning

Solutions

Optimality

Optimization problems in software engineering

50

Component
deployment

Architecture
refactoring

Sprint
planning

Solutions

Optimality

Assignment
Classes→
Packages

Optimization problems in software engineering

51

Component
deployment

Architecture
refactoring

Sprint
planning

Solutions

Optimality

Assignment
Classes→
Packages

max. Cohesion
min. Coupling

Optimization problems in software engineering

52

Component
deployment

Architecture
refactoring

Sprint
planning

Solutions

Optimality

Assignment
Classes→
Packages

Assignment
Work Items→

Sprints

max. Cohesion
min. Coupling

Optimization problems in software engineering

53

Component
deployment

Architecture
refactoring

Sprint
planning

Solutions

Optimality

Assignment
Classes→
Packages

Assignment
Work Items→

Sprints

max. Cohesion
min. Coupling

max. Items/Sprint
max. Customer

Satisfaction

Optimization problems in software engineering

54

Component
deployment

Architecture
refactoring

Sprint
planning

Solutions

Optimality

Assignment
Classes→
Packages

Assignment
Work Items→

Sprints

Assignment
Components→

Hosts

max. Cohesion
min. Coupling

max. Items/Sprint
max. Customer

Satisfaction

Optimization problems in software engineering

55

Component
deployment

Architecture
refactoring

Sprint
planning

Solutions

Optimality

Assignment
Classes→
Packages

Assignment
Work Items→

Sprints

Assignment
Components→

Hosts

max. Cohesion
min. Coupling

max. Items/Sprint
max. Customer

Satisfaction

min. Price
min. Overhead

Example: Class Responsibility Assignment (CRA)

56

Courtesy of Fleck
et al. [TTC 2016]

Example: Class Responsibility Assignment (CRA)

57

Input model

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Example: Class Responsibility Assignment (CRA)

58

Input model Example solution

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Example: Class Responsibility Assignment (CRA)

59

Input model Example solution

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Example: Class Responsibility Assignment (CRA)

60

Input model Example solution

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Example: Class Responsibility Assignment (CRA)

61

Input model Example solution

Quality

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Example: Class Responsibility Assignment (CRA)

62

Input model Example solution

Quality

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Example: Class Responsibility Assignment (CRA)

63

Input model Example solution

Quality

Courtesy of Fleck et al. [TTC 2016]

Task: Assign methods+
attributes
to classes

Objective combining cohesion + coupling

Example: Class Responsibility Assignment (CRA)
Fitness function

64

Courtesy of Fleck
et al. [TTC 2016]

Example: Class Responsibility Assignment (CRA)
Fitness function

65

Courtesy of Fleck
et al. [TTC 2016]

66

 Problem: Search space usually too large to enumerate all solutions
 Solution: Guided search can explore space more efficiently than humans

Mutation Crossover Selection

Fitness
criteria

based on

Genetic algorithm

Search-based software engineering

67

 Problem: Search space usually too large to enumerate all solutions
 Solution: Guided search can explore space more efficiently than humans

Mutation Crossover Selection

Fitness
criteria

based on

Genetic algorithm

 Cost: Search algorithms need to be customized to problem at hand;
substantial expertise required

Search-based software engineering

Optimal
solution
models

Solution: Search-based model optimisation
 Use models to describe solutions
 Standard manipulations available (model transformations!)
 Move optimisation knowledge from humans to tools

68

Domain expert

Problem
specification

Optimal
solution
models

has domain
knowledge

encodes
optimisation
knowledge

Optimization tool
uses

transformation
technology

Search-based model optimisation: what‘s needed?

69

Domain expert

Solution
meta-model

Constraints

Fitness
functions

1. What do
solutions look

like?

2. What
makes a good

solution?
3. How can
solutions be

derived?

Optimization tool

Optimal
solution
models

has domain
knowledge

encodes
optimisation
knowledge

uses modeling
technology

Overview

 Part 1: Henshin: A Guided Tour
 Language
 In Action (interactive)
 Features
 Applications

 Part 2: Henshin in Search-Based Model Optimization
 Background
 MDEOptimiser
 In Action

 Case 1: Class Responsibility Assignment (interactive)
 Case 2: SCRUM Planning (interactive)

70

MDE Optimiser
 Multi-objective optimization
 Directly over models (no separate solution encoding)
 Specification language + kernel
 Uses Henshin to specify evolutionary operators

71

MDE Optimiser

72

Domain expert

Solution
meta-model

Constraints

Fitness
functions

Domain
knowledge

MOEA
Framework

MDEOptimiser

Optimal
solution
models

.mopt
file

Mutation
operator

Henshin

Cross-over
operator

Problem specification in MDEOptimiser: CRA

Pre-defined mutation rules for CRA

74

Pre-defined objective function for CRA

75

Pre-defined constraint for CRA

76

Pre-defined constraint for CRA

77

Solution‘s „fitness“ w.r.t. a constraint:
How far is the solution away from
fulfilling the constraint?

Problem specification in MDEOptimiser: CRA

Problem specification in MDEOptimiser: CRA

„Depth“ of the search,
runtime vs. effectiveness
trade-off

Overview

 Part 1: Henshin: A Guided Tour
 Language
 In Action (interactive)
 Features
 Applications

 Part 2: Henshin in Search-Based Model Optimization
 Background
 MDEOptimiser
 In Action

 Case 1: Class Responsibility Assignment (interactive)
 Case 2: SCRUM Planning (interactive)

80

81

MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator

82

MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator

 In Eclipse, do File  Import…  General  Existing Projects Into
Workspace  Next
 Do Select Archive File  Choose optimization-cases.zip
 By now, you should be an expert on importing projects. :-)

83

Import projects

84

MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator

85

View the specification of CRA case

 In the Package Explorer, navigate to project
uk.ac.kcl.mdeoptimise.cra.solutions, folder src/models.cra

 Have a look at the files:

MDEOptimiser spec: cra-solution.mopt
meta-model: architectureCRA.ecore
five input models: TTC_InputRDG_<A-E>.xmi
objective function: MaximiseCRA.xtend
constraint: NoClasslessFeatures.xtend
mutation operators: craEvolvers.henshin_diagram

86

MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator

87

Set up and apply run configuration
To execute cra-solution.mopt, create a new run configuration:
 Click on the triangle next to the Run Icon,

select Run Configurations…
 Right click on MDEOptimiser Search,

select New. As Name for the
configuration, enter: CRA
 Do Browse Workspace ->

Select Source cra-solution.mopt
 In the Classpath tab, add the

current project as a User Entry,
using Add Projects…
 Hit Apply and Run. If everything

works correctly, you will see
console output like on the right.

88

MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator

89

View created results

After approximately 15 seconds, the
run is finished: No new console outputs,
„Terminate“ switch has turned gray.

Results are in a newly created folder:
In the Package Explorer, click on mde-results,
hit F5 (refresh) and find the folder.

Open overall-results.txt. This shows the
execution time and an overview of the
best solution with its CRA index.

90

MDEOptimiser in action: CRA case

1. Import projects

2. View the specification of CRA case

3. Set up and apply run configuration

4. View created results

5. Design a good mutation operator

91

Design a good mutation operator

Problem: Search is time-consuming.
Solution: Improve the search by designing good evolutionary
operators.

A mutation operator m1 is better than a mutation
operator m2, if the solutions found using m1 are better
than those found using m2 (assuming an otherwise
equal configuration).

Task: Design a better mutation operator for the CRA case
than the given one.

Reference values:

Hint: What are desirable structures from the perspective
of the objective function, and how to create them?

Model A B C D E

CRA 1.6 2.2 1.8 2.4 -11.6

Overview

 Part 1: Henshin: A Guided Tour
 Language
 In Action (interactive)
 Features
 Applications

 Part 2: Henshin in Search-Based Model Optimization
 Background
 MDEOptimiser
 In Action

 Case 1: Class Responsibility Assignment (interactive)
 Case 2: SCRUM Planning (interactive)

92

SCRUM Planning

93

Have a backlog of work
items for different
customers.
Need to allocate work
items to sprints.

Goals: Be fast and
keep customers satisfied.
Multi-objective optimisation

problem: pareto front
instead of one best solution

SCRUM Planning

Henshin - Gabriele Taentzer 94

Meta-model
Stakeholder 1

Backlog

Item A
Imp: 3
Eff: 10

Item D
Imp: 5
Eff: 30

Item B
Imp: 3
Eff: 10

Item E
Imp: 3
Eff: 15

Item C
Imp: 3
Eff: 10

Item F
Imp: 1
Eff: 15

Example model
(without sprints)

Stakeholder 2

SCRUM Planning: Objectives and constraints

Henshin - Gabriele Taentzer 95

Backlog

Example model
(without sprints)

Constraint 1: Number
of sprints is below a given maximum

Constraint 2: Every work
item is assigned to a sprint.

Objective 2: Maximize
customer satisfaction -> next slide

Objective 1: Sprints are
as balanced as possible.Stakeholder 1

Stakeholder 2

Item A
Imp: 3
Eff: 10

Item D
Imp: 5
Eff: 30

Item B
Imp: 3
Eff: 10

Item E
Imp: 3
Eff: 15

Item C
Imp: 3
Eff: 10

Item F
Imp: 1
Eff: 15

SCRUM Planning: Customer satisfaction index

96

Low means good:
Indicates low standard deviation

Sprint 1 Capacity: 28 Sprint 2 Capacity: 27

Sprint 1 Capacity: 28 Sprint 2 Capacity: 27

SCRUM Planning: Customer satisfaction index

97
𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠.𝑑𝑑𝑑𝑑𝑣𝑣𝑐𝑐∈𝑝𝑝.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠𝑠𝑠.𝑑𝑑𝑑𝑑𝑣𝑣𝑠𝑠∈𝑝𝑝.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐, 𝑠𝑠)))

𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐, 𝑠𝑠 = ∑𝑖𝑖∈𝑠𝑠.𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=𝑐𝑐 𝑖𝑖. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
Satisfaction of customer c in sprint s

Customer satisfaction index of plan p

Sprint 1 Capacity: 28 Sprint 2 Capacity: 27

Problem specification in MDEOptimiser: SCRUM

99

MDEOptimiser in action: SCRUM case

1. View the specification of SCRUM case

2. Set up and apply run configuration

3. View created results

100

View the specification of the SCRUM case

 In the Package Explorer, navigate to project
uk.ac.kcl.mdeoptimise.scrum.planning.solutions, folder
src/models.scrum

 Have a look at the files:

MDEOptimiser spec: scrum-planning.mopt
meta-model: planning.ecore
input models: input directory
objective functions: MinimiseSprintEffortDeviation.xtend

and MinimiseCustomerSatisfactionIndex.xtend
constraints: HasTheAllowedMaximalNumberOfSprints.xtend

and HasNoUnassignedWorkItems.xtend
mutation operators: sprint-repair.henshin_diagram

101

MDEOptimiser in action: SCRUM case

1. View the specification of SCRUM case

2. Set up and apply run configuration

3. View created results

Set up and apply run configuration

Similar to the CRA case, create a new configuration
Name: SCRUM
Source: scrum-planning.mopt
Make sure to add the corresponding classpath entry:

103

MDEOptimiser in action: SCRUM case

1. View the specification of SCRUM case

2. Set up and apply run configuration

3. View created results

104

View created results

Results are, again, in a newly created folder:
In the Package Explorer, click on mde-results,
hit F5 (refresh) and find the folder.

Open overall-results.txt. This shows the
execution time and an overview of the
best solutions with their objective values.

Since we have multiple solutions in
general, an image file
batch-0-pareto-front.jpeg is generated
showing the pareto front.

Summary of Part 2

105

Further information:
www.eclipse.org/henshin
mde-optimiser.github.io

	Henshin:�A Model Transformation Language�and its Use for Search-Based Model Optimisation in MDEOptimiser
	Overview
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Optimization problems in software engineering�
	Example: Class Responsibility Assignment (CRA)�
	Example: Class Responsibility Assignment (CRA)
	Example: Class Responsibility Assignment (CRA)
	Example: Class Responsibility Assignment (CRA)
	Example: Class Responsibility Assignment (CRA)
	Example: Class Responsibility Assignment (CRA)
	Example: Class Responsibility Assignment (CRA)
	Example: Class Responsibility Assignment (CRA)
	 Example: Class Responsibility Assignment (CRA)� Fitness function
	 Example: Class Responsibility Assignment (CRA)� Fitness function
	Search-based software engineering�
	Search-based software engineering�
	Solution: Search-based model optimisation�
	Search-based model optimisation: what‘s needed?�
	Overview
	MDE Optimiser�
	MDE Optimiser�
	Problem specification in MDEOptimiser: CRA�
	Pre-defined mutation rules for CRA
	Pre-defined objective function for CRA
	Pre-defined constraint for CRA
	Pre-defined constraint for CRA
	Problem specification in MDEOptimiser: CRA�
	Problem specification in MDEOptimiser: CRA�
	Overview
	MDEOptimiser in action: CRA case
	MDEOptimiser in action: CRA case
	Import projects
	MDEOptimiser in action: CRA case
	View the specification of CRA case
	MDEOptimiser in action: CRA case
	Set up and apply run configuration
	MDEOptimiser in action: CRA case
	View created results
	MDEOptimiser in action: CRA case
	Design a good mutation operator
	Overview
	SCRUM Planning
	SCRUM Planning
	SCRUM Planning: Objectives and constraints
	SCRUM Planning: Customer satisfaction index
	SCRUM Planning: Customer satisfaction index
	Problem specification in MDEOptimiser: SCRUM�
	MDEOptimiser in action: SCRUM case
	View the specification of the SCRUM case
	MDEOptimiser in action: SCRUM case
	Set up and apply run configuration
	MDEOptimiser in action: SCRUM case
	View created results
	Summary of Part 2�

